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PREFACE

At least one vacuum-tube oscillator is used in virtually every trans-
mitter or receiver for radio, television, and radar. Oscillators are,
therefore, of considerable economic as well as theoretical interest.
Although they are discussed in many periodicals and books, there
appears to be a genuine need for a connected discussion of the design
and operation of these devices.

In this book I have attempted to present a systematic and reason-
ably complete treatment of the many factors which affect the behavior
of vacuum-tube oscillators. The viewpoint of design is favored over
that of analysis because it represents the basic purpose of engineering
and because the ability to design is a priori proof of competence in
analysis. It might appear that the subject is unreasonably specialized
and that a lack of material would exist. Actually, just the reverse is
true. The subject touches on a great variety of topics in electronics,
circuit theory, and dynamics; and an extensive literature exists. In
fact, the selection and the organization of this material have been the
principal tasks in writing this book. -

The execution of this project, which was conceived more than ten
years ago, has been delayed by a number of events. Because the
general understanding of the subject has been considerably advanced
by many workers and because I have gained in experience, the treat-
ment has profited considerably by the delay. Relatively little of the
work here presented is original, and virtually all has been previously
published. However, the material has been too scattered to be effec-
tively available; and the viewpoints and notations used have been so
divergent as to impede greatly the understanding of the work accom-
plished. I hope that the treatment in this book may overcome most
of these difficulties by use of & uniform notation and several coordinated
viewpoints developed in a logical sequence.

A clear and adequate exposition of the behavior of oscillators is the
objective of my book, and mathematics has been employed freely
where it is helpful. Wherever possible, relationships have been
developed from fundamental considerations. In certain sections,
however, the development has been omitted as impractically long or

va



viii PREFACE

difficult, and the pertinent results are merely stated. The level of
the treatment is directed toward the graduate of the usual four-year
course in electrical engineering. It therefore appears that the book
should be useful as a textbook for a senior or graduate course, as well
as for the guidance of practicing engineers.

As far as practical, I have made the treatment of each chapter self-
sufficient, so that the book may serve as a useful reference work and so
that an instruetor may adjust a course to the needs of his students and
the time available. However, the subject is so interrelated that this
objective has not been completely met; and in any event the first five
chapters are needed as the basis for the following material. A reason-
able familiarity with the characteristics of ordinary vacuum tubes is
assumed, and little is said about this subject.

In the interest of keeping the length and cost of this book within
reason it was necessary to omit much interesting and important mate-
rial. Specifically, microwave oscillators are not discussed because
they are already treated in several books.

A fairly extensive but by no means exhaustive bibliography is
included as an aid to the worker who wishes a more detailed treatment
than that offered here. I am aware that first-class work in numerous
phases of this subject has been, and probably is being, done in every
country of the world. However, nearly every important point has
been competently discussed in English. Aeccordingly the bibliography
contains a relatively small number of references to foreign periodicals,
because language difficulties and library limitations make these
unavailable to so many individuals.

The MKS system is used in all analytic work, although apparatus
dimensions are sometimes given in inches and feet, in conformity to
current practice. The abbreviations, symbols, network terminology,
and graphical representations used conform to the Standards of the
Institute of Radio Engineers. Consistent with that usage, the term
phasor rather than vector is used to designate the complex quantities
which represent sinusoidal voltages and currents. I have used the
symbol « to represent the value of by-pass condensers, and choke coils
to indicate that the corresponding admittance or impedance is effec-
tively infinite. The interpretation of schematic diagrams is consid-
erably expedited by this notation, because attention can immediately
be focused upon the elements which actually control the beha-
vior of the system. With the same objective, I have, where practical,
emphasized the frequency-controlling elements or resonator.

So many workers have contributed to the subject that it is quite
impossible to make adequate acknowledgment. However, I am
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particularly indebted to Professor J. B. Russell of Columbia University
for his constructive criticism of the manusecript. I have also been
greatly aided by the works of J. R. Pierce and H. W. Bode and by
discussions with my brother, J. O. Edson, all of the Bell Telephone
Laboratories. Finally, I am indebted to the Georgia Institute of
Technology for a policy which made it possible to do this work while
there.
WiLLiam A. EpsoN

Stanford, California
November, 1952
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INTRODUCTION

1.1 What an oscillator does

The vacuum-tube oscillator is an extremely versatile device for the
production of alternating electric currents. The currents so produced
are usually periodic, and often substantially sinusoidal. The useful
power output and incidental losses are provided by a power input,
which is ordinarily a direct current. The efficiency is commonly very
low, in the order of a few per cent. In high-power applications, how-
ever, where efficiency is important it is possible to obtain values of
efficiency well over 50 per cent.

The most important feature of the vacuum-tube oscillator is the
great range of frequencies which may be produced. Frequencies as
low as a hundredth of a e¢ycle per second and as high as 50 billion eycles
per second are now readily produced. Past experience indicates that
both limits will be extended further.

In most applications a vacuum-tube oscillator serves primarily as a
timing device. That is, the period or duration, T, of each cycle is of
basic importance. Ordinarily this property is expressed in the inverse
form as a frequency, f, in cycles per second according to the basic
relationship

f=1/T. (1.1)

For purposes of analysis a related quantity, w, is more convenient.
This quantity, which is measured in radians per second, is given by
the familiar equation

w = 2xf. (1.2)

The quantity v is often referred to as angular frequency, or simply as
frequency when no misunderstanding is likely to occur.

In a great many applications it is important that the frequency be
very nearly constant. The degree to which constant frequency is
approached is referred to as frequency stability. Frequency stability

1



2 INTRODUCTION

is ordinarily expressed by the statement that under specified conditions
the frequency will not depart from a specified value by more than a
certain fraction or per cent. For example, it is illegal for the carrier
frequency of a commercial broadcast station to depart from its assigned
value by more than 20 cycles.* The oscillator in a station whose
assigned frequency is one megacycle must therefore have a frequency
stability of 20 parts per million or two parts in 10% with respect to
all causes, and for considerable intervals of time. Over a period of a
few minutes the frequency of such an oscillator is likely to be constant
to a few parts in 107. Oscillators exist which have a short-time
stability of a few parts in 102°.

Where the efficient generation of electric power from a prime mover
is required, rotating machines such as the alternator are still the most
desirable. However, the frequency range which is conveniently and
efficiently generated in this way is quite limited. Frequencies of
even a few kilocycles are now more efficiently generated by electronic
than by machine methods.

1.2 Devices for producing oscillations

The high-vacuum tube is the only device now known for generating
continuous waves at the higher frequencies, and it is the most flexible
device for producing oscillations of a variety of wave forms and fre-
quencies. High-vacuum tubes exist in a great variety of forms and
employ a ecomparable variety of operating principles. Of these the
triode is oldest and simplest, and remains one of the most useful. The
tetrode has been largely superseded by the pentode, which is fre-
quently useful in oscillators that must achieve great frequency stability
or must simultaneously perform several functions.

Electrons produced by secondary emission have been employed in
the dynatron and may prove to be useful in oscillators based upon
electron multiplier schemes. To date, however, no form of secondary
emission device has been found satisfactory in oscillator applications,

The motion of electrons in a high-vacuum tube can be controlled by
means of a magnetic field instead of, or in conjunction with, electric
fields. The split-anode cylindrical magnetron is an example of such a
device, which, in connection with a suitable circuit, efficiently produces
oscillations over a very wide band of frequencies. In the microwave
magnetron, developed so intensively for military radar, the action of
electric and magnetic fields is supplemented by the actual inertia or

* The terms eycles, kiloeycles, ete., are used throughout this book as abbrevia-

tions for the longer terms cycles per second, kilocycles per second, ete. This is
standard usage in the profession and is defended on the basis of expediency.
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transit time of the electrons themselves. These transit-time magne-
trons are highly efficient and powerful oscillators; but a particular
tube is capable of operating over only a relatively narrow frequency
band.

The effects of electron inertia are employed in almost all microwave
oscillators. Tubes such as the klystron, which employ velocity
modulation instead of magnetic fields, have been highly successful,
especially as continuous wave generators at low power levels. )

In addition to high-vacuum tubes there is a large and growing list of
electronic devices which are useful as oscillators in certain circum-
stances. Of these, the gas-filled tube, such as the thyratron, is prob-
ably most important. (The oscillating arc, once widely used, is now
virtually obsolete.) The transistor,?® * a semiconducting triode
employing a germanium crystal,2® appears very promising for the genera-
tion of oscillations in the low-power and medium-frequency region.
Although they are not strictly vacuum tubes, these devices are included
in the present treatment because they are closely related in operation,
are useful, and in some cases serve to illustrate basic principles.

1.3 Types of oscillators

Oscillators may be divided into two broad classes, harmonic oscillators
and relaxzalion oscillators. A majority of ordinary oscillators are
harmonic oscillators, which are characterized by nearly sinusoidal wave
forms and a relatively stable frequency of operation. They ordinarily
employ a tuned circuit or other appropriate resonator.i Relaxation
oscillators are characterized by wave forms which are markedly non-
sinusoidal and by a relatively unstable frequency of operation. They
usually have a period or frequency which is principally determined by
a resistance-capacitance product.

Ordinarily, a particular oscillator can be readily assigned to one or
the other clags. In certain cases, however, the identification is not
clear, because the performance and circuit configuration of the two
classes merge smoothly together. In such cases the identification is
best made in terms of the roots associated with the differential equation
which describes the system.

Harmonic oscillators may be further classified as linear and non-
linear. Linear oscillators have the important property that all

* For all numbered references see the bibliography at the end of the book.

t The term resonator is used in a broad sense to include devices which have one
or more natural frequencies. Tuned circuits of inductance and capacitance,
sections of transmission lines, microwave cavity resonators, and piezoelectric
crystals are important examples of electrical resonators.
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voltages and currents in the oscillating circuit are very nearly sinu-
soidal. Such oscillators are desirable because the output is virtually
free from harmonics and because the frequency of operation is quite
stable. The mathematical analysis of linear oscillators is much
simpler than that of nonlinear oscillators. Accordingly the study of
such oscillators is an aid to understanding the more complex behavior
of nonlinear systems.

The distinction between linear and nonlinear oscillators is not sharp.
" It will be shown that no oscillator can be absolutely linear; accordingly,
the distinction is one of degree rather than of kind. In this book the
term linear will be reserved for systems which are specifically designed
to reduce harmonics; all other systems will be classed as nonlinear.
Most practical oscillators are harmonic but nonlinear.

It is convenient to distinguish between two-terminal or negative
resistance and four-terminal or feedback oscillators. Two-terminal
oscillators are identified with electronic devices which produce a
dynamic negative resistance between two accessible terminals. In a
four-terminal oscillator the electronic device has three or more acces-
sible terminals. Such a system may be drawn as an amplifier with
its output connected to its input, as suggested by the term feedback.

Oscillators may also be classified on several other bases, including
the frequency of operation, the circuit configuration, the type of elec-
tronic device used, and the type of resonator. These classifications
are often convenient but are evidently not fundamental.

1.4 Fundamental principles of harmonic oscillators

A harmonic oscillator comprises two fundamental elements, the resona-
tor and the driving system. To these a third element, the useful load
system, is usually added. Because an actual oscillator consists of a
number of components, a question of identifying components with
functions arises. In general the resonator is readily identified. The
remaining components, specifically including the electronic device,
are identified with the driving system except for those which are
assignable to a useful load. In most cases this identification is rela-
tively straightforward.

In oscillators which must produce a very stable frequency the
resonator must have a natural frequency which is sensibly constant
with respect to temperature, the passage of time, etc. It is further
necessary that the driving system and useful load shall not appreciably
affect this frequency. The latter is facilitated if the resonator has
inherently low losses or high selectivity, @, and if the load absorbs very
little power.
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In oscillators such as those used in induction heating the efficiency
of power conversion is of principal importance. In such devices the
driving system and load must be so matched that a large fraction of
the power supplied as direct current is delivered as alternating current,
in the load. The resonator function is now secondary and serves
only to exercise reasonable control over the frequency. A large
value of @ is still desirable, because it facilitates frequency control
with a minimum loss of power. Great stability with respect to tem-
perature, etc., is rarely needed in such apparatus.

. 1.5 Amplifier viewpoint

Many problems in connection with the behavior of oscillators are best
treated by thinking of the system as a modified amplifier. A basic
property of any amplifier is that the power output is greater than the

Load

=) o—
j Input AMPLIFIER Output E .
i | . OJ q

Frc. 1.1, Oscillator represented as a self-energized amplifier.

input. Accordingly, it appears that we could obtain a considerable
power output in the absence of any separately supplied input by sub-
stituting a suitable fraction of the output for this separate input. The
situation is illustrated in Fig. 1.1.

This concept is fundamentally correct and, when suitably elaborated,
is extremely useful. In the first place, it immediately points out that
this sort of oscillator is representable as a closed ring, around which a
signal is transmitted in one direction. Many of the difficulties in the
study of oscillators arise from the fact that such a ring has no beginning
or no end.

Most amplifiers have the property that the power output exceeds
the power input over a considerable band of frequencies. Accordingly,
this concept, based upon conservation of energy, is inadequate to
account for the frequency of an oscillator, for it would suggest that a
desired output frequency could be obtained by supplying and later
removing it.

The situation is clarified by noting that the signal which is returned
from the output to replace the original input must be of the correct
phase as well as magnitude. In practical systems the phase varies
rather rapidly with frequency. Therefore, a given system satisfies
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both phase and amplitude conditions at only one frequency (or occa-
sionally several discrete frequencies). Subject to certain other
restrictions which will be developed in later chapters, stable oscilla-
tions will occur at the frequency for which the returned signal is equal
to and in phase with the original signal. The amplifier viewpoint is
presented very lucidly by Horton.44

1.6 Functional diagram

The analysis of a feedback harmonic oscillator is extended and facili-
tated by the block diagram of Fig, 1.2. In this diagram the driving
system has been further divided into an amplifier and a limiter. This
division is desirable because it emphasizes two important properties
which the driving system must have. It must be an amplifier or the

Limiter —| Resonator — Amplifier J-— Load

Fic. 1.2. Functional diagram of feedback oscillator.

losses inherent in the other functions will bring the system to rest;
and its amplification must decrease as the level of oscillation increases
or the system will never reach an equilibrium. The four functions
are basic, but the order in which they are performed is different in
different practical systems.

In Fig. 1.2 the amplifier is assumed to be ideal in that its phase shift
is zero and its amplification is independent of the frequency and level of
the signal. The resonator is assumed to be linear and to have some
definite natural frequency, with suitable associated variation of
attenuation and phase shift with respect to frequency. (An ordinary
bandpass filter has such properties.) The load is a simple linear
impedance. The limiter is assumed to have zero phase shift and to
have at all frequencies a loss which increases with increase of the volt-
age supplied to it. Although the limiter is fundamentally nonlinear,
its losses may change so slowly with time that it produces little dis-
tortion of the wave which it transmits.

In most oscillators the vacuum tube functions both as amplifier and
as limiter. The operation is substantially the same as that of a class C
amplifier, so adjusted that the output is almost independent of the
input. Such operation is characterized by relatively large harmonic
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currents. The resonator, in this case a simple tuned circuit or tank,
discriminates against the harmonics so that the voltages are nearly
sinusoidal.

In one class of linear oscillators the limiting action is produced by
one or more thermally sensitive resistors called thermistors. A small
tungsten-filament lamp is suitable for such application. In these
circuits the lamp resistance, and hence the circuit loss, is a function of
the effective current, as required for limiting. However, the thermal
inertia of the filament is such that the resistance is almost constant
over any one cycle so that little distortion of the wave form results.

In another class of linear oscillators the limiting action is provided by
a slowly varying bias applied to a suitable electrode of the tube, as in
an amplifier with automatic output control. A proper choice of
elements and biases leads to adequate limiter action without distortion.

1.7 Equilibrium conditions

In the system of Fig. 1.2 it is clear that equilibrium can exist only if
certain relationships exist between the gains and phase shifts of the
several sections. . The loss of the limiter plus the loss of the resonator
must equal the gain of the amplifier, or the wave will ckhange in ampli-
tude until this condition is met. Similarly, the phase shift in the
resonator must be zero since the limiter and amplifier have already
been assumed to have zero phase shift. The frequency of operation
will automatically adjust itself to meet this condition. The dual
condition of zero net gain and zero phase shift is known as Bark-
hausen’s condition for oscillation.

1.8 The negative resistance viewpoint

It is well known that a system of inductances and capacitances can
oscillate if given an initial shock. However, in a passive system such
oscillations rapidly disappear or decay with the passage of time
because of the resistance which is present in all coils and to a lesser
degree in all condensers. It is clear that this decay could be avoided if
the positive resistance of the coil and condenser could be canceled by
addition of a suitable negative resistance. This principle is employed
in negative resistance oscillators, such as the dynatron, which use a
type of vacuum tube approximating a single negative resistance to
annul the losses of an associated coil and condenser and so produce
continuous oscillations.

The negative resistance viewpoint is convenient in the mathematical
study of oscillatory systems because the equation which describes the
behavior of a resistance, positive or negative, is so simple. It is neces-
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sary to have this viewpoint in the study of all oscillators which are not
representable as amplifiers. This includes all oscillators which employ
true two-terminal negative resistance devices. Moreover, it is possible
to have this viewpoint in the study of all types of oscillators, even
those which are also representable as amplifiers.

A very simple negative resistance oscillator is represented by Fig.
1.3, which shows a passive series resonant circuit represented as L,
R, and C in conjunction with a negative resistance device deébignated p.

~Any slight disturbance in the system, such as the closing of a switch
or the thermal agitation of electrons in the conductors, will lead to
oscillations which increase with time, provided p is negative and greater
than B.

L
P R
C
It
n

Fic. 1.3. Oscillatory circuit.

Such a system will produce useful results only if the oscillations build
up to and remain at some stable amplitude. As in the four-terminal
oscillator already discussed, equilibrium can result from the action of
nonlinearity. In the present example this limiting action must take
place in the negative-resistance device. Moreover, it is clear that the
effective negative resistance must become smaller as the level of oscilla-
tion increases if stable oscillation is to result. The property of
negative resistance is possessed by the arc and other current-controlled
negative-resistance devices. More is said of this matter in the
chapters which follow.

1.9 The clock analogy

It has already been mentioned that the period or frequency of an oscil-
lator is one of its most important properties. Therefore, an oscillator
needs only the addition of a cycle-counting device to be a timekeeper.
Briefly, an oscillator is the electronic counterpart of a mechanical
clock. Moreover, an electronic clock employing a specially treated
quartz plate as an electromechanical resonator in a suitable oscillator
is, over a period of weeks, a better timekeeper than any mechanical
clock.
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It is profitable and enlightening to compare oscillators with clocks
because the operation of a mechanical device is more familiar and is
much more readily observed. Furthermore, mechanical timekeepers
have been carried to a very high state of development by the work of
many skilled investigators over a period of more than two hundred
years.

The heart of a mechanical timekeeper is the pendulum or balance
wheel, which corresponds to the resonator in its electrical counterpart.
Every effort is made to see that the period is constant, independent of
aging, temperature, barometric pressure, ete. In portable devices,
such as watches and chronometers, where the restoring force must be
provided by a spring, the balance wheel is used. Greater accuracy is
provided by the pendulum, whose period depends upon the length and
the constant of gravity. Maintaining the pendulum and associated
parts at constant temperature ensures that the length is constant.
Evacuating the system greatly reduces the energy loss of the swinging
pendulum, and ensures that the operation will be independent of
atmospheric pressure and humidity.

The driving system of a mechanical timekeeper also corresponds
closely to that of an electrical oscillator. In clocks, a constant prime
driving force is provided by weights, which correspond to the B supply.
Energy is delivered from the primary source to the resonator at appro-
priate intervals by means of the escapement or its analogue, the
vacuum tube.

In both systems a counting mechanism must be added to indicate
the total number of cycles which the resonator desceribes. In mechani-
cal systems this is conveniently incorporated in the gear train, which
transforms the great force and short travel of the source into the
delicate force over a great total distance required at the escapement.
In electronic clocks the desired result must be achieved in a more
complicated way, because the total charge drawn from the B battery
is not a satisfactory measure of the number of cycles. Moreover,
since the period of electric oscillators is ordinarily very short compared
to that of mechanieal clocks, the counting process is substantially
more difficult. The customary procedure is to divide the frequency,
that is, take groups of eycles, by successive small integral factors until
the frequency is low enough to operate the synchronous motor of an
ordinary type of electric clock, which in turn employs gears for the
final reduction.

It has long been known that the period of a pendulum is not affected
if a large foree is applied for a very short interval when the pendulum
is at the center of its swing. Clock escapements are adjusted to meet
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this condition, which is known as Airy’s* criterion, as nearly as pos-
sible. Moreover, in the most refined form of mechanical clocks (Shortt
clocks) energy is supplied to the pendulum only once during thirty
complete cycles.

Tt is seen that the escapement corresponds to extreme class C opera-
tion in an electrical oscillator. Careful consideration of the factors
involved shows that the desired condition in the electrical case is for
the pulse of plate current to flow at the instant when the alternating
voltage is 4 maximum and the circulating current in the antiresonant
circuit is zero.

It is worth noting that the tubes of the Meacham oscillator, most
stable known timekeeper, operate in class A. Energy is thus delivered
to the resonator smoothly throughout each cycle. No mechanism is
known for achieving the mechanical analogue of this operation, but
it is interesting to speculate upon the performance which might be
achieved in this way.

Mention should also be made of the electronic system popularly
referred to as the atomic clock. In this system a vacuum-tube oscil-
lator has its frequency controlled by means of the molecular resonance
of ammonia gas, which is maintained at reduced pressure in a wave
guide system. The important property of this device is that resonant
frequencies of this sort appear to be constants of nature, not subject
to aging, and substantially independent of parasitic effects, such as
temperature, pressure, and magnetic fields. Accordingly it appears
that an absolute and highly accurate standard of time is within reach.

Although the atomic clock in its present form is extremely com-
plicated and difficult to maintain, it appears that a reasonable amount
of development should lead to a workable and reliable system. In
conjunction with standards of length based upon spectral lines in the
visible region it should offer a substantial improvement in the stand-
ards basic to all physical measurements.

1.10 Amplitude stability*

Ordinarily we wish an oscillator to deliver a wave of constant ampli-
tude, frequency, and wave shape. Since all physical oscillators depart
to some extent from this ideal, it is desirable to establish a measure of
this departure for comparing the desirability of alternative oscillators.
The extent to which an oscillator approaches constancy of output
in the face of various disturbances is referred to as amplitude stability.
Ordinarily, the factors which influence the output amplitude are
applied voltages, ambient temperature, tube condition, load imped-
* After Sir George Airy, who stated this principle in 1827.
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ance, and assorted network parameters. In most practical oscillators
the output is nearly proportional to one of the applied voltages, and is
aearly independent of other parameters. In other oscillators the
output depends upon the resistance of, and hence the temperature of,
a thermally sensitive resistor. In these oscillators the output depends
upon the ambient temperature and to a small extent upon other
factors.

The equation which will be taken as defining amplitude stability,
Sy, is
_ dufu
T dajA’

where A represents the amplitude of oscillation, expressible in voltage
or current at the output or other point, and u represents a circuit
parameter or applied voltage. On this basis a large value of S, for a
specified du corresponds to a small value of dA and therefore repre-
sents the desirable situation of a high degree of stability.

Sa

(1.3)

1.11 Frequency stability

Most oscillator applications require only a very moderate degree of
amplitude stability. The frequency requirement, on the other hand,
is usually exacting and is often extremely severe. In fact, the search
for frequency stability represents a great proportion of all the work
which has gone into the development of vacuum-tube oscillators.

Virtually every parameter of the system has some effect on the
operating frequency of an oscillator. In general, however, the fre-
quency is principally controlled by a resonator or phase controlling
unit, and depends only slightly upon other influences. It is therefore
appropriate to define frequency stability, Sz, in terms of Fig. 1.2 by
the equation

_ ds
B dw/a)g’

where wg is the natural frequency, and dw is the frequency change
produced by a change of phase shift, d¢, external to the resonator.

From this definition it is clear that frequency is referred to the
natural frequency of the resonator, which is inferred to be absolutely
stable. Accordingly, eq. 1.4 serves to measure the frequency stability
of elements external to the resonator, that is, of the driving system.
Changes in the natural frequency of the resonator are conveniently
expressed by simple derivatives, such as

ST = da’o/dT, (1_5)

Se

(1.4)



12 INTRODUCTION

where Sr represents the frequency coefficient of the resonator with
respect to the ambient temperature T.

PROBLEMS

1.1. Which of the following have the general properties of an oscillator: (a)
A vacuum windshield wiper, (b) a buzzer, (c¢) a gas turbine, (d) a V, “buzz
bomb,” (e¢) an air compressor, (f) a hydraulic ram, (g) an air hammer, (k) a
steam whistle?

1.2. Of the above ‘“oscillators,” which are relaxation in character, which

- harmonic?

1.8. What basic condition must exist in a harmonie oscillator? Explain.

1.4. From the amplifier viewpoint, how must the gain vary with signal level if
oscillations are to build up smoothly to a stable amplitude from some small dis-
turbance? If stable oscillations result only from a large initial shock?



TRANSIENT BEHAVIOR OF
LINEAR SYSTEMS

This chapter is devoted to a review of the transient behavior of
several simple linear systems; the inclusion of such familiar material is
justified by the fact that it forms the foundation of several later sec-
tions. Particularly interesting, and perhaps less well understood, are
the responses found when certain of the circuit elements take on nega-
tive values. The concept of a complex frequency is formulated and
discussed; and suitable notations are introduced, to be extended and
developed in subsequent chapters. Readers who wish additional
information on the subject of transients, particularly the physical
interpretation, are referred to the paper by Dudley.”®

2.1 Resistance and capacitance

The simplest possible transient occurs when an initially charged con-
denser is allowed to discharge through a pure resistor. It is well
known!?® that the charge ¢ remaining in the condenser at any time ¢
after the circuit is closed is represented by

q = goe V"C, (2.1

where gy is the initial charge, R is the resistance, and C is the capaci-
tance. of the circuit. This result evidently applies only for positive
values of ¢ because, prior to closing the circuit, ¢ = go by definition.
One is ordinarily concerned only with positive values of R and C;
however, eq. 2.1 is not so restricted, and it is instructive to plot it for
positive and negative values of both R and ¢.

It will be noted from Fig. 2.1 that the graphs of g/qo versus { are
symmetrical and that they extend smoothly into negative values of
time. This feature corresponds to the physical fact that the circuit
behavior at positive values of time would have been unaltered had the
initial charge go been appropriately changed and the switch closed at an
earlier instant.

13
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Inspection of eq. 2.1 shows that the charge will increase with positive
increase of time if either (but not both) R or C is negative. Moreover,
the behavior at negative values of ¢ with both circuit elements positive
is exactly the same as that at positive values of ¢ with the resistive
element negative. In this and subsequent discussions, emphasis is
placed on negative values of R but not on negative values of C or L,
since the latter do not appear in the physical systems of interest

3 < v
2
a/q,
1
T
-3 —2 +3

Time ¢t in seconds

Fi1e. 2.1. Variation of charge in resistance-capacitance circuit (C = 1).

and because equivalent results may be secured by use of positive
reactances in conjunction with negative resistances, as proved by
Verman,®3% and by Bode®* on page 187 of his book.

2.2 Resistance, inductance, and capacitance

The resistance-capacitance system considered in Section 2.1 may be
generalized by adding an inductance either in series or in parallel.

+ l ~—initial current
¢ L l"

Fi6. 2.2. Parallel form of circuit.

Wl

The parallel form of connection is chosen in preference to the series
arrangement because of closer conformity to actual oscillator systems.

The circuit of Fig. 2.2 is the dual* or inverse of the series RLC circuit
treated in nearly every textbook on transients. Provided the switch
has been closed for a long time, a current I = V/R will be flowing

* The reader who is unfamiliar with the principle of duality is referred to Gardner
and Barnes, % page 46, or Bode,®4 page 196. Useful related ideas are presented by
Selgin.?’?
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through the coil L, which is assumed to have zero resistance. On
this basis, no voltage exists across € and G until the switch is opened.

At the instant { = 0 the switch is opened, and a transient is initiated.
Following conventional methods of transient analysis, one may show
that the current 7z at any later time is represented by the differential
equation

d*

LC —
dt?

+GL%+£‘ =0, (2.2)

which has a solution of the form
1 = KiePtt + KqeP?, (2.3)
where K; and K; are constants which may be determined from the
initial conditions,
P11 = a + jo, 2.4)

and
P2 = a — jo. (2.5)

Substitution of the network parameters yields
a = —@G/2C, (2.6)
V1/LC, 2.7)

wo

T a2
w=\/i—i=§- (2.8)

The quantities p; and py are the roots of the algebraic auxiliary
equation which has the same coefficients as eq. 2.2, the differential
equation of the system. The real component, «, is called the decre-
ment or damping factor; it expresses the rate at which the transient
current increases or decreases with time. Because the transients in
passive systems always decrease with time, « is negative in such
systems. The imaginary component, w, exists only if the conductance
is sufficiently small; it represents the natural angular velocity or
frequency of the system, and is reduced to wp, the undamped natural
frequency if G = 0.

If the conductance is sufficiently small, that is,

G <2VC/L, (2.9)

the circuit is oscillatory or underdamped, and the current may be
written

and

i = Ie*Ycos wt + (a/w) sin wi]. (2.10)
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If the conductance is large, corresponding to
G >2vVC/L, (2.11)

the circuit is overdamped, and the current is more conveniently repre-
sented by

i = Ie~*[cosh Bt + (a/B) sinh Bi). (2.12)
Finally, in the case of critical damping when
G =2VC/L, (2.13)
the current is most readily calculated from the expression
1 =Tl + af. (2.14)

The relationships represented by egs. 2.10, 2.12, and 2.14 are most
conveniently examined by letting L = € = 1, so that critical damping
corresponds to G = 2. The behavior which results when G is assigned
typical positive and negative values is shown in Fig. 2.3. As in Fig.
2.1, the extrapolation to negative values of time is interpreted as the
behavior which would have occurred had the transient begun earlier
and from different initial conditions. Moreover, the symmetry of
the diagram is such that the value of 7 is unaffected if the signs of G
and ¢ are both reversed.

In the present connection, critical damping means that the current
in the coil is extinguished at the most rapid possible rate. However,
it should be noted that the common voltage » may be extinguished at an
arbitrarily rapid rate by making G sufficiently large, and that a large
value of G provides the most effective damping if the transient results
from an initial charge in C rather than a current in L. Therefore, it is
necessary to qualify the familiar statement that the critical damping
resistance is one which brings a system to rest in the shortest possible
time.

By analogy with the statement that the current in L is extinguished
at the maximum possible rate by setting G = 2, one might anticipate
that the current in the coil would increase at the greatest possible
rate if G = —2. This is not correct. Corresponding to any fixed
positive value of ¢, the values of both 7 and » can be made arbitrarily
large by making the negative conductance sufficiently large. This
behavior, which may be anticipated by inspection of the negative time
extrapolation of passive systems, is explainable on both physical and
mathematical bases.

From the physical standpoint, the condenser and negative con-
ductance form an unstable combination (with time constant inversely
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proportional to @), initially held at rest by the low impedance of the
external circuit. When the switch is opened, the unstable combination
is released and is excited by the coil current. The resulting rapid
increase of voltage across the condenser and negative conductance
then overwhelms the coil, causing the current 7 to reverse and then
rapidly increase without limit.

The mathematical viewpoint turns attention to the roots p; and ps
of the algebraic auxiliary to the differential equation. When these
roots are negative and real, the behavior of the network is ultimately
governed by the smaller root because this root is associated with the
more slowly decaying current or voltage. For positive real values of
the roots (produced by negative G) the reverse is true. Here the
behavior is governed primarily by the larger root, which corresponds
to the more rapidly increasing quantity. This point will be made
increasingly clear in the following section.

The curves of Fig. 2.3, like those of Fig. 2.1, have been plotted for
negative as well as positive values of time. It is seen that the behavior
for ¢ less than zero is quite simple for the oscillatory cases, whether of
the expanding or the contracting form. The behavior of nonoscilla-
tory systems is somewhat more complex and requires careful treatment.

In all cases the behavior at positive values of time would be exactly
duplicated by closing the switch at some negative instant provided the
charge on C and the current through L at that instant were suitably
chosen. However, for nonoscillatory conditions the required modifica~
tion of the initial conditions is very great. Under all conditions the
value of 7 is unaffected in eqs. 2.10, 2.12, and 2.14 when both « and ¢ are
reversed in sign.

2.3 Variation of the p roots

The system roots, p; and ps, are important because they furnish a
very good index to the behavior of the corresponding system. To

TABLE 2.1
p-Roots oF GCL EquatioN FoR L =C =1

Reference
Point e Y P2
1 0 —w + 70 0+ 40
2 8 —7.85 4+ 50 ~0.15 4 40
3 2 -1+ ;0 -1+ 70
4 1s —0.25 4 j0.968 ~0.25 — 70.968
5 0 0+1 0 —j1
6 —14 +0.25 4+ 70.968 +0.25 — 70.968
7 -2 +1+350 +1+4+40
8 -8 +0.15 4 50 +7.85 + 50
9 — 0+ 30 4+ 4 ;0
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illustrate this point, the loci of p; and ps are plotted in Fig. 2.4, where
the arrowheads indicate increasing G, and the circle has unit diameter
because C = L = 1. To clarify the relation between the roots and
the system behavior a number of points from Figs. 2.3 and 2.4 are
given in Table 2.1. The nature of this relationship is further clarified
by Table 2.2.

Posmve real frequency axis

4
| Pathof py ; ¢ 27\ \, Path of p, - ‘
f T y 3 21 8 !
Negative real p axis '\( Posmve real p axns
4 156

Negative real frequency axis
F1c. 2.4, Variation of the p-roots in the complex plane as @ is varied.
The four divisions of Table 2.2 include all simple oscillatory systems,

electrical or otherwise. Regions I and II, passive systems, have
been extensively studied and are not of principal interest here. Region

TABLE 2.2
RELATIONSHIP BETWEEN p-RooTs AND GCL SYsTEM BEHAVIOR

Region No. I II 111 v
Wave Form | Nonoscillatory | Oscillatory | Oscillatory | Nonoscillatory
decaying decaying expanding | expanding
w Imaginary Real Real Imaginary
B8 Real Imaginary | Imaginary | Real
System Type Passive Active
a Negative Positive

III covers systems which generate expanding sine waves. It is there-
fore identified with harmonic oscillators, as discussed in Chapter 1,
and serves to define the limits of that class.* Region IV includes

* It will be recalled that the action of the limiter in physical systems serves to
alter the average conductance as the level of oscillation increases, thereby avoid-

ing the absurdity of unlimited amplitude. This consideration applies also to the
nonoscillatory active systems of region IV.
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systems which generate a nonreversing exponentially increasing wave.
Such systems—characterized by the fact that the p-roots are (pure)
real and positive—are known as relazation oscillators.

2.4 Decrement and selectivity

At this juncture it is desirable to define and correlate a number of useful
terms which apply to oscillatory or resonant systems. Some of these
definitions pertain to the free oscillation of a system and are most
readily expressed in terms of the transient behavior. Others apply
to forced oscillations—that is, the a-c-steady state—and are best
expressed in those terms.

Damping Factor or Time Decrement. The quantity «, defined by
eq. 2.6 and governing the time rate of change of amplitude in eq. 2.10,
is known as the damping factor. Evidently, in one second the system
coordinate (current, voltage, etc.) will increase or decrease in amplitude
by the factor

11/t0 = €* or a = In (i,/7y). (2.15)

Since the natural logarithm of the ratio of two associated quantities is
by definition their level difference in nepers, the time decrement « has
the dimensions of nepers per second.

Logarithmic or Cyclic Decrement. In many applications of oscillatory
waves the decay per second is less important than that per cycle,
which is represented by the logarithmic decrement

8 = In (¢n/in41) nepers per cycle, (2.16)

where 7, and 7,1 are the amplitudes of any two successive cycles.
Because there are f cycles per second we see that

—a = f§ nepers per second. 2.17)

Selectivity or Quality Factor. The selectivity @ of an oscillatory
or resonant system is a widely used and important index of circuit
behavior. Because the loss in available condensers is much lower
than that in available coils, there is a marked tendency to associate a
quality factor with individual ecircuit elements—especially coils.
In a strict sense, however, @ is a property of the complete resonant
system. Several definitions of @ are in general use. All are equiva-
lent when correctly applied, even in connection with heavily damped
systems. The following paragraphs are devoted to a comparison of
these definitions.

A definition of @, applicable to any simple oscillatory system, and
particularly convenient in connection with cavity and electromechani-
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cal resonators, is

Total energy stored in the system

Q=2 (2.18)

§ Energy lost per cycle from the system
Because @ is a constant, characteristic of the system, it is necessary
that the energy losses and storage decrease similarly with time.
In low-Q systems the rate of energy loss is not uniform, and the loss
per cycle is comparable to the total stored energy. Nevertheless, as
may be shown by direct integration, eq. 2.18 is applicable provided the
numerator is taken as the average of the energy stored during the period
of one full cycle.

The selectivity parameter @ is also useful in describing the steady-
state behavior of a system. Under steady-state conditions the energy
loss is supplied by an external source, and eq. 2.18 is applicable pro-
vided the denominator is interpreted as the energy supplied. Apply-
ing this definition to Fig. 2.2, we have

cv?
Q= 27rGV2/f = wC/q, (2.19)
where V is interpreted as the rms voltage and @ is assumed to be high.
This expression is the dual of the familiar wL/R of the series-tuned
circuit. It is readily shown that @ as given by eq. 2.19 represents
the ratio of the antiresonant natural frequency, wyp, to the difference
between the two frequencies at which the phase angle of admittance
becomes 45°. 7.0l
Substituting eq. 2.6 to eliminate C/G yields the useful expression,

which is correct for all values of @ and types of systems,
Q = —w/2a. (2.20)

This definition is interpreted in Fig. 2.4, where the angle ¢ between the
horizontal axis and one of the conjugate roots is

¢ = tan"! ( — w/a). (2.21)

In these terms
Q = 3 tan ¢. (2.22)

Finally, the damping factor « may be eliminated between eqs. 2.17 and
2.20 to yield the useful relation

Q = (w/2f8) = m/8. (2.23)

Consistent with accepted conventions, the selectivity @ and the
logarithmic decrement & of a passive circuit are taken as positive,
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whereas the damping factor « is negative. Conversely, @ is negative
when « is positive.

2.5 Degrees of freedom

The number of degrees of freedom of a system—electrical, mechanical,
or otherwise—is equal to the least number of variables which will
uniquely specify, the behavior of the system.!®® For example,
knowledge of the charge as a function of time in any single-mesh
electrical circuit permits specification of all currents, voltages, energies,
and powers. Therefore, any single-mesh?®® electrical system has
a single degree of freedom, because its complete behavior can be
deseribed in terms of a single variable or coordinate. Similarly, the
behavior of a group of electrical elements connected in parallel between
two junction points or nodes'?* is completely specified by the potential
difference between these nodes as a function of time; therefore, such a
parallel group possesses but a single degree of freedom.

In more complicated circuits the number of degrees of freedom is
not immediately evident because it is necessary to use the least number
of variables which will completely describe the system. The con-
ventional Kirchhoff equations, and the related mesh and nodal equa-
tions, ordinarily involve a number of equations and variables con-
siderably in excess of the minimum. Therefore, a comparison of the
results obtained by the various methods of analysis becomes requisite
in order to select the appropriate minimum number. Fortunately,
this requirement seldom presents serious difficulty in the study of
oscillators.

2.6 Order of the differential equation

In general, the transient behavior of a system of any sort may be
described by a set of differential equations, subject to the initial and
boundary conditions corresponding to the original disturbance. The
minimum required number of these differential equations must
evidently be equal to the number of degrees of freedom of the system,
to conform with the definition given in the preceding section.

In a single-mesh system there can be at most a single equivalent
inductance and a single equivalent capacitance; and in a system of n
independent meshes there can be at most n distinct equivalent induc-
tances and n equivalent capacitances. In the single-mesh case it is
clear, and in the n-mesh case it can readily be shown, that the order of
each of the n differential equations which describe the behavior of the
system cannot be greater than 2n.

Starting from a single-mesh circuit, it is easy to see that the addition
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of a single distinct nonreducible inductance or capacitance increases
by one the number of initial conditions which must be specified ; hence
the order of the differential equations must also increase by one.
Repetition of this process shows that the order of each of the differ-
ential equations is equal to the total number of distinct inductances
and capacitances present in the network. (For the present purposes,
the effect of mutual inductance in physical transformers is most con-
veniently included by use of the equivalent T or II configuration.)
The foregoing ideas are illustrated in Fig. 2.5, which shows a four-
mesh circuit containing six reactive elements. This system evidently
requires a differential equation of the sixth order to describe any of its
currents or voltages. But there can be no more than four degrees of
freedom, because the four mesh currents shown are sufficient to specify

L2 Cg
1L
LHOT00 ¢ _|_
1
=c, R, Ly
R1 RB

Frc. 2.5. Four-mesh, ladder-type network.

completely the behavior of the system. We might be led to the incor-
rect conclusion that the system requires a differential equation of the
eighth order (2n) from the fact that each of the meshes drawn con-
tains both inductance and capacitance. However, it is possible to
draw four independent meshes of which two involve only one type of
reactance, so that the number six is correct in the present case.

Regardless of which of the currents (or voltages) is solved for, the
same differential equation will be obtained. The auxiliary algebraic
equation will be of the sixth degree and will have as solutions the six
p-roots, which describe the properties of the system.

2.7 Modes of oscillation or motion

If an electrical (or mechanical) system is free from resistance (or
friction) an initial direct or oscillating current continues undiminished
with the passage of time. Such systems are sufficiently well approxi-
mated in practice by low-loss circuits that the results obtained from the
idealized system are useful.

The basic idea of modes of oscillation is illustrated in Fig. 2.6.

Foster’s reactance theorem!%! indicates that there are two frequenciesat
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which an externally applied generator produces no line current. One
of these is sufficiently lower than the natural frequency of L, and C5 so
that the net inductive susceptance of the L1C, combination equals the
capacitive susceptance of LoC,; the other is sufficiently higher than
the natural frequency of L, and C: to produce the converse effect.
If the free circuit is set into oscillation at either of these frequencies
there will be a unique relationship between the magnitude and phase
of the currents and voltages in various elements. This combination
of effects is referred to as a mode of oscillation. Because the system is
linear the two modes are independent and have no interaction. How-
ever, if both modes are simultaneously excited the currents and volt-
ages In the several elements will contain both frequencies super-
imposed, and beat effects will appear. Thus the total energy of the
system may be transferred back and forth between the elements or
meshes, as shown by Howe.145

Fi1c. 2.6. Two-mesh loss-free circuit. Fia. 2.7. Bridge circuit.

An additional useful idea is conveyed by Fig. 2.7, which represents
a bridge circuit of equal capacitances. Under these circumstances
the elements L, and L, are conjugate because current flowing in one
produces no current in the other. This system has two natural fre-
quencies or modes of vibration which are normal or orthogonal in that
current can exist in L; without producing current in Ls, and vice
versa.

The concept of normal modes is particularly important in cavity and
quartz crystal resonators. In these devices the term mode is used to
designate a particular pattern of electromagnetic fields or mechanical
motions in space. Such modes are normal provided the existence of
one does not tend to excite the other. Following Sokolnikoff,?*!
page 81, modes designated m and n are orthogonal provided that

JIJURUndv = 0, (2.24)

where U,, and U, are functions which represent the field or motion;
and the integral is carried out throughout the volume of the resonator.
In simple symmetrical cavities all modes are normal. In quartz
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crystal resonators, however, modes are often coupled and therefore are
not normal owing to the nature of the boundaries and the crystalline
properties of the material.

Consistent with this concept, each distinct mode of oscillation has a
distinct value of @, most easily expressed in terms of the angular loca-
tion of the p-roots. However, when coupling is present there is an
interchange of energy accompanied by beats which make it difficult or
impossible to apply any concept of . Normal modes are, by defini-
tion, free from this difficulty and therefore have uniquely defined
values of Q. This is a very convenient and important property.

Because the order of the differential equation is equal to the number
of independent reactive elements in an electric circuit, and because the
number of modes of oscillation is equal to the number of pairs of
reactive elements, it follows that the number of modes is equal to
half the order of the equation, neglecting fractional remainders.

In many circuits resistance plays an important part and cannot be
neglected. To such circuits the concept of modes of oscillation is
greatly complicated by the fact that the number of complex roots
may be considerably smaller than the number of independent reactive
elements. Although we may still associate a mode of oscillation with
each pair of conjugate roots, the mode concept rapidly becomes less
exact and less useful as @ decreases.

2.8 A system with three p-roots

As shown by the foregoing discussion, an electrical system which con-
tains three nonreducible reactive elements has an associated algebraic

Fre. 2.8. Two-mesh dissipative circuit.

equation with three separate roots. No restriction exists as to
whether reactive elements are inductive or capacitive. A simple
system of this kind, which is capable of a very close physical approxi-
mation, is illustrated in Fig. 2.8. The equations which describe the
transient behavior are conveniently written in terms of the differ-
entiating operator

p = d/dt. (2.25)
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In this notation we have

v = (R 4+ pL)i,, (2.26)
v = (kR + 1/pC)1,, (2.27)

and
11 + 22 + (phC)v = 0. (2.28)

Elimination of the currents leads to:

v vpC _
R+ oL + 1 F kBpC + ApCy = 0, (2.29)

which becomes upon expansion

o[1 + p(kRC + RRC + RC) + p*(LC + hLC + khR2C?)
+ p*(KhRLC?)] = 0. (2.30)

This differential equation in v will have a solution of exponential
form, provided the exponents satisfy eq. 2.30, now regarded as an
algebraic equation in p. It is known from the theory of algebraic
equations that eq. 2.30 has three roots, at least one of which is real.2s4
The other two roots are either real or a conjugate complex pair.

It is instructive to examine the circumstances under which eq. 2.30
has a pair of pure imaginary roots, because this situation corresponds
to the condition of sustained oscillation in the physical circuit. To be
consistent with previous work, all the reactive elements are assumed to
be positive, so that L, C, and h are positive quantities. Physical
consideration indicates that one resistance—and hence the factor k—
must then be negative in order to maintain steady oscillations. The
analysis is facilitated by assuming that the multiplier of » in eq. 2.30
is factorable in the form

(p — a)(p +ju)(p — jo) =0, (2.31)

where « and w represent, respectively, the real and imaginary roots.
The expansion of eq. 2.31 yields a new third-degree equation in p:

p* — pla + pw? — aw? = 0. (2.32)

The corresponding coefficients in eqs. 2.30 and 2.32 must evidently be
made equal, so that we have

L+ hL + khRC

o WhELC (2.33)
_ k+h+1
w = \/_—khLC , (2.34)
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and
aw? = —1/khRLC?. (2.35)

The relationship which must exist between the resistances is found
by equating eq. 2.35 to the product of eq. 2.33 and the square of eq.
2.34. Upon expanding the immediate result and collecting terms, a
second-degree equation is obtained in k and R:

L + 2hL + R?L + kL + khR*CQQ + R + k) = 0. (2.36)

Inspection shows that this equation can be satisfied only if k is nega-
tive, as was previously indicated from physical reasoning.
Because w is assumed to be a real number, it follows from eq. 2.34

that
|k > A+ 1. (2.37)

Finally, the additional requirement that the factor « is negative may
be imposed. If this were not so, a simple exponential term expanding
without limit as time went on would be present, and sustained oscilla-
tions would not exist in any practical sense. The condition a < 0,
when applied to eq. 2.35, shows that B must be negative, because k
is negative. Physically, this condition indicates that an expanding
transient will result if a negative resistance completes the mesh con-
taining the two positive capacitances. It follows that sustained
oscillations can exist only if the coil resistance R is negative and the
condenser resistance kR is positive.

The interpretation of the results is simplified by making the further

substitution
wL/R = Q, (2.38)

which makes @ negative if R is negative. Multiplying eq. 2.36 by
w’L, substituting eq. 2.38 and the square of eq. 2.34, we obtain
Q= 1+h+k
VvV —k—(1 4+ h)?

A still further restriction on & is now recognized, in that the de-

nominator of eq. 2.39 can be real only if
|k > (1 + h)2 (2.40)
The rapidity with which the undesired transient decays may now be

expressed by substituting eq. 2.38 and 2.34 in eq. 2.35 to obtain a
ratio between the magnitudes of the real and the imaginary roots,

(2.39)

o —1 —-Q
@  WhKRLC? ~ w*khL?C? (2.41)
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which reduces to

(kTi?l—ci—h—W nepers per radian. (2.42)

In a system which is to produce sinusoidal waves it is ordinarily
desirable to make the reactive terms large compared to the resistive
terms. This corresponds to a large numerical value in eq. 2.39.
Avoiding the degenerate case in which A = 0 and k¥ = —1 by making h
considerably larger than one, and satisfying eq. 2.40, we find that the
numerator of eq. 2.39 is approximately proportional to k. Large
values of Q are therefore to be secured by making & nearly equal to
—(1 + )%

A numerical example serves to clarify the ideas involved. Let
h = 9and k = —101; whereupon, from eq. 2.39,

Q= —91 (2.43)

1 [—o1 1
w=———-4/—— = 0.316 —/—- 2.44
TCc Y —909 VLC (2.44)

The decay rate is, from eq. 2.42,

—91 X 101 9
2 5 a = —9.96 nepers per radian. (2.45)
w (—91)

That is, the simple transient decays through 27 X 9.96 = 62.7
nepers during the period of a single cycle of the desired oscillation.
It should be noted that in the present case the ratio of o to w expresses
the behavior of two different signals, not the rate of decay of a sinusoid.

In practical oscillators a real root in addition to the desired pair of
imaginary roots is often present. The foregoing discussion, therefore,
has considerable interest. In actual circuits, however, it is seldom
necessary or practical to make a/w so large.

o4
o

From eq. 2.34,

PROBLEMS

2.1. Derive eq. 2.1.

2.2. Derive the equation corresponding to eq. 2.1 for the transient in an RL
network.

2.8. Sketch and interpret the curves corresponding to Fig. 2.1 for the RL
network.

2.4. Set up and solve the differential equation for the current 7 in Fig 2.2.

2.5. Prove that eq. 2.18 is correct even if @ is low.

2.6. Express « and & in decibel notation.

2.7. Prepare a table relating @, bandwidth, «, 3, and the decibel equivalents of
the latter.



NEGATIVE RESISTANCE
OSCILLATORS

Before proceeding further with purely analytical work it seems
desirable to examine some physical problems. Such a procedure
serves to justify the mathematical methods used, which might other-
wise appear arbitrary and somewhat artificial. Moreover, the
physical principles developed serve as a very useful guide in establish-
ing and understanding the mathematical solutions.

3.1 Negative resistance

In a linear circuit the d-c resistance of any element or branch may be
defined uniquely as the ratio of the terminal voltage to the current.
This definition may be extended to include alternating currents by tak-
ing the resistance as the real part of the phasor ratio of the voltage to
the current. Moreover, it is easy to show that this definition is
equivalent to the ratio of the power dissipated to the square of the
effective current, a definition which is sometimes more convenient in
application.

In nonlinear systems an acceptable definition is far less simple.
Some of the difficulties are apparent from inspection of Fig. 3.1, which
shows an idealized volt-ampere characteristic similar to that of a glow
discharge. The voltage is a single-valued function of the current, but
not vice versa. It is therefore possible to show as additional single-
valued functions of the current, the ratio ¢/7 and the slope or derivative
de/di. 1t is seen that the ratio e/7 varies greatly with variation of
the current but at least is always positive. The slope, on the other
hand, is not only quite variable but is actually negative over a con-
siderable range of current,

The quantity de/di, which has the dimensions of a resistance, is
called the dynamic resistance and is very useful in oscillator theory
and in all kinds of problems related to nonlinear resistances. Physi-

29
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cally, it is the resistance which would be observed by superimposing a
very small alternating current upon the direct current at the point in
question. The simple ratio ¢/7 is much less useful and will not be dis-
cussed further.

It should be noted that no mention of the time variable was made
in the preceding discussion. Fortunately, the volt-ampere character-
istics of vacuum tubes and other useful negative resistance devices are
substantially independent of time. That is, the points of a curve
such as that of Fig. 3.1 are traced out in exactly the same manner
whether the current and voltage are varied rapidly or slowly. In
fact, a nonlinear device is identified as a resistance by the fact that the

0 — Current

Ohms or volts —>
Q

Fia. 3.1. Nonlinear volt-ampere curve.

voltage is a single-valued function of the current or vice versa.** A
general nonlinear impedance, in contrast, does not have this property
and comprises a linear or nonlinear resistance in conjunction with a
linear or nonlinear reactance.

It should be recognized that no physical device constitutes a perfect
nonlinear resistance, any more than a physical coil constitutes an
ideal inductance.4% 138257 Tn both cases parasitic effects are present
and become important if the frequency is carried sufficiently high.
These parasitic effects are quite complicated to analyze and are
ignored whenever possible. They ordinarily set the upper limit on
the frequency which a particular form of oscillator may produce, and
are important only at frequencies near that limit.

Negative resistance characteristics fall into two distinet and impor-
tant classes. When, as in Fig. 3.1, the voltage is a single-valued func-
tion of the current, the characteristic and the deviee which it repre-
sents are referred to as current-controlled. Devicesin which the current
is a single-valued function of the voltage are referred to as voliage-
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controlled. No negative resistance device can possess a volt-ampere
characteristic which satisfies both conditions, because this would
require the slope to be negative over an unlimited range of current
and voltage. Such a device would be capable of supplying infinite
power to a suitable load, in obvious violation of the principle of con-
servation of energy.

No device is known which fails to fall into one of the two classes,
but the existence of such a behavior is regarded as possible. A volt-
ampere characteristic which is not single-valued with respect to either
variable is shown in Fig. 3.2. It is interesting to note that the charac-
teristic sketched is stable with respect to a constant voltage in series
with a fixed resistance which lies in the range between the values cor-
responding to the dotted lines. Therefore, such a characteristic, if it

0 SN

Fic. 3.2. Hypothetical characteristic.

existed, could actually be observed and plotted. It appears safe to
predict that such a characteristic, even if available, would be of quite
limited usefulness.

3.2 Negative resistance devices

A great variety of devices possess a region of negative slope in their
volt-ampere characteristic; that is, they possess the property of
dynamic negative resistance. Two of the more important of these are
described in the following paragraphs.

The Transtiron. A conventional pentode, when connected to pro-
duce a two-terminal negative resistance, is referred to as a transi-
tron.s. 1% A suitable arrangement and the corresponding character-
istic are shown in Fig. 3.3. Because the operation is sufficiently similar
to that for which tubes are designed, the governing tube parameters are
normally held to reasonable tolerances in manufacture. Therefore,
tubes of one type, at least from a given manufacturer, produce transi-
tron characteristics which are quite similar.

The shape of the characteristic depends upon the action of the
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suppressor grid in diverting electrons from the plate to the screen.
The behavior is conveniently explained by remembering that, pro-
vided V < Vy, no electrons can be captured by the suppressor; there-
fore, the total cathode current is equal to I; + I, and is governed
almost entirely by the potentials of the control and screen grids as an
equivalent triode.

For values of V substantially less than V, the suppressor grid is so
negative with respect to the cathode that no electrons can reach the
plate, and I, is zero. When V = V, the suppressor is at cathode
potential, and the plate current I; is relatively large in comparison
with I. In ordinary tubes the suppressor grid has considerably more
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Fic. 3.3. Pentode as a transitron: (a) circuit arrangement and (b) volt-ampere
characteristic.

control over the plate current than does the screen, so there is a region
in which increase of screen (and suppressor) potential results in a
decrease of screen current. The resulting characteristic represents a
voltage-controlled negative resistance as shown. The greatest
(negative) slope corresponds to the minimum value of negative
resistance, which lies in the range of 500 to 10,000 ohms for present-
day tubes. For values of V > V, the suppressor is positive with
respect to the cathode and draws current. This somewhat affects
the shape of the characteristic curves in this region, as indicated in
Fig. 3.3.

The coupling battery V is inconvenient and undesirable in practical
systems. It is replaced, without significantly modifying the action,
by a coupling condenser from screen to suppressor and a grid leak
from suppressor to cathode. A suitable negative bias is built up by
rectification, exactly as at the control grid in more conventional
circuits.

The Dynatron. A vacuum tube which produces a negative resistance
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by the secondary emission of electrons from the plate is called a
dynatron.’#® A tetrode connected as a dynatron is shown in Fig.
3.4. The shape of the characteristic curve depends upon the proper-
ties of secondary emission. For low values of the plate voltage v
the energy with which electrons from the cathode strike the plate is
insufficient to dislodge secondary electrons. Thus the plate retains
essentially all the electrons which strike it, and the current increases
approximately as the three-halves power of the voltage v, according to
Child’s law. At V1, which is usually about 10 volts, the plate collects
nearly all the electrons which pass through the screen grid.

When the plate voltage is increased beyond Vi, the velocity with
which electrons strike the plate is also increased, and some of them are
able to dislodge other secondary electrons, which are attracted from

|
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Fia. 3.4. Dynatron oscillator: (a) circuit arrangement, and (b) nonlinear
characteristic.

the plate to the more positive screen grid. These electrons serve to
decrease the plate current, producing a corresponding increase of
screen current. The number of secondary electrons steadily increases
with increase of plate voltage until at Vs it equals the number of
primary electrons, and the net plate current is zero. For a range of
plate voltages the plate current can actually become negative, with the
screen current exceeding the cathode current. In practice, this situa-
tion may lead to difficulty with excessive heating of the sereen, which is
ordinarily designed to carry only a relatively small current.

As the voltage of the plate approaches the screen voltage V3 there
are still plenty of secondary electrons, but they are no longer able to
reach the screen, and are forced to return to the plate. For plate
voltages greater than V; the plate current and screen current approach
constant values, as is desired in ordinary applications.

The control grid serves as a convenient means of controlling the
total number of electrons which leave the cathode. The principal
effect of the control grid voltage F is to change the current scale of



34 NEGATIVE RESISTANCE OSCILLATORS

~ the plate characteristic. The fact that it changes the slope of the
curve without substantially changing the shape is useful in a number
of applications.

3.3 The dynatron oscillator

A very simple and convenient oscillator results from the combination
of a suitable antiresonant circuit with a vacuum tube operated as a
dynatron.'®® 273 Tt is shown in Chapter 18 that sustained oscilla-
tions are produced only when an antiresonant circuit is associated
with a voltage-controlled negative resistance device or when a resonant,
circuit is associated with a current-controlled negative resistance
device. Figure 3.4a shows a complete dynatron oscillator with appro-
priate biasing batteries and by-pass condensers. The effects of
unavoidable dissipation in the plate coil, together with any useful
load, are accounted for by the shunt conductance G. Theinductance
and capacitance are thus represented as loss-free. A line having a
slope which is the negative of &, commonly calied the load line, is
shown superimposed upon the associated volt-ampere characteristic.
It is seen that the load line is less steep than the dynatron character-
istic at the operating point, V. Therefore, the negative resistance of
the tube is numerically smaller than the positive resistance of the
tuned circuit or tank. Under these circumstances, as was shown in
Chapter 2, oscillations, if once started, will build up or increase with
the passage of time.

The final amplitude which will be reached by these oscillations and
the exact frequency which will be produced depend upon both the
shape of the volt-ampere curve and the element values in the resonant
circuit. That is, both the final frequency and the amplitude depend
upon the nonlinearity of the characteristic curve of the negative
resistance device.

3.4 Intermodulation

The general nature of the problem of frequency departure in dynatron
and other negative resistance oscillators may be understood by refer-
ence to well-known modulation theory. The explanation is most
conveniently conducted in terms of successive approximations with
reference to Fig. 3.5a, in which Z is a passive linear circuit and p is a
nonlinear negative resistance.

A first approximation to the true condition of operation is that v is a
sinusoidal voltage at the resonant frequency. A necessary conse-
quence of this assumption is that the current wave ¢ contains sub-
stantial components of harmonic frequency as well as of fundamental
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frequency, because p is nonlinear. A second approximation is now
obtained by the knowledge that » must contain at least small harmonic
voltages because of the harmoniecs in ¢ which flow in the known imped-
ance of the resonant circuit. Moreover, in the normal arrangement
shown, the harmonic currents flow principally through the condenser
so that the harmonic voltages are effectively in quadrature with the
fundamental voltage.

The crucial step in the argument is based upon the modulating
properties of a general nonlinear impedance subjected to two or more
frequencies. It is well known that if a voltage containing a group
of frequencies f1, fs, f3, f1, €tc., is applied to a general nonlinear imped-

+
0 U z v p
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Fic. 3.5. Negative resistance oscillator: (a) general form and (b) specific
arrangement.

ance the resulting current will contain, among the array of all possible
harmonic and sum-and-difference terms, the following frequencies:

fa — f1, s — fo, fa — f3, fo — 3f1, f3 — 2fs, fa — 3f1, f3 — 4fy,
f4 - 5f1, etc.

In the present case, fi may be taken as the fundamental frequency,
f2 as the second harmonic, ete. Accordingly, all the terms enumerated
above represent current of fundamental frequency contributed by the
nonlinearity of the characteristic. Moreover, the phase of the har-
monic voltages is such that these additional components of funda-
mental current are in quadrature with the principal one. Therefore,
in a nonlinear resistance at the fundamental frequency the current and
voltage are not in phase if harmonics are present. That is, nonlinearity
gives to a resistance the essential properties of a reactance. Excellent
general discussions of this property have been given by Peterson23¢
and by Espley.?’

Returning to the negative-resistance oscillator, we see that the
action of the harmonic voltages upon the nonlinear resistance will
produce an effective phase shift between the fundamental components
of v and <. Accordingly, the next approximation involves a change, in
this case a lowering, of the frequency and a readjustment of the volt-
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ages and currents. With a sufficient number of trials, it is possible to
determine a voltage wave of such frequency, amplitude, and harmonic
content that the current which results from the application of this
wave to the nonlinear negative resistance is equal and opposite to that
which results when it is applied to the resonant circuit. The process
for determining the amplitude and details for determining the fre-
quency are presented in the following section.

3.5 Calculation of amplitude

It is clear that stable oscillations can exist only if the power supplied
per cycle by the negative resistance p is equal to the power dissipated
per cycle in the positive conductance G, and if the reactive currents in
the coil and condenser are in equilibrium.** The conditions which
lead to this balance are found by assuming an amplitude and phase of
oscillation, determining the associated unbalance, and correcting the
assumption in such a way as to obtain a better approximation. If,
as is usually true, the @ of the resonant circuit is fairly high, it is
appropriate to assume that the operating frequency is equal to the
resonant frequency and that the voltage wave is sinusoidal. This
assumption calls for a unique value of sinusoidal current in the resonant
circuit and for a different and nonsinousoidal value of current in the
negative resistance device. However, the circuit connections are
such that these currents must be equal in the oscillating condition.
Therefore, it is necessary to modify the assumed voltage wave to a
slightly nonsinusoidal form to produce equilibrium. The procedure of
successive approximations is used because of the difficulty of a direct
analytical solution.

It is convenient to start the process by assuming various magnitudes
of sinusoidal voltage at the resonant frequency and determining the
current waves which result. An example of the process used is shown
in Fig. 3.6. Horizontal and vertical time scales are drawn in con-
junction with the volt-ampere characteristic, and a sinusoidal voltage
wave of reasonable magnitude is assumed. The corresponding current
wave is markedly distorted and has a prominent third harmonic.
Choice of a somewhat larger voltage wave would have resulted in a
much more distorted wave with even greater harmonic content. It is
important to note that the magnitude of the fundamental component
of the current wave actually decreases with increase of voltage, whereas
the magnitude of the harmonic currents increases. In fact, there is
some critical voltage amplitude for which the fundamental component
of current actually vanishes; for still larger amplitudes the phase of
the fundamental current reverses and the property of negative resist-
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ance is lost. Therefore, it is possible for the harmonic currents to be
very large in comparison to the fundamental component. This fact,
which has sometimes been overlooked, is important in explaining
the behavior of negative-resistance oscillators. The variation of

Current
wave

Voltage wave [

F16. 3.6. Construction yielding the current wave corresponding to an assumed
sinusoidal voltage.

fundamental current with voltage is shown in Fig. 3.7. It is seen
that the tube current is substantially proportional to the voltage for
small values, but rapidly decreases to zero as the voltage is further
increased.

= Tube
e
1
o
Tuned cireut- (4)
e
_/
T
Amplitude ‘

F1c. 3.7. Variation with amplitude of the real components of current at funda-
mental frequency.

The equilibrium amplitude is indicated by point A, where the real
component of fundamental-frequency current is equal to that produced
by the tube. This balance is not affected by harmonics produced in
the tube or the resulting frequency shift unless the resonator presents
an appreciable resistive component to the harmonic currents. Should
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this be true, the fundamental-frequency current produced by inter-
modulation in the nonlinear device is not in quadrature with the basic
term and the effective value of negative resistance changes.

3.6 Calculations of frequency

Several methods exist for calculating the extent to which the frequency
is modified by the presence of harmonic currents.4!% 217 One of the
simplest is due to Groszkowski,'?! who makes use of the fact that the
negative resistance device is, by its basic nature, unable to store
energy. Thisfact is represented in terms of Fig. 3.5 by the equation

gSz'do =0, 3.1)

which states that over any closed cyecle the net energy is zero. This is
necessarily true if the current is a single-valued function of the voltage,
and could be true in a special case for a multiple-valued function such
as that shown in Fig. 8.2. The important thing, however, is that it
must, by definition, be true for any voltage-controlled negative
resistance.

The next step is to assume that the voltage and current waves are
periodic and are expressible in the usual form of the Fourier series,

1= 2 I, 8in (aot + ¢4) (3.2)
a=1
and
p = z Vs sin (bot + ), 3.3)
b =1

where © is the actual operating frequency and ¢ and y represent phase
displacements. A necessary consequence of eq. 3.3 is the equation

@

dy = z bwVy cos (bt + ) dt. (3.4)

b=1

Substitution in eq. 3.1 with proper attention to the limits yields

®, @

55,-dv=0= L B/ 2 bl Vy sin (aet + ¢s) cos (bt +ys) 2, (3.5)

a=1b=1

where the double summation is taken to include all possible products.
Because the series are known to be absolutely convergent for the func-
tions of present interest it is possible to interchange the order of sum-
mation and integration and to apply a well-known trigonometric
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identity to obtain

0~ $al.Vs [ fsin [(@ + bot + ¢a + ¥o]
+ sin [(@ — b)wt + ¢ — ¢} di. (3.6)

This integral is zero for all terms in which a = b, because the integral
describes a discrete number of complete cycles in the range of interest
and thus represents no net area. Therefore, terms in which a = b are
rejected, and the substitution of a for b is made to permit complete
evaluation of the integral. ‘

@

0= E%awIaVa L 2/ (sin [2a0t 4 ¢a -+ Yl
a=1
+ sin [¢pa — ¥ol} dt.  (3.7)

The time variable term again can make no contribution over a
complete cycle, so the expression reduces to

)

0= ) $aul.V, (sin (6 — ¥o))

a=1

2
. (3.8)
w

Division by the various quantities which are independent of a leads
to an important result

w

0= 2 al Vg sin (¢a — Ya). (3.9)

a=1]

Although the expression just derived does not give the operating
frequency explicitly, it does permit calculation of this frequency for
any particular circuit. The first step in this procedure is to substitute

0, = ¢ — 'l’a, (310)

which represents the phase angle of the tuned circuit at the funda-
mental and harmonic frequencies. Moreover, reference to Fig. 3.5a
shows that

Vesin 8, = 1,X,, (3.11)

where X, is the reactance of the tuned circuit. Therefore eq. 3.9
reduces to

o

0= Z al 2X,. (3.12)

a=1
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Alternatively, we may use the admittance form and write

I, sin 6, = V4B, (3.13)
which leads to

©

0= 2 aV,2B,, (3.14)

a=1

where B, is the susceptance of the tuned circuit.

Equations 3.12 and 3.14 show that the presence of harmonics will
always reduce the frequency in a simple tuned circuit. This is true
because the impedance or admittance is capacitive at all harmonic
frequencies. A summation to zero in egs. 3.12 or 3.14 is therefore
possible only if X or B has the opposite sign at the operating frequency,
which must be below the resonant frequency.

3.7 Application to a simple circuit
The simple tuned circuit of Fig. 3.5b has an admittance of the form

1
Y=G + juC + — (3.15)
JjoL
The susceptance or imaginary part is simply
B = wC — 1/wL. (3.16)
The substitutions
wy = 1/LC, (3.17)
w = aEa_)O’ (318)
and
Q = woC/G, (3.19)
together with the fact that £ = 1, reduce the susceptance expression to
B = QG(@* —1)/a (e #1) (3.20)
and
By = QG(¢ — 1/8) = 2QG(¢ — 1). (3.21)
The additional substitution
me = Vo/Vy (3.22)
reduces eq. 3.14 to
L—t=4% ) mla®—1) (3.23)

a=2

As a numerical example, let the voltage wave contain only a third
harmonic component, which is 5 per cent of the fundamental. Then
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by eq. 3.23
1—&=0.01 (3.24)

That is, the operating frequency differs from the natural frequency by
one per cent.
By a corresponding analysis based on impedances and currents we

may obtain

= 2 2
1 a’ — ng

Ty (3.25)
a=2

1—¢=

where the new parameter is defined by
n, = I,/I,. (3.26)

Because the amplitude of oscillation, and hence the ratios of har-
monics to the fundamental current, is established by the conductivity
G and the negative resistance characteristic, we may interpret eq.
3.25 as showing that the frequency deviation due to nonlinearity
varies inversely with the square of the resonator . This is a very
important and general conclusion.

PROBLEMS

8.1. Show that the definitions of resistance in Section 3.1 are equivalent.

8.2. Consider a volt-ampere curve similar to that of Fig. 3.4b but having the
shape of one full sinusoidal ecycle. Evaluate ¢/i and de/di with respeet to the
center as an operating point.

3.3. Assuming that the above volt-ampere characteristic covers a total range of
100 volts and has a maximum negative conductance of 200 micromhos, and that
the associated passive conductance is 100 micromhos, calculate the amplitude of
oscillation by the method of Section 3.5.

3.4. Using eq. 3.25 and the current distribution associated with Prob. 3.3,
calculate the fractional frequency shift which exists if the passive circuit has a @
of 50.

3.6. In a general way, show why a simple series-resonant cireuit cannot produce
stable oscillations if connected to a voltage-controlled negative resistance.
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NONLINEAR OSCILLATIONS

In the foregoing chapters it has become clear that much may be
learned about oscillators by suitable use of linear equations. It has
also developed, however, that many important phenomena require
nonlinear equations for their analysis. This chapter is devoted to a
development of some of the simpler aspects of nonlinear behavior.
The reader who wishes additional material on this extensive subject is
referred to the books by Minorsky?!! and by Kryloff and Bogoliuboff."?

4.1 A nonlinear system

It is convenient to proceed by generalizing the system treated in
Chapter 2 to include a single nonlinear negative resistance. Such a

| s Na Tt

Negative 1
resistance C== G L

[ -

Fic. 4.1. Nonlinear oscillatory circuit.

circuit is shown in Fig. 4.1. The negative resistance may be identified
with a dynatron or a pentode connected as a transitron, as described
in the previous chapter. All known negative resistance devices have
the property of nonlinearity if the amplitude of oscillation is sufficiently
large. Otherwise, an indefinitely large amount of power could be
drawn by a suitable load, a violation of the principle of conservation of
energy.

The analysis begins with the characteristic of a typical negative
resistance device, as shown in Fig. 4.2. The curve, which may be
obtained experimentally, is relatively complicated and is not repre-
sentable by any simple equation. For our present purposes it is

42
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sufficient to represent this characteristic symbolically as
1:1 = F(v)) (4.1)

where v represents the difference between the instantaneous potential
and a bias voltage V. The other elements of Fig. 4.1 are readily
identified with the passive linear tank ecircuit. All capacitances,
including those of the tube, coil, and wiring, are lumped in C. All
losses, including those of the coil, condenser, and any useful load, are

0.01

Plate current
i, , amperes

-0

0 10 20y, 30 40 50
Plate potential V, volts

Fi1c. 4.2. Characteristic of a tetrode as a dynatron (idealized).

accounted for by the shunt conductance G. The inductance of the
system is represented by L.

4.2 The differential equation

The differential equation which describes this system may be written
in several forms. For present purposes, however, it is most convenient
to use the form which results from application of Kirchhoff’s current

law
F@) 4+ C{dv/dt) + Gv + 1 =0, (4.2)

where ¢, the current through L, is related to the voltage across the
system by the auxiliary equation

v = L(di/dt). 4.3)
4.3 Solution by isoclines

The differential equations above involve both current and voltage,
which vary with respect to time. Ordinarily we would eliminate
either v or ¢ between these equations and proceed to determine the
variation of the other with respect to time. In the present case,
however, the undefined function F greatly complicates this procedure.
Accordingly, it is expedient to eliminate the time variable and study
the relationship between » and ¢, following a method devised by
Liénard!®® and explained very clearly by le Corbeiller.}¢¢ The result-
ing plot is appropriately called a ecyclogram.
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The elimination of ¢ is accomplished by use of the derivative identity

dv/dt = (dv/dz) - (dz/dt), (4.4)
where z is any variable. In the present case it is convenient to use
z =1 (4.5)

In addition it is desirable to use a constant multiplier to change the
voltage variable such that

v = ku. 4.6)
With these substitutions eq. 4.2 becomes
F(ku) + (k*C/L) - (du/di)yv + Gku + 1 = 0. 4.7

By choosing
k=+vVL/C (4.8)

and
f(uv) = F(kv) + Gku, 4.9)
and transposing, we obtain
du/di = —[i + f(u)]/v (4.10)
or .
di/dv = —vu/[i + f(U)]. (4.11)

In eq. 4.11 the slope d7/du is determined as soon as the variables ¢
and v are specified. Moreover, the form is such that this slope may
be determined very rapidly on a graphical basis.

The basic idea is simple and may be stated as follows: If the cur-
rent and voltage at any instant assume values 7 and U, then from eq.
4.11 we can readily calculate the slope di/du and hence the incre-
mentally different values which 7 and v will have some short time
later. By sufficient repetition of this process and use of finite incre-
ments it is possible to determine completely the variation of ¢ and U
from any assumed initial conditions.

In practice it is much more convenient to construct slope lines,
called isoclines, from a large number of arbitrarily chosen starting
points. Because these lines form a characteristic pattern, it is rela-
tively easy to trace out the curve which will develop from any chosen
starting point.

4.4 Isocline diagram

An isocline diagram having coordinates U and 7 is shown in Fig. 4.3.
The first step in the construction is to plot the negative quantity —f(v)
versus U. This presents no basic difficulty because the constant
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k is fixed by eq. 4.8, G is known, and F(v) differs from the known F(v)
only by a change of abscissa. The resulting plot of —f(u) in Fig. 4.3
is somewhat flatter than the original F(») because the positive con-
ductance G partially annuls the negative conductance of the electronic
device. Moreover, a change in the ordinate scale to conform to the
new abscissa is necessary. The curve is translated so that the origin
of Fig. 4.3 corresponds to V, which is usually chosen near the center
of the negative slope region. The numerical values used in Fig. 4.3

001
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F16. 4.3. Construction of isoclines.

correspond to those of Fig. 4.2 with the additional parameters G =
2 X 107* mho (5000 ohms), L = 2.5 X 10~ henry, C = 4 X 10710
farad, and k = V. L/C = 2500. These parameters were chosen in
conjunction with the negative resistance characteristic, which has a
value of —2500 ohms at Vy, to correspond to reference point 6 of
Figs. 2.3 and 2.4. The associated oscillation, although considerable
distorted, is harmonic in character.

The point a anywhere on the plane is now chosen arbitrarily, and
construction lines are drawn as shown. It is seen that the length of the
line segments are given by

be = U; ad = i; and ac = i + (). (4.12)
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From eq. 4.11 we know that the slope is given by
di/dv = —be/ac. (4.13)

Thus, the slope of the segment ba is the negative reciprocal of that
called for in eq. 4.13. It is easily shown, by use of similar triangles or
otherwise, that the slope of the segment ae, which is perpendicular to
ba, is exactly —bc/ac as required. It should be nofed that this con-
struction is correct only if the coordinates are such that v = L and ¢z = 1
occupy an equal distance. The significant fact is that whenever 7 and
U have the values corresponding to point a the values are changing
in such a way that the ¢ vs. U curve is tangent to ae.

The isoclines, of which ae is only one example, are easily con-
structed by means of ruler and compasses as follows: (1) Select an
arbitrary value of usuchasd. (2) Draw a vertical line corresponding
to this value of v. (3) From the intersection of this line with the
function curve, draw a horizontal line to the 7 axis. (4) Using this
point, such as b, strike a series of short arcs which intersect the original
vertical line. All these arcs cross the vertical line at the correct
angle and are therefore isoclines. Figure 4.4 shows a complete set of
isoclines constructed on the same coordinates as Fig. 4.3.

4.5 The cyclogram

It remains to determine the direction or sense of rotation which cor-
responds to an increase of the time variable. This is found by refer-
ence to eq. 4.3, which shows that an increase, that is, positive incre-
ment, in time requires an increase, that is, positive increment in 2
whenever » and, hence, U is positive. This requires upward motion in
the right half plane. Hence counterclockwise rotation in Fig. 4.4 cor-
responds to increasing time.

The entire performance of the system, including the build-up from
arbitrary starting conditions and the steady state, is described by
isoclines such as those of Fig. 4.4, which shows the behavior that follows
from two different starting conditions. These curves are called cyclo-
grams. Note in particular that the steady state corresponds to a
closed curve which is nearly symmetrieal and approximately circular.
The closed curve is exactly symmetrical if the original F(») is sym-
metrical about the operating point. It approaches a circle as the
funetion —f(u) approaches the horizontal axis. It will later be seen
that a nearly circular cyclogram is associated with a quasilinear
system in which £ is relatively small.
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4.6 Effect of parameters

Our previous investigation of linear systems showed that the behavior
is greatly affected by the relative value of the circuit parameters. A
corresponding situation exists in nonlinear systems, as shown by inspec-
tion of eqs 4.6, 4.8, and 4.11. The horizontal scale of Fig. 4.3, and
hence the shape of the nonlinear curve and the distribution of the
isoclines, is governed by the value of k, which in turn is governed by the
L/C ratio, and is closely related to the damping factor «. In making
these comparisons it should be further noted by eq. 4.3 that v and 7 are
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F16. 4.4. Isocline diagram for harmonic oscillation. Fig. 4.5. Isocline diagram
for relaxation oscillation.

related by the inductance L. Accordingly, variation of L and C leads
to a number of changes in the circuit behavior.

To illustrate the effect of a significant change of parameters, let
us preserve the conductance G and the characteristic of the electronic
device. The choice of L = 4 X 107% henry and C = 2.5 X 10~
farad yields £ = 40,000 and leads to a considerably different behavior,
as shown in Fig. 4.5. These parameters correspond to reference
point 8 of Figs. 2.3 and 2.4, and therefore represent a case of relaxation
oscillation.

Several marked differences exist between Figs. 4.4 and 4.5. Most
conspicuous is the marked change in the scales of 7, and u, with conse-
quent emphasis of the ordinate scale. The actual voltage excursion is



48 NONLINEAR OSCILLATIONS

comparable in the two cases, but the coil current, which is magnified
in the former, is much smaller in the latter. Finally, the cyclogram,
which is approximately circular in.the former, is almost rectangular in
the latter.

4.7 Angular velocities

The question arises as to the time rate at which the cyclogram is
desceribed. This may be answered in part by defining the angle

6 = tan~1(:/v). (4.14)
The time derivative of this angle is
o _ u(di/dt) — ’i(dU/dt).

T @ u? 4 ¢* (4.15)
Equations 4.3 and 4.8 yield
di/dt = kv/L = VL/C - v/L = wyv, (4.16)
where the undamped angular velocity is defined as
wo = 1/VLC. (4.17)

Equation 4.2 may be solved for dv/dt, and by suitable substitutions
yields

do/dt = —i + J@I/KC = —aoli +f(@)].  (*18)
With these substitutions the angular velocity takes the form
if (v)
w = wp <1 + - iz). (4.19)

In the quasilinear (high Q) case, the term f(v) is always small com-
pared to 7, and the last term of eq. 4.19 is thus negligible. The cor-
responding cyclogram is nearly circular, and is traced out at a uniform
angular velocity equal to wo.

In the heavily damped case, corresponding to relaxation oscillations,
the situation is less simple. As we might anticipate from other experi-
ence, the angular velocity is nonuniform. Because the denominator
of eq. 4.19 is approximately constant, the greatest angular velocity
occurs in the regions where the product of ¢ and f(uU) is a maximum.
It should be noted that the angular velocity can be either larger or
smaller than wy. Furthermore, « equals wy at the crossings of the
axes, where ¢ and f(U) are respectively zero.

In summary, the method of isoclines yields a cyclogram for any
possible negative-resistance oscillator. Equation 4.19 gives the time
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rate at which the cyclogram is described and thereby permits the
current and voltage wave forms with respect to time to be constructed
by integration. Although somewhat tedious and inelegant, this
method has the merit of practicality in many cases.

4.8 Van der Pol’s equation

Important contributions to the nonlinear theory of oscillations have
been made by van der Pol.??? His method is analytical rather than
graphical, and accordingly is limited to negative-resistance character-
istics which are capable of mathematical expression throughout the
range of interest. Quite frequently, oscillators are operated near

e i=—av + b3

R - 278
i, =(G~-a)u+bvd Ti v, ,
2.0 -1.0 u 1.0 \/2.0]

/ —

Fi1c. 4.6, Cubic volt-ampere characteristic and related functions.

the middle of the negative-resistance region of the electronic device.
In such cases a simple cubic equation of the form

i =F@) = —av + b® (4.20)

gives a fair approximation over the region of interest. Such a charac-
teristic is shown in Fig. 4.6. The cubie representation is a very rough
approximation to typical experimental curves such as that of Fig.
4.2, and results obtained thereby cannot be expected to explain all
observed effects. However, a great deal of useful information is
obtained by the study of this particular case. And the complexity
of treating a more general case is such as to exclude it from this book.

The differential equation most suitable for this development is
obtained directly from eq. 4.20 and Fig. 4.1:

—av + bod + C(dv/dt) + Gv + (1/L) [ pdl = 0.  (4.21)
Differentiating and multiplying by L gives
LC(d%/dt?) + [L(G — a) + 3bLv?(dv/dt) + v = 0.  (4.22)

This differential equation is basic but involves coefficients which are
inconveniently complicated. By several successive changes of vari-
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ables it is possible to obtain coefficients which are much simpler. This
procedure is desirable because it substantially reduces the difficulty of
solving the differential equation.

The first step in this reduction is a change in the time variable
accomplished by the substitutions

T = wgt, (423)
where o
wo = 1/VLC. (4.24)
Introduction of this variable leads to*

d (a ~G)Ldy 3bL  , dv

e — e — — 2 — 4o = 0. 2
@ Vic & vie a0 (4.25)

The next step is the simplification of the second term by substitution of

the variable

e=(a—G) VL/C = (a — Quol = (@ — @)/weC, (4.26)

which defines e as the reciprocal of the negative @ of the system, exclud-
ing the nonlinear term . The magnitude of e will therefore determine
the rate at which oscillations expand or shrink, and whether they will
be harmonic or relaxation in character. Substitution of e yields

d% dv \/73 dy
~— —e— -+ 3b4/— 27 4 = 0. 4.2
at Cdr 3 ¢ v dr v=20 (4.27)
The remaining step in the simplification involves a change in the

dependent variable
v = hu, (4.28)

where

h2

- Bvie h =+/(a — G)/3b. (4.29)

* This result may be obtained by a very general mathematical procedure.
However, elementary methods serve to justify the present use. Differentiating

eq. 4.23 gives
wodt = dr.

Combination with the differential of voltage yields
dv/dt = wo(dp/dr).
Differentiation with respect to f gives

d%_ ddy  ,ddv 2,12,)
a?” Cdtdr " drdr “° st
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The resulting differential equation, generally referred to as van der
Pol’s equation, is fundamental, and describes a wide variety of systems
d*u du
—_ = 1 — 2y 2Z = 0. .
o e( u?) o + u (4.30)
4.9 Solution of van der Pol’s equation

Van der Pol in his original paper®?? offered two independent methods of

solving eq. 4.30. These are now generally referred to as the methods
of variation of parameters and equivalent linearization. A good dis-
cussion of available methods of solution is presented by Keller.165

The following paragraphs present a solution by the method of varia-
tion of parameters. In this method it is assumed that the conductance
term is equivalent to a linear conductance which depends upon the
amplitude of oscillation. The analysis involves separation of the
original second-order differential equation into two distinet first-order
differential equations, one of which determines the amplitude and the
other the frequency of oscillation. In the present case the analysis
begins by assuming that the voltage across the antiresonant circuit of
Fig. 4.1 may be expressed by the equation

v = hA(r) rcost or u = A(r)-cos, (4.31)

where A(7) represents an amplitude which varies relatively slowly with
respect to time. Specifically, the amplitude shall not vary appreciably
during any one cycle. This statement is expressed mathematically
by the inequality

dA/dr L A. (4.32)

To justify this assumption it is necessary to restrict the conductance
parameter e to small values by the additional inequality

e 1L (4.33)

This restriction is of great importance because it limits the study to
systems which produce harmonic oscillations. Such systems are
referred to as quasi-linear because the nonlinear conductance or
resistance terms are small compared to the associated susceptance (or
reactance) terms, even though the conductance (or resistance) charac-
teristic itself is quite curved in the region of interest. Alternatively,
we may say that a quasi-linear system is also a high-@ system because
the stored energy is large compared to the energy gain or loss per
cycle.

The analysis proceeds by noting that the solution assumed in eq.
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4.31 leads as a necessary consequence to the equality
u® = A% cos® v = A3 (2 cos v + 1 cos 3r). (4.34)

Furthermore, differentiation of eq. 4.31 with appropriate neglect of
higher order derivatives of A yields

d A
M _Asinr + —~cost (4.35)
dT dT
and
d*u dA
Fxie —Acost ~ 2 —; sinr. (4.36)

An additional relationship which will be needed in testing the solution
is obtained by differentiating eq. 4.34 and neglecting a number of small
terms to obtain
3
d(w) = —$A%sinT. (4.37)
dr
Equating this to the formal derivative 3u® du/dr leads to the desired

relation
d
% Ji g 1 A%sin . (4.38)
dr
The neglect in eq. 4.37 of terms which are only moderately small is
justified by the fact that eq. 4.38 will in turn be multiplied by a factor,
¢, which is itself small. Substitution of eq. 4.35, 4.36, and 4.38 into

4.30 yields

dA
(—A cos T — Qﬁsin-r> — e(—A SinT+d—ACOST +%A3sinr)
dT dT
+ (A cosT) =0. (4.39)

The first and last terms cancel, which indicates that, to the present
approximation, the frequency is equal to the natural frequency of the
resonator. Furthermore, the term ¢(dA/dr) cos 7 is negligible com-
pared to the remaining terms. Multiplication by A and division by
sin 7 permits writing the equation

d
- (A% — e (A2 ~ 2 A% =0, (4.40)
T
which represents the variation of the amplitude A with respect to
time. Solution of this equation is facilitated by the temporary
substitution
A% = 1/z (4.41)
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which leads to the simple differential equation
d
T he@—d =o0. (4.42)
dr

The solution of this equation, as found by ordinary methods, is
z =311+ 0], (4.43)

where 74 is the constant of integration, which depends upon the initial
conditions, and e is the base of natural logarithms. Elimination of «

leads to
4
s _ 0
A* = g~ (4.44)
and

2cosT

= ——\/1 + e_s(.,__fo_)’ (4’..45)

u

which describe the complete process of build-up and steady state of
oscillation.

If, as is usually the case, oscillations start from a small amplitude
it is necessary to assign 7, a large positive magnitude. The denomina-
tor then has a large initial magnitude, which decreases with time to a
final value of unity. During the period of small amplitude the
exponential term is large compared to one, and the oscillation takes
the approximate form

u = 2[e”?[e"’?] cos 7. (4.46)

The significant factor in this equation is the exponent er/2 which gives
the rate at which the oscillations expand with respect to time. The
correctness of this result is readily verified directly from eq. 4.30,
since in the interval in question u? is negligible compared to one.
Substitution of the original variables leads to the final result

_ [Afa—-G cos (wof + éo)
B \/3< b ) V1 ) @6/ (4.47)

where the parameter ¢, takes account of the oscillation phase at the
initial instant specified by #,. In terms of the original parameters,
the final peak amplitude »q is given by

vo = hdg = 2h = \/g (@ — G)/b. (4.48)
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Until the amplitude v reaches the value v, = V/(a — G)/b, the net
resistance is negative throughout the cycle. For amplitudes larger
than v, the net resistance is positive at each peak, and the rate of
expansion is checked. The initial rate of build-up, consistent with
eq. 4.46, is governed by the exponent

er (a—G)L' it (a—G)

2 2vIC VIe « 2C

which is recognized as the result achieved by linear analysis in Chapter
2. The oscillation envelope, as given by eq. 4.47, is plotted in Fig.
4.7. Tt is seen that the choice of the time variable is such that the
oscillation reaches 0.707 of its maximum value at the instant ¢ = £,.

1of—————=
vp=V4 (a-G/b /
0.707vg

0.5

t, (4.49)
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Fic. 4.7. Envelope of oscillation.

It is interesting to determine the point of zero slope of the character-
istic 2 = F(v) — Gv. From eq. 4.20 we may write for the total con-
duction current

i, = (G — a)v — bvd. (4.50a)
Setting the derivative equal to zero gives
di,/Jdv = 0 = a — G = 3bv?, (4.500)
which yields as the point of zero slope in Fig. 4.6
v=\/(a——T)/§i)=h or u = 1. (4.50¢)

4.10 Method of equivalent linearization!”

The current which flows when a nonlinear resistance is subjected to
a sinusoidal voltage may be resolved by means of Fourier’s series into a
fundamental term which has the same frequency as the voltage, plus
harmonic terms in which the frequency is an integral multiple of the
fundamental. The fundamental current is in phase with the voltage
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and has a magnitude which depends upon the voltage. Therefore, in
terms of the fundamental frequency the monlinear resistance may be
replaced by a linear resistance, provided the magnitude is suitably chosen
for the voltage in question. This is the basic idea of the method of
equivalent linearization. To apply this idea to oscillators it is neces-
sary to generalize it to include the effect of a nonsinusoidal voltage
wave, which consists of fundamental and harmonic terms. Again
the current wave contains terms of fundamental and harmonic fre-
quencies. However, as shown in Chapter 3, the current and voltage
of fundamental frequency are no longer in phase. Accordingly, the
nonlinear resistance now requires a reactance as well as a resistance
for its complete representation. Nevertheless, for any specified
combination of fundamental and harmonic voltages, there is a linear
impedance which draws the same fundamental current as does the
nonlinear resistance. This impedance may be used as an undeter-
mined coefficient, subject to final evaluation, to determine the fre-
quency and amplitude of the steady state of oscillation.

This method as given by van der Pol???2 will now be applied to solve
eq. 4.30 for the steady-state oscillation. The first step is to multiply
each term by u dr and to integrate over the not-yet-determined period
of one full cycle:

[ 2 0 [ [
fudijdr—/eudi‘df+[eu3@dr+f udr =0, (4.51)
o dr o dr 0 dr 0

where 6 is an angle nearly equal to 2z which corresponds to one full
period. The second and third terms vanish, as is easily shown by
noting that

wdu = % d(u?), (4.52q)

uddu = Ldu), (4.52b)

and by definition  has the same value at the beginning and end of any
period.
The trial solution
u=A4Acosrt (4.53)

identically satisfies the remaining terms of eq. 4.51, without restriction
on A save that it be constant. Therefore, to the order of approxima-
tion that the voltage wave is cosinusoidal, the operating frequency is
equal to the natural frequency of the resonator.

The amplitude is determined by multiplying each term of eq. 4.30 by
the quantity (du/dr)dr and integrating over the cycle
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*du d®u f ? (du>2 f ? 2(du)2
[t [ (@) s [l (R)
]
d
+[ wEdr = 0. (4.54)
o dr

The last definite integral vanishes by direct integration to the form
u%/2 as in eq. 4.51. The first integral is evaluated by use of the

identity
d {du du d2
e 4.55
2 dr (dT) dr dr?’ ( )

which reduces the integral to that of an exact derivative. Integration

leads to
27190
f() <o ot
dr 0

which is zero by periodicity. The two remaining integrals are evalu-
ated by substitution of eq. 4.53,

];0A2 sin?r dr = ﬁf A* cos® 7 sin? 7 dr. (4.57)

The evaluation of the left integral is well known. Since by eq. 4.53,
6 = 2m, the equation reduces to

r =A% {x — [ sin*rdr}. (4.58)
Integration by means of Peirce’s?®® formula 483 reduces the last term
to 3w/4 so that the amplitude becomes
A =4 or A =2, (4.59)
which is consistent with the steady-state value given by eq. 4.44.

4.11 Frequency correction

The method of equivalent linearization next introduces a correction of
the frequency term by a variant of the method presented in the previ-
ous chapter. Integrating the first term of eq. 4.51 by parts yields

¢ du /’ (du) du]”o /’=9d
- = —_— — —_ —_— _— 4_
/ud2dT Oud = v | Toddu (4.60)

Because du/dr must be periodic with the same period as u, it follows
that the integrated term is zero, so that eq. 4.51 reduces to

/: oa ‘(i;: /: ( ) / =0" u® dr. (4.61)
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Use of the relation r = wf, transforms this expression to

wl=2x 1 du 2 wt=2r
./wt=0 wo? \dt wodt = | w’wo dt. (4.62)

The next step is to assume that the voltage wave is represented by the
Fourier series

a=®

U= z A, cos (awt + ¢o), (4.63)
a=1

whose derivative is

du ‘o .

== a; awA, sin (aot + ). (4.64)
Substitution in eq. 4.62 and integration yields

TV 24,7 = mwg z 4.2, (4.65)

wo a=1 a=1

which leads to the compact and important expression

_e=1 (4.66)

Consistent with the notation of Chapter 3, let
w = £w,. (4.67)

Forming 1 — w?/we?® and using eq. 4.67, we have

2 (a® — 1)4,2 ,
1 — £2 — a=1a=w y (4.68)
a?A,?
a=1

where the combination of infinite sums is justified on the basis of
absolute convergence from physical considerations. Although this
result was derived on the basis of a cubic characteristic, it is correct
for a single-valued characteristic of any shape. With the notation

Mg = Aa/Ah (469)
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eq. 4.68 reduces to

ma2(0'2 - 1)
1 — g2 =2=2 . (4.70)

a= o

14+ z a’m,?
a=2

Because the assumed system is quasi-linear, the harmonics in the volt-
age wave are small. For this reason the infinite sum in the denomina-
tor is negligible compared to unity, and eq. 4.70 reduces to eq. 3.23,
of ,the previous chapter, as it should.

The frequency correction may also be expressed in terms of the @ of
the system and the magnitude of the curvature of the original cubic
function. It is known from eq. 4.47 that the voltage is given approxi-
mately by .
v =1vpCoSweT = V4 (g — G)/b €OS wet. (4.71)

On this basis, the current wave through the nonlinear resistance is,
by eq. 4.20,

1 = —avg cos wol + bug® cos® wyt, (4.72)
which reduces to

1 = (3bve® — avg) cos wot — 1bve® cos 3wot. (4.73)

In terms of eq. 3.26,

ng = 23/21 e —b1)02/(3b2)02 - 4(1) = — ‘é‘ (a - G)/G (474)
Thus, ,
1 —¢=(a—)?/(16QGY, (4.75)
where .
Q = wC/G =1/ VC/L (4.76)
is a property of the passive elements only, and
a—G=eVC/L (4.77)
Combining yields
1 — & = €2/186, (4.78)

which is in agreement with a result given by Kryloff and Bogoliuboff!’?
on page 40 of their book. Because e is the reciprocal of the small-
-signal selectivity @, it is clear that @ should be kept high if good fre-
quency stability is required.
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4.12 Relaxation oscillations

In Chapter 2 it was shown that critical damping in the parallel circuit
of @, C, and L occurs when the total conduetance satisfies the equation

G =2V C/L (4.79)

The boundary between harmonie and relaxation oscillations was
defined as the negative of this value. In the present case the total
conductance at small signals is given by (G — a). Consistent with
eq. 4.77, relaxation oscillations* will oceur if and only if

e> 2. (4.80)

Specifically, if condition 4.80 is satisfied a small disturbance will
increase without reversal until its magnitude is sufficient to involve
the nonlinearity of the characteristic. If ¢>> 2, the first cycle is
almost identical with all the following cycles. Experimental data
showing the variation of oscillator behavior as ¢ is varied and a very
clear discussion of the effects involved are given by Appleton and
van der Pol.13

Unfortunately, the mathematics of relaxation oscillations is in a
most unsatisfactory state of development. For reasons that are not
obvious, the methods just outlined, and all other known methods, fail
to yield useful solutions. From practical experience, as well as from
the cyclogram method, it is known that the solution is periodie, and
that a Fourier series containing only a few terms gives a good approxi-
mation to the wave shape which is generated. However, the period
does not depend in any simple way upon the circuit parameters, and
no practical analytic means has been found for evaluating either the
period or the relative amplitude and phase of the components.

The wave form produced by a typical relaxation oscillator is shown
in Fig. 4.8. It is seen to be characterized by regions of small slope
alternating with regions of large slope. This property forms the basis
of a partial mathematical solution, which gives a certain amount of
‘insight into the behavior. Because the region designated I in Fig.
4.8 is nearly straight, the second derivative (curvature) term is small,
and the behavior is governed principally by the second and third
terms of eq. 4.30. Neglecting the first term of eq. 4.30 for treatment

* Van der Pol in a basic paper3?® gives an excellent discussion of the fundamental
properties of relaxation oscillators. Cyclograms and an analytic treatment similar
to that given here are presented. However, it is inferred that ¢ = 1 is the bound-
ary condition; and the apparantly erroneous statement is made that a finite value
of induetance is required for any form of oscillation.
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of region I leads to
el —u?)(du/dr) =u or (1 — u?)(du/u) = drfe. (4.81)
Direct integration of this equation gives
Inu—u?2=7/e+ K or Inu?— u?=2r/e+ 2K, (4.82)

where K, the constant of integration, involves the displacement of the
time scale. It is convenient to set K = 0 for a sample calculation.

uT I 11 /
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Fia. 4.8. Relaxation oscillation.
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The additional arbitrary choice ¢ = 20 (ten times the critical value)
leads to the curve of Fig. 4.9a. It is seen that eq. 4.82 gives a good fit
to the curve of Fig. 4.8, not only through region I, but also by accident
through region II. This close fit arises because under the chosen
assumptions the derivative term must pass from positive to negative
through infinity as u passes through one.

In region III the function itself is relatively small, and is negligible
compared to the slope and curvature terms, which are both large. To
explore this region use eq. 4.30 with the last term omitted. The
resulting equation

d*u/dr® = e(du/dr) — eu®(du/dr), (4.83)
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integrates directly to
du/dr = e(u + K;) — e(u?/3). (4.84)
This expression is not readily integrated, but is capable of useful

interpretation. In particular it shows that the slope du/dr must be
zero for

u+ K, = u%/3. (4.85)
Making the additional arbitrary assumption that K; = —1 reduces
this expression to
3u — 3 = ud, (4.86)
which is satisfied approximately by
u = —2.104. (4.87)

Near the middle of region III, u? is small compared to one; and it is
possible to simplify eq. 4.84 by omission of the last term. The
remaining equation is readily integrated to yield

u = Ko — K. (4.88)

The new constant, Ko, gives a choice of sign or direction but is other-
wise not important because it is interchangeable with a shift of the
7 axis.

The plot of this equation for K = —1, e = 20, and K; = —1 as
before is shown in Fig. 4.9b. The marked change in abscissa scale with
respect to Fig. 4.9a is especially noteworthy because it indicates the
extent to which different terms of the original equation vary in impor-
tance during the oscillation cycle. In the range —3% < u < %, cor-
responding to region III of Fig. 4.8, eq. 4.88 is a relatively good
approximation to the actual behavior of the system.

Figure 4.10 shows the results of a point-by-point calculation of eq.
4.84. It is, of course, indistinguishable from Fig. 4.9 in the central
region, and satisfies the condition of eq. 4.87. Superimposed upon this
figure are the data of Fig. 4.9a, adjusted to the same abscissa scale
and arbitrarily made to coincide at v = 1. It is seen that the several
curves which have been calculated can be fitted together to describe
substantially the entire cycle of Fig. 4.8.

Additional insight into the situation is gained by reference to Fig.
4.6. It is seen that, for |u| > 1, the dynamic resistance of the total
system is positive. In this region, therefore, the system is semistable;
and the process of decay or relaxation occurs at a relatively slow rate.
as |u| decreases toward unity, the dynamic resistance increases toward
infinity; that is, the decay current becomes independent of the voltage.
At |u| = 1 a marked change occurs, corresponding to the transition
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between the curves of Fig. 4.10. When |u| becomes slightly less than
one, the behavior is governed almost entirely by the interaction of
the condenser and negative resistance (Fig. 4.1). The condenser
voltage changes at a very rapid rate, which would be exponential
except for the effects of the curvature of the characteristic. This
behavior has already been presented mathematically in eqs. 4.83 and
4.84.

It is interesting to note from Fig. 4.6 that the value of 7 is the same
foru = —1and = +2. This fact, together with eq. 4.87, strongly
suggests that the rapid voltage excursion just described actually does

du | l +2
— 77=20(u-1)-Pus
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F1c. 4.10. Plot of % vs. 7.

take place between the limits —1 and 42 or, alternatively, 41 and
—2. In the region 1 < |u] < 2 the behavior is, as previously noted,
governed principally by the inductance and resistance. The charge
on the capacitance decreases relatively slowly by a factor of two.

The total (normalized) period may be calculated approximately by
use of the information already tabulated. From Fig. 4.9a it is clear
that a period ; = 16.1 is required for u to decay from 2.0 to 1.0. The
period required for u to reverse from +1.0 to —2.0 is approximately
79 = 0.2 from the isocline plot of Fig. 4.10. Adding and doubling
these figures yields 7 = 32.6 for the total period. That is, for e = 20
the total period is approximately 32.6/2r or 5.2 times the period of the
resonant circuit itself. This result agrees to within about 20 per cent
with other theoretical and experimental results.

4.13 Summary

In this chapter we have explored some of the simpler aspects of the
mathematics of nonlinear systems. In spite of the numerous simplify-
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ing assumptions made, the relationships are complicated. The treat-
ment of relaxation oscillations is even less satisfactory, because no
single expression is adequate to describe the entire cycle of the gener-
ated wave.

In later chapters the same general methods will be used to explore
the behavior of other systems, such as those with more than one
resonant frequency, and those which oscillate at an integral fraction
of an externally applied voltage. It is hoped that the mathematical
methods now available will sometime be refined to facilitate a more
complete analysis of these important practical systems.

PROBLEMS

4.1, Substituting 7 = 0.01 sin 50v in eq. 4.1 and letting @ = 1074 L = 1073
and C = 10~19, calculate isoclines and a cyclogram like those of Fig. 4.4.

4.2. Repeat Prob. 1, changing only L = 107}, and ¢ = 10712

4.8. Evaluate the angular velocity at 45° intervals in Prob. 4.1.

4.4, Verify eq. 4.35.

4.5. Verify eq. 4.37.

4.6. Verify eq. 4.50b.

4.7, Verify eq. 4.58.

4.8. Repeat the derivation of eq. 4.66, justifying the procedure.

4.9, Evaluate ¢ in Problems 4.1 and 4.2.

4.10. Following the method of Section 4.11, derive the wave form associated
witha =11 X 10755 =1X10"%G =1X 105 L =1,and C = 107%
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FEEDBACK SYSTEMS AND
STABILITY CRITERIA

This chapter is devoted to an outline of existing feedback theory with
particular emphasis upon the way it affects oscillators. This material
is included for two reasons. (1) Negative feedback is applied directly
in a number of oscillator circuits in the interest of stability. (2)
Existing theory is highly developed and is sufficiently general to include
cases of positive as well as negative feedback.

5.1 Nature of the problem

It is well known that vacuum tubes are neither as linear nor as stable
as might be desired for many applications. In amplifiers, nonlinearity
leads to nonlinear distortion and intermodulation effects; whereas
changes of the parameters lead to variation of gain, impedance, and
frequency response. Corresponding difficulties appear in oscillators
and other devices which employ vacuum tubes. Because it has not
proved feasible to construct vacuum tubes which are substantially
free from these defects, much work has been done to develop circuits
in which the important properties are insensitive to the variations of
the parameters of the tubes employed.

In amplifiers it is possible to secure a remarkable reduction in the
degree of nonlinear distortion by properly returning a portion of the
output signal to the input terminals. The advantages of this arrange-
ment, which is referred to as inverse or negative feedback, appear
first to have been recognized by H. S. Black.?® The mathematics of
feedback systems has been extensively studied by H. Nyquist,??®
H. W. Bode,** and others. 0% 237

A relatively large amount of feedback must be applied to an ampli-
fier if a significant improvement in stability and linearity is to be
secured. It then becomes difficult to avoid oscillations, which would
seriously interfere with the operation of the circuit as an amplifier.

64
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Much of the work which has gone into the analysis of feedback systems
has been directed toward overcoming this tendency toward uncon-
trolled oscillation. Fortunately, the analysis is sufficiently general to
be a substantial aid when oscillation is desired as well as when it is to
be avoided.

In amplifiers, as well as in oscillators, it is necessary to define the
system under consideration with considerable care before we can make
exact statements about it. For instance, the output load impedance
may or may not be considered a portion of the amplifier, depending
upon the conditions. Asan example, consider a phonograph amplifier,
which receives a small signal from the pickup device and delivers a
much larger signal to the loudspeaker; here it would appear that
neither pickup nor loudspeaker was part of the amplifier. However,
the performance of the loudspeaker will depend upon the internal
impedance of the device which drives it. Therefore, we must consider
both pickup and amplifier in determining this impedance. Also, the
behavior of the pickup depends upon the impedance into which it
works. Therefore, the loudspeaker as a load must be considered as
part of the amplifier in so far ag it affects the input impedance.

When feedback is used the input and output impedances are likely
to depend upon the associated load and source impedances, respec-
tively. Moreover, the behavior of the amplifier itself may be con-
siderably affected by these impedances. For example, an amplifier
which operates quite satisfactorily under normal conditions may
oscillate if the load or the source is disconnected. Therefore, in defin-
ing the amount of feedback and other properties, it is usually necessary
to consider the entire amplifier system.

5.2 Effects of feedback

The various aspects of feedback are conveniently discussed with
reference to Fig. 5.1, which shows a conventional amplifier in which
feedback is produced by the relatively high impedance Zs;. This
arrangement is referred to as shunt or voltage feedback because the
feedback path is connected in shunt with both input and output
circuits and because the feedback action depends upon voltage rather
than current.

The analysis assumes that the system is substantially linear for a
sufficiently small input voltage Vi. If the system is stable, this
assumption is justifiable; if unstable, the analysis serves only to indi-
cate that fact. To simplify the analysis it is further assumed that
Z, is very large.

The amplification or gain without feedback, p, is readily determined by
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assuming Z; = «. By consideration of the output circuit as a
potentiometer, we see that

w=Vo/V3 =KkZy/(Zs + Z4), (6.1)

where k is the intrinsic amplification factor. In typical situations
the voltage amplification is large (V,>> V3), and Zs is large compared
to all other impedances in the system (except perhaps Z,).
The magnitude of the voltage returned or fed back is measured by
the parameter :
B = Z3/Zs, (5.2)

which is seen to be the fraction of the output voltage which is applied
to the input circuit.

Zs

MAMWW

V.

Vi
Z, Z,
+ Z,~o + Z,
V, B kv,
=

FiG. 5.1. Amplifier with shunt feedback.

The amplification p’ which exists when feedback is present is
obtained from the two relations

Vo/Vi1 = KZ4/(Zy + Z,) (5.3)
and
Vy = Vs + V.. (5.4)

Eliminating V; and using eq. 5.1, we have
u o= Vy/Vg = p/(1 — uB). (6.5)

It is seen that u’ becomes infinite when the product w8 is equal to
unity; this special condition corresponds to oscillation, because a
finite output exists in the absence of an input.

The product uB represents the loop transmission of the system and is
a very important quantity. For reasons presented later, it often
provides a more convenient criterion of stability than does the position
of the system roots. The nature of this product is clarified by inquiry
as to how it could be measured. From Fig. 5.1 it is seen that if the
grid lead of the input vacuum tube were cut and a signal V, applied to
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this grid, a voltage uV, would be produced at the output terminals,
and a voltage BuV,y would be developed at the point where the cut
was made. Moreover, it is seen that the ratio of returned to supplied
signal would be the same and equal to uB if the circuit had been
opened at some other point.

It should be pointed out that Fig. 5.1 represents a single-loop feed-
back system in which the loop transmission is zero if Z5 is open or if
any of the vacuum tubes is disabled. Conversely, a multiple-loop
feedback system is one in which feedback may occur through two or
more distinet paths. Multiple-loop systems are quite complicated
and are discussed further only in the final section of this chapter.

A single-loop system is absolutely stable if the feedback loop 1s opened at
any point; therefore, uf is a measure of the behavior which will result when
the loop is closed.

5.3 Increase of stability

In the absence of feedback the overall amplification of an amplifier
depends directly upon the condition of the tubes and the various
related elements. Where several tubes are used in tandem, the
amplification may vary rather drastically because all the tubes are
Likely to respond in the same way to such effects as heater voltage,
plate voltage, or aging; and the overall amplification involves these
separate effects as a product. This is represented mathematically by
eq. 5.1 in which the amplification uinvolves k as a direct factor.

One of the most important properties of feedback is its ability to
improve stability. The truth of this statement can be seen in a gen-
eral way by rewriting eq. 5.5 in the form

— _—__1 .
T /) -8

It is practical to establish the condition 8> 1/u, in which case the
amplification with feedback, u” is substantially equal to (—1/8) and
hence is nearly independent of the condition of the tubes and in fact
of everything except 8, which involves only Z3 and Z;.

The improvement in stability is determined quantitatively by com-
paring the differential fractions du/x and du'/u’. The fractional form
of the differential is appropriate because we are interested in the ratio
rather than in the absolute amount by which amplification is reduced.
Differentiating eq. 5.5 leads to

_ (= wB)dp + uBdn
(1 — uB)?

’

u (5.6)

dy’ 6.7
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which, when divided by eq. 5.5, yields

2o % (5.8)

This is an important relationship because it shows that feedback has
improved the stability, or reduced the variation of the amplification
due to any cause, by exactly the same factor that it reduced the
amplification itself. The improvement results from the fact that, with
feedback present, the overall amplification depends prineipally upon
passive elements, Z3 and Z; in the present example, which can be made
much’ more stable than vacuum tubes.

In practice, the improvement of stability and other benefits of
feedback are secured by first designing an amplifier which has an
amplification considerably in excess of that actually desired. The
excess amplification is then exchanged for improved stability, linearity,
ete., by application of suitable negative feedback, based upon stable
linear elements. However, there are grave practical difficulties in
securing large amounts of negative feedback, especially across wide
intervals of frequency, so that we should not enter lightly into such
an undertaking.

5.4 Reduction of noise, hum, and distortion

Feedback may be employed to reduce the voltages which appear in
the output due to distortion, hum, and certain forms of noise. We can
prove this statement by referring to Fig. 5.1 and assuming that the
output contains an undesired term, Vi, in addition to the desired sig-
nal, kV,. In the absence of feedback the output voltage is given by

Vo= (Vo + kVy) Z4/(Zy + Zy). (5.9)

When feedback is applied the output of both desired and undesired
voltages is divided by the factor (1 — pB) as shown by insertion of Vj
in the equations which lead to eq. 5.5.

The useful signal output may now be restored to the value which
would have existed in the absence of feedback either by increasing the
input signal or by adding at.the input a low level amplifier which is
free from distortion, hum, and noise.

In practice, this increase of amplification is usually incorporated
within the feedback path so that the pertinent comparison is between
two amplifiers which have equal overall amplification and differ in
the presence or absence of feedback. Because the added amplification
system operates at a small signal level, it is relatively easy to meet
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the requirement of negligible distortion. Therefore it is quite practical
by use of feedback to reduce distortion to the extent of the factor
(1 — uB), which may be made large.

Feedback is equally effective in reducing harmonie distortion or
intermodulation effects which result from the simultaneous presence
of signals, whether the distortion arises in the output tube or in any
other tube of the amplifier. Such reduction is of considerable impor-
tance, especially if none of the tubes is driven to the overload point
and if several signals are present, as in telephone repeater amplifiers.
If, however, some tube is overloaded, so that a violent curvature in
the operating characteristic is involved, the action of feedback may
produce objectionable intermodulation effects and harmonic distortion
terms which would not otherwise be produced.

The conduction of vacuum tubes results from the motion of electrons
in the space between the cathode and the anode. Because electrons
carry a finite charge and are emitted in a random manner, the current
flow is not perfectly smooth, but fluctuates in an irregular manner
about some average value. This phenomenon, which is referred to as
tube noise, is discussed more fully in Chapter 15. It sets a lower limit
on the magnitude of signals which may be amplified by means of
vacuum tubes. Ordinarily, the limit is established in the first tube
where the signal is smallest.

We may readily show that feedback is unable to reduce noise pro-
duced in the first tube by comparing a feedback amplifier with one
which does not employ feedback. We assume that both have equal
amplification, that both employ the same input circuit and tube, and
that all the noise is produced by the first tube of each amplifier.
Because of the equality of amplification, both amplifiers produce the
same output from a given input signal. And both produce equal
noise outputs because the intrinsically higher amplification factor of
the feedback system leads to a proportionally higher noise value.
When both the amplification and the noise values are divided by the
factor (1 — uB) they correspond exactly to those of the nonfeedback
amplifier. Thus we conclude that feedback is of no help in reducing
notse produced in the input stage.

5.5 Modification of input and output impedances

Feedback has a profound influence upon the effective input and output
impedances of an amplifier. We may show that this is true by refer-
ence to Fig. 5.1. In the absence of feedback, the output impedance is
simply Z;. That is, a current Vo/Z, will flow as a consequence of
applying a voltage Vs to the output terminals when V3 is zero. When
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feedback is present, however, the application of V, results in a voltage,
V. = gV, (5.10)

at the input terminals. The voltage effective in producing current in
Z, is now Vs — kBV,, and the effective output impedance is

Because the produet kg, which is closely related to ug, is negative and
large compared to unity, the output impedance is greatly reduced.

Analysis of other feedback systems shows that in general the shunt
connection at input or output decreases the associated impedance
whereas the series connection increases the impedance. Moreover,
bridge or hybrid-coil arrangements lead to finite impedances of con-
venient magnitude which are almost independent of the condition of
the associated vacuum tubes.

5.6 Positive and negative feedback combined

Oscillators are sometimes designed and analyzed from the viewpoint
that a positive feedback path sufficient to produce oscillation is added
to an amplifier system stabilized by means of negative feedback.4®
It is argued that the negative feedback amplifier, taken as a unit, is
highly stable and linear. Therefore, the positive feedback path need
have a transmission only slightly in excess of some minimum value in
order to ensure that oscillation will persist even if the performance of
the tubes is considerably degraded by age or substitution. At this
point there is a great temptation to conclude that the resulting oscilla-
tions will be substantially linear because of the action of negative
feedback. This is not true unless the feedback paths include a thermis-
tor or similar device suitable for producing linear oscillations. The
difficulty lies in the fact that overload must produce a very large
reduction of tube performance before the gain of a stabilized amplifier
is appreciably reduced.

Assuming that two feedback paths are effectively in parallel, and
consist only of linear elements, as is usually the case, we can see that
these paths are equivalent to a single more complicated linear circuit.
Ordinarily, the total feedback path constitutes a bridge circuit in
which a considerable increase in the effective selectivity is produced as
the balanced condition is approached. TUsually, it is much easier to
obtain a correct interpretation of the operation of such systems by
treating the entire feedback system as one unit and the unstabilized
amplifier as another. This viewpoint has been ably presented by Post
and Pit.?*?
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When the negative feedback path is not effectively in parallel with
the positive one the combination constitutes a multiple-loop feedback
system. The general treatment of such systems is quite complicated,
but practical cases are ordinarily sufficiently simple to permit solution
by a slight extension of the methods already presented. The most
common example of such a simpler system is a linear oscillator in which
the cathode resistor is not by-passed and so constitutes a negative-
feedback element.

In any event it is necessary to use considerable care in the analysis
of feedback systems, particularly those in which several paths exist.
The following sections, which are devoted to a study of the stability of
feedback systems, illustrate some useful techniques for the analysis of
such problems.

5.7 Conditions for oscillation

It was shown in Chapter 2 that a system will generate spontaneous
oscillations if and only if the characteristic equation has roots in the
right half plane. Unfortunately, this criterion of stability is not a con-
venient one for use in the design and analysis of regenerative arrange-
ments because a very large amount of work is required to calculate the
roots of typical systems and because the position of the roots offers
little or no guide for improving the performance if unsatisfactory.?®
It has been found that the loop transmission pf provides a far more
satisfactory criterion for the design of feedback devices. Compared to
the system roots, uf has the advantage that it can be measured directly,
so that the existence of any unintentional coupling effects may be
detected if present, and that the effect of a given parameter change
may be readily predicted. The first accurate statement of the rela-
tion between stability and loop transmission is due to H. Nyquist.?28
However, a simpler proof and useful extensions of his results have
been developed by Bode.?* The boundary between oscillation and
nonoscillation is of interest in connection with both amplifiers and
oscillators. However, in amplifiers a large scalar magnitude of (u8) is
necessary, whereas in oscillators a smaller feedback is often adequate.

5.8 The (u3) diagram

The preceding sections have shown that a feedback system is unstable
(that is, it may produce an output with no input) if

uB = 1. (5.12)

Moreover, ordinary experience would predict expanding oscillations if
(u8) were real and greater than unity; this prediction is ordinarily
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but not always correct. The exact situation is expressed in terms of a
Nyquist plot such as that of Fig. 5.2, which shows in polar form the
locus of the loop transmission (u8) as the real frequency w is varied
from — o to 4 =.*

It is seen that the loop transmission is real and exceeds unity at
both a positive and a negative frequency near 1.5 wo. Therefore, it is
correctly anticipated that oscillation will oceur at about this frequency.

A significantly different and more complicated situation is shown in
Fig. 5.3a. Although there are two positive (and two negative) fre-
quencies at which the loop transmission is real and greater than unity,
the system is actually stable! That is, there are no roots in the right

= (a) (]

Fic. 5.2. A resistance-capacitance oscillator: (a) circuit, and () Nyquist plot
with approximate frequency scale in arbitrary units.

half of the complex plane, and small oscillations decrease rather than
increase with time.

5.9 Nyquist’s criterion

The results of the foregoing discussion are compactly stated as follows:
A single-loop feedback system is stable if and only if the Nyquist plot
of the loop transmission (uB), in the frequency range — o < w < ®,
does not encircle the point (1, 0).

It is apparent that a system having a Nyquist plot such as that of
Fig. 5.3b must be absolutely stable, because there is no frequency at
which (uf8) is real and as large as unity. And it is clear that a system
such as that of Fig. 5.2 is unstable, that is, will oscillate. A slight

* In this and other Nyquist diagrams a dotted line indicates negative frequencies.
The inclusion of negative frequencies is required only in systems such as that of
Fig. 5.2, in which finite transmission exists at zero frequency, and it is necessary to
close the curve in order to establish whether or not the critical point is encircled.
In all cases the diagram is symmetrical about the horizontal axis, and negative
frequencies are physically indistinguishable from positive frequencies, so that no
additional effort is required.
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difficulty may arise with the conditional case of Fig. 5.3a but, as the
point (1,0) is not encircled, the system is actually stable! This
stability is, however, only conditional because the plot will encircle the
critical point if the loop amplification is reduced by a factor of about
two. Moreover, in many systems of this kind sustained oscillations
will result if the system is given an initial disturbance large enough to
introduce nonlinearity through overloading.

The fact that small signals decrease rather than increase in a con-
ditionally stable system may be traced to the behavior of expanding
sinusoidal waves. The reversed curvature of the Nyquist plot of Fig.
5.3a in the region of 2w, is associated with a circuit behavior which
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(a) (b)
F1c. 5.3. Nyquist plots: (¢) conditionally stable system and (b) absolutely stable
system.

tends to damp out rather than enlarge an oscillation near that fre-
quency. In this connection it should be noted that sustained oscilla-
tions which result from a reduction of (uB) will occur at a frequency
near wo whereas the inner crossover of Fig. 5.3a is at a frequency near
2wg. The discussion of oscillation build-up in Chapter 18 will help to
clarify this behavior.

5.10 Basis of the criterion

The rigorous proof of Nyquist’s criterion requires extensive manipu-
lation of complex variables and a familiarity with the theory of con-
tour integration which is beyond the scope of this book. The inter-
ested reader should refer to Bode?* for this material. It is, however,
possible to explain the ideas involved and to give the results a degree
of plausibility.

Nyquist’s criterion depends upon a relationship between the phasor
plot of (uB) at various real sinusoidal frequencies and the location of
the system roots in the complex frequency plane as discussed in
Chapter 2. In fact, the Nyquist plot is a transformation of the points
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on the vertical (real frequency) axis of the p plane. Somewhat less
obviously, the point (1, 0) in the Nyquist plot is identified with the
roots of the equation representing the loop transmission.

The situation is clarified by reference to Fig. 5.4, which shows a
complex frequency plane and associated Nyquist plot. Traversing
the Nyquist plot with increasing frequency we find that the critical
point is constantly on the right until infinite frequency is reached.
Correspondingly, the root is constantly on the right as the real fre-
quency axis of Fig. 5.4b is traversed (upward) with increasing fre-
quency. If, on the other band, the roots had existed in the left half

+ 1+ +w0—t— x
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Fi16. 5.4. Example of Nyquist’s criterion for an unstable system: (a) Nyquist
plot and (b) complex frequency plane. Arrow heads indicate increasing frequency.

of the p plane there could have been no encirclement of the critical
point in Fig. 5.4a.

5.11 Correlation between the Nyquist plot and root position

The proof of Nyquist’s criterion shows that there must be a relationship
between the Nyquist plot and the position of the roots in the complex
plane. As stated, the criterion tells only whether or not there are
roots with positive real parts, on the basis of encirclement of the point
(1, 0). Because it is often desirable to know the location or value of
the roots of the system, it would be very convenient if the Nyquist
plot could be made to yield this information. Experience indicates
that, although this is possible on a rough basis, it is impractical to
obtain any very exact information in this way.

The problem, which has been studied by Vazsonyi®® from a some-
what different viewpoint, may be approached by reference to the
tuned plate oscillator shown in Fig. 5.5. This particular circuit is
chosen because of its simplicity and the symmetry of the associated
equations. It is assumed that the grid is negatively biased so as to
draw no current, and that tests are made at a sufficiently low level to
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justify the assumption of linearity. With these restrictions it is clear
that the grid voltage is a fraction M /L of the plate voltage, and
that the system is correctly represented in Fig. 5.5b, where r, is the
plate resistance and g,, is the transconductance. Because the same
current would be drawn by a suitable negative resistance, it is pos-
sible to simplify the equivalent circuit still further to the form of
Fig. 5.6.
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F16. 5.5. Tuned plate oscillator: (a) circuit diagram and (b) equivalent circuit.
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Fie. 5.6. System equivalent to tuned plate oscillator.

Inspection of this figure shows that the roots are pure imaginary if
the total conductance vanishes, that is, if

1/rp + 1/R — Mgn/L = 0. (5.13)

As shown in Chapter 2, the roots will be complex with negative real
part if

2V C/L > (1/r, + 1/R — Mg,/L) > 0 (5.14)
and complex with positive real part if
—2VC/L < (1/rp + 1/R — Mgn/L) < 0. (5.15)

Harmonic oscillations, therefore, correspond to transconductance
values lying between the limits

L(/ry + 1/R +2VC/L) > Mgm > L(1/r, + 1/R). (5.16)
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The ratio n, of the upper to the lower limit of g, is

2VC/L

1/rp + 1/R (5.17)

n=1+
This ratio may be made relatively large by choosing a tuned circuit
with a high @, and a tube with a high plate resistance. This choice is
desirable, because it ensures that the wave form will remain reasonably

sinusoidal and the frequency will be nearly constant even though the
transconductance varies appreciably.

__>I=gm‘/l

1 ——

= (@) (b)

Fic. 5.7. Arrangement for evaluation of loop transmission: (a) actual and (b)
equivalent.

The roots of the system of Fig. 5.6 are. as shown in Chapter 2,

P = a—+ jw= Mgn,/2LC — 1/2RC — 1/2r,C
+ 5 V1/LC — (Mgn/2LC — 1/2RC — 1/2r,C)% (5.18)

and
Py = a — jo = Mg,/2LC — 1/2RC — 1/2r,C

— i V1/LC — (Mgn/2LC — 1/2RC — 1/2r,0)%  (5.19)
The loop transmission of Fig. 5.5 is calculated with reference to the

equivalent circuit of Fig. 5.7. It is readily shown that the loop
transmission is

() = 22 = Mgn
. Vi L(/rp + 1/R + juC + 1/juL)

Inspection of this equation shows that the magnitude is directly pro-
portional to g,, that the phase angle is zero if wC = 1/wL, and that
the phase angle is +45°if wC — 1/wL = +(1/r, + 1/R). Moreover,
it is easy to show that the Nyquist plot has the form of a circle.

For this particular system it is possible to calculate a relatively

(5.20)
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simple relationship between the frequency scale on the Nyquist plot
and the location of the complex roots. The procedure is facilitated by
use of the substitutions

wo = 1/VLC, (5.21)
@ = w(l — &), (5.22)
G =1/r, + 1/R, (5.23)
and
Q = 1/GuwL. (5.24)

With these substitutions the roots become

a t jw =% (Mgnwe® — G/C) £ j Vwe® —} (Mgnwo® — G/C)%
(5.25)

Because, for any prescribed wg, the roots vary along the arc of a circle,
it is sufficient to specify «. Eliminating Mg,, between egs. 5.20 and
5.25 yields

2a/wg + G/wC )
wol (G + juC + 1/jwL)

Elimination of C' with introduction of eqs. 5.22 and 5.24 leads to

_ 20/wy + 1/Q
W) = CLIG ¥ 501 — £)/wo) + 1/5(1 — ol
B 1 4+ 2Qa/wq
T1+Q0— B -/ -8

which shows that the Nyquist plot is uniquely expressed in terms of
the angular position of the root, the @ of the passive portion of the
circuit and the frequency variable £.

The desired relationship is most conveniently expressed by assigning
a fixed small value to ¢ and exploring the contour described. If §
is restricted to small values we may use the approximate relation

(uB) = (5.26)

y(5.27)

1+£=1/01 -9 (5.28)
to obtain :
_ 1 + 2Qa/w0.
(uB) = 1= 0t (5.29)

Converting to rectangular coordinates by use of

B) = z + Jy, (5.30)
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we may expand eq. 5.29 to obtain

T+ Jy — j2Q%x + 2Qfy = 1 + 2Qa/we. (5.31)
The relation
y/z = 2Q%, (6.32)

which results when the imaginary terms are equated may be used to
eliminate @ in eq. 5.31. With this substitution we have

z+ y¥x =1+ ay/tzw (5.33)
or

a/we = £}y +y — z/y). (5.34)

The location of roots is illustrated in Fig. 5.8, which shows an arbi-
trarily chosen Nyquist plot of the circular shape required by eq. 5.20.

i

—2+

|

Fi1g. 5.8. Determination of roots from Nyquist plot.

In this example z = 5, ¥y = 14, wg = 1000, » = 990, and ¢ = 0.010.
Consistent with eq. 5.34, @/wy = 0.40, and the system roots are 400 +
71000. An oscillator having these properties would have relatively
poor performance as to wave form and frequency stability, but would
exhibit a very rapid rate of build-up at the beginning of oscillation.

It is emphasized that the foregoing analysis is accurate only under
the assumed conditions. However, it yields useful qualitative infor-



FREQUENCY AND AMPLITUDE STABILITY 79

mation under any conditions in which the Nyquist plot resembles the
circular form of Fig. 5.8.

5.12 Frequency and amplitude stability

The Nyquist diagram for a system is very helpful in calculating, or at
least estimating, the frequency stability. The calculations are exact
if the system is linear, and give an excellent approximation in quasi-
linear, that is, high=-@Q nonlinear systems.

As a first step toward the determination of frequency stability,
we must note that the shape of the Nyquist plot may change in two
basically different ways as the loop gain is reduced by the action of the
limiter. If the limiter is independent of the resonator the diagram

Low level

Low level

Excess level

_«—Operating
level

a. o

Operating level
anm \

Excess level

(a) (b)

F1c. 5.9. Nyquist plots at various levels: (a) limiter isolated and (b) limiter
and resonator combined in bridge.

simply shrinks, as shown in Fig. 5.9¢. If, however, the limiter and
the resonator are combined, as in the Meacham or Wien bridge circuits,
the diagram is displaced laterally without appreciably changing its
size, as shown in Fig. 5.9b. If we know the behavior of the Nyquist
diagram with changes in amplitude, we may find the frequency
stability from the diagram which corresponds to a very low amplitude
level. Otherwise, we must use the diagram which corresponds to
the desired operating level, and therefore passes through the critical
point (1, 0).

The construction is shown in Fig. 5.10¢. The frequencies wp and
wg + 8w corresponding respectively to the critical point (1, 0) and to a
point displaced by a small angle é¢ are observed. Then, from the basic
formula given in Chapter 1, the frequency stability with respect to
phase shifts external to the resonator is

_ b
- Bw/wo

Se (5.35)
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provided 8¢ is taken sufficiently small. In practice, this approxima-
tion is entirely satisfactory, and the frequency stability of a system is
readily predicted by inspection of the frequency scale of the Nyquist
plot. A high degree of frequency stability is seen to correspond to a
Nyquist plot in which the frequency scale is very open.

The amplitude stability is determined in a somewhat different man-
ner, for it depends upon the rate at which the plot in the region of
(1, 0), shrinks with increase of amplitude. The curves corresponding
to two slightly different known amplitudes of signal are drawn, as in

y y Amplitude
A A—GA
(1, 0)
\ Wo x 1,0 x
ot b /\(H&x. o)
8¢ e
(@) (b)

F16. 5.10. Determination of stability factors from Nyquist plot: (a) frequency
stability and (b) amplitude stability.

Fig. 5.10b, and the difference éx between the horizontal intercepts is
noted. The amplitude stability is then given by

o

Sa = SA/A

(5.36)

A high degree of amplitude stability is seen to correspond to a system
of Nyquist plots which for small differences of signal level are widely
separated in the region of (1, 0).

Because it is quite tedious to obtain data for Nyquist plots at
various amplitude levels, the amplitude relationship is less generally
useful than the frequency relationship. Fortunately, frequency
stability is ordinarily more important than amplitude stability, so this
is not a matter of grave importance.

5.13 Llewellyn’s criterion

An additional criterion which is sometimes convenient for testing
the stability of linear systems was stated intuitively by Llewellyn and
has since been verified by Bode** on page 165 of his book and:by
Chu.%? It is applicable to linear systems of all classes, but is most
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useful in connection with two-terminal oscillators, to which Nyquist’s
criterion is not applicable.

The conditions for applying the test in its first form are shown in
Fig. 5.11a. The network is opened at some point a, as indicated,
and the impedance between the opened points is observed as a funetion
of frequency. If the polar plot of impedance, for all frequencies from
— o to + o does not encircle the origin and if the system is stable with
the terminals open, then it is also stable with the terminals short circuited.

T

(@) ' (b)
Fia. 5.11. Llewellyn’s criterion: (a) direct test; and (b) modified test.

Al

In the alternative form the admitiance between two points in the
network, as shown in Fig. 5.11b, is measured as a function of frequency.
Then if the polar plot of admitiance for all frequencies from — o to
+ x does not encircle the origin and if the system is stable with the ter-
minals short circuiled, then it is also stable with the terminals open
circuiled.

We see that Llewellyn’s criterion is closely related to Nyquist’s.
Therefore, it should be possible to relate the shape of the Llewellyn
plot to the position of the complex roots and to the amplitude and fre-
quency stability of the system. These relationships are not developed
here because they are not used in the following sections.

Taken together, the relationships developed in this chapter provide
a very powerful means for the analysis and the design of feedback
systems, whether the objective is a stable amplifier or a reliable oscil-
lator. These relationships are used and extended to treat multiply-
resonant systems in Chapter 18.

PROBLEMS

5 1. Show how to measure the loop transmission of a feedback amplifier.

6.2. Sketch a single-loop and a multiple-loop feedback system.

5.3. Explain why fractional derivatives are used in eq. 5.8

6.4. Verify the argument of Section 5.4 that distortion is reduced in the ratio

1 — wB).
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6.6. Discuss the use of feedback in connection with tube noise in the input
stage.

6.6. Discuss the significance of negative frequencies in conjunction with the
Nyquist diagram.

u =100 r,=20
—_L— . 200 2000
T 'L 1/8 I 1/80
1/2000 ==
= 1 10
T

ProBLEM 5.7

6.7. Calculate the system roots for the circuit shown, assuming for convenience
that the impedance of each RC section is high compared to that of the adjacent
one.

5.8. Calculate the Nyquist diagram for the above system under the same
assumptions,

6.9. Calculate the Llewellyn plot for the above system at the terminals of the
grid condenser.
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RESONATORS

Resistance-capacitance oscillators, although important, are not
capable of extreme frequency stability; all other oscillators use some
form of resonator. As stated in Chapter 1, a complete oscillator
-consists of a resonator and an associated driving system. This
chapter is devoted to a discussion of resonators which are suitable for
oscillators. The features which would characterize an ideal resonator
are enumerated as a basis for evaluating realizable units.

The most flexible and generally useful resonator is composed of a
condenser and coil. By varying the size, shape, and number of turns
in conjunction with the permeability of the core it is possible to con-
struct useful coils over a remarkable range of inductance. Similarly,
variations in the construction of condensers lead to a wide range of
useful capacitance. Inductance-capacitance resonators may, there-
fore, be constructed for operation over a very wide range of impedances
and frequencies. Where extreme frequency stability is required the
mechanical vibrations of a quartz plate are profitably employed.
In the microwave region electrical cavity resonators or molecular
resonance devices are most suitable. Considerations which govern
the choice of a resonator are developed in the following sections.

6.1 General properties of resonators

The properties of resonators are conveniently discussed in terms of the
circuit of Fig. 6.1, which shows the series combination of an inductance
and a capacitance. The losses, which are always present to some
degree, and are usually due mainly to the coil, are represented by the
resistance. The properties of this cireuit are, of course, completely
specified when the three element values are given. In particular, the
value of @ and the resonant frequency are known from the formulas of
Chapter 2. As noted there, the transient oscillations of the free
circuit have a frequency which is slightly different from that at which
the largest steady-state response occurs. Moreover, the value of Q
83
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may be thought of either in terms of the energy loss per cycle of the
free oscillation or the energy which must be supplied per cycle in the
steady state.

The latter viewpoint is the more profitable for our present purpose in
that it establishes on a general basis the desirability of a high Q.
Because a high Q resonator requires less driving power than a correspond-
ing low Q resonator, its frequency is less affected by a given fractional
change in the driving system. However, the frequency stability of a
given system is seldom appreciably improved by an improvement of
the resonator alone unless the driving system is readjusted to take
advantage of the decreased losses.

These ideas are interpreted in terms of Fig. 6.2, which was analyzed
in Chapter 4. Corresponding to prescribed values of L, R, and C,

Resonator

Driving system

]
I
|
|
|

Negative

L R : resistance
[
|

R c | l
) )— |
C 11 T
!
Fi1c. 6.1. Series resonance. Fic. 6.2. Negative resistance oscillator.

sustained oscillations will occur only if the negative resistance device,
which is inherently nonlinear, has an incremental negative resistance
larger than RB. The operating frequency differs somewhat from the
natural frequency of L and C because of intermodulation effects, and
therefore changes with variations of the nonlinear characteristics.

If the resonator @ is increased by reducing R without making any
other change, the frequency stability is not greatly improved and may
actually be degraded, because the relationship of the reactances to the
driving system is unchanged. If, however, the resonator @ isincreased
by increasing both of the reactances, leaving R unchanged, the fre-
quency stability is improved proportionally.

From the foregoing discussion we may draw this important con-
clusion: The essential properties of a resonator are its natural frequency
f, tts selectivity Q, and its characteristic impedance Z. The natural
frequency is the frequency which would result if the driving system
were nonreactive; the selectivity controls the extent to which the fre-
quency is affected by a given imperfection of the driving system;
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and the characteristic impedance determines the impedance level
which the driving system should have.

As shown in the preceding example, a reduction of the losses of a
given resonator ordinarily affects the impedance level as well as the Q
because the reactances tend to remain constant. Therefore, as
previously shown, it is ordinarily necessary either to modify the driving
system or to provide an impedance transformer in order to take
advantage of a loss reduction in a resonator. Failure to observe this
principle is responsible for many experimental observations in which
frequency stability is not improved by reduction of resonator losses. 136
The characteristic impedance of a resonator is its resistance at the
operating frequency. Series resonant systems usually have character-
istic impedances much lower than those of antiresonant systems.

At any one instant a given resonator has only the three properties
just enumerated. However, the engineering need is for frequencies
which remain constant over considerable intervals of time and in spite
of various disturbing influences. We must, therefore, determine the
extent to which such changes affect the natural frequency of resonators.

To a greater or lesser extent the natural frequency, as well as the
selectivity and impedance, of a given resonator is aifected by every
feature of its environment. However, the requirements on constancy
of frequency are so much more severe than those on selectivity and
impedance that a resonator which has satisfactory frequency stability
rarely fails to meet other stability requirements. Principal factors
affecting frequency are the ambient temperature, atmospheric pres-
sure, and relative humidity. Other factors include electric and mag-
netic fields, various forms of radiation, gravitational attraction, ampli-
tude of oscillation, and the passage of time. These several variables
affect different resonators in different ways and to different extents.
They are discussed.in the following paragraphs. It should be noted
that a high-Q resonator may be greatly affected by temperature or
other influences and that a low-Q resonator may be quite stable. That
is, the two properties are essentially independent.

6.2 The ideal resonator

In the previous section it was shown that the selectivity of a resonator
determines the ease with which it may be driven, and that the imped-
ance level must be suitably matched to the driving circuit for best
results, that is, best frequency stability. A high @ is therefore desir-
able in the interest of making the frequency insensitive to variations in
the driving system. To maintain constancy, the natural frequency
must not be affected by the passage of time or variations such as
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temperature and humidity. To ensure that operation will occur at
the natural frequency and that the response will be simple and sym-
metrical the resonator must have only one principal response in the
region of interest.

We may therefore conclude that the ideal resonator is characterized
by the following:

(1) A natural frequency which is appropriate.

(2) A value of @ approaching infinity.

(3) An impedance level suitable to available driving circuits.

(4) A natural frequency which does not change with time, tempera-
ture, or other uncontrolled variables.

(5) Freedom from additional resonances which would affect the
behavior at the desired frequency.

6.3 Thermal and secular effects

The ambient temperature affects the frequency of every known form
of resonator, but the extent of this influence varies enormously. In a
poorly constructed LC circuit the effect may be as large as forty parts
per million per degree centigrade,* whereas in a GT cut quartz crystal
operating in the region of 40°C the effect may well be some 10,000
times smaller.

The behavior of a more or less typical LC resonator is shown in
Fig. 6.3. It is seen that the frequency is not a single-valued funetion
of the temperature, but depends in a rather complicated way upon the
previous history as well. In fact, the frequency is ordinarily a fune-
tion of the present temperature, of all past temperatures, and the
present time rate of change of temperature. It is therefore difficult to
speak in precise terms about temperature stability.

However, it is possible to construet resonators in which these para-
sitic effects are quite small; and it is highly desirable to do so because
of the superior performance obtained. In such resonators the fre-
quency is, at least effectively, a single-valued function of temperature,
so that a definite slope or temperature coefficient exists at each tem-
perature. Such behavior, which is referred to as cyclie, is shown in
Fig. 6.4. In this case the frequency varies in a parabolic manner,
while its slope or coefficient varies linearly with the temperature 7.
Clearly it is absurd to speak of the temperature coefficient of this
resonator without also specifying the temperature in question. In the

* The abbreviation ppm will be used to represent parts per million, and all tem-
peratures will be given in degrees centigrade throughout this book, except in a
few cases where the corresponding absolute scale, °K, is more appropriate.



HUMIDITY AND OTHER EFFECTS 87

present case the behavior is correctly described by the equation

2
E%’(dﬂqji’) = % = constant. (6.1)

Because resonators rarely behave so simply, it is ordinarily necessary
to refer to the actual response curve when precise statements are to
be made. The measurement of such small frequency changes is diffi-
cult, but adequate methods have been developed.!®

Resonators which are insensitive to temperature are desirable be-
cause it is difficult to prevent temperature changes in operating appara-
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Fi16. 6.3 FiG. 6.4
Fig. 6.3. Variation of the frequency of an LC resonator with slow changes of
temperature.
Fie. 6.4. Temperature variation of the frequency of a BT cut quartz crystal
resonator.

tus. In spite of important advances in the construction of constant-
temperature ovens, they are still too bulky and expensive for use in
ordinary apparatus.

In most resonators the natural (and thus operating) frequency
changes with the passage of time, even if the temperature and other
conditions are maintained constant. This secular or time variation
is often referred to as aging or drift. It is present to a greater or lesser
extent in all known resonators, but may be held to a minimum by the
choice of materials which are inherently stable. Quartz, ceramics,
and most metals have good secular stability, whereas most plastics
do not.

6.4 Humidity and other effects

The conductivity, dielectric constant, and dielectric strength of air
are affected by its pressure and humidity. Therefore, the resonant
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frequency of air dielectric LC or cavity resonators is a function of these
variables. Moreover, the mechanical dimensions of coil forms and
condenser supports are often affected by humidity. Precise control of
frequeney is therefore possible only if suitable precautions are taken
in the construction of the elements. Vacuum impregnation and her-
metic sealing are two widely-used methods.

The dielectrie constant of dry air at 0°C and normal atmospheric
pressure is 1.000583. It varies with the density, composition, and
relative humidity.8¢ For dry air the dielectric constant e, is given by
the equation
0.00021P

T + 273 62)

€ = 1 +
where P is the pressure expressed in millimeters of mercury and T is
the temperature (°C). Humidity further affects the dielectric con-
stant, as shown in Table 6.1. Superposition may be used to combine
the effects of pressure, temperature, and humidity.

TABLE 6.1
ErrEcT oF HuMmIDITY AND TEMPERATURE UPON THE RELATIVE DIELECTRIC
CONSTANT OF AIR AT STANDARD PRESSURE
(¢ =1+ h X 1078 where & is the tabulated value)

Temp., Relative Humidity .
OC 6

0%| 10%|20% | 30% | 40%|50% |60% | 70% | 80% | 909 |100%
—40 [682/682 |682 |682 (682 [682 (682 |682. |682 |682 |682
—30 |655/655.1/655.2(655.2(655.3/655.4(655.5/655.6(655.6/655.7|655.8
—20 (629(629.2|629.5629.7|629.9/630.2/630.4,630.6/630.9/631.1/631.3
—10 |605(605.6/606.1|606.7|607.2(607.8|608.4/608.9|609.5/610 |610.6
0 [583|584.3)585.5|586.8|588.1|589.3|590.6/591.9(593.2|594.4|595.7
+10 (562|564.5|566.9(569.4(571.8/574.3|576.8/579.2|581.7|584.1/586.6
+20 |543|547.6|552.1|5656.6|561.1|565.6|570.2(574.7|579.2/585.8/588.3
+30 [525(532.9|540.9|548.8(556.8|564.7/572.7|580.6|588.6|596.5/604.5
+40 1508(521.4(534.8|548.2|561.6/575 |588.4/601.8/615.2/628.6/642
+50 |493|514.7(536.4/558.1(579.8|601.5|623.2|644.9|666.6/688.3/710
+60 [478/512 |546 |580 |614 |648 |682 |716 |750 (784 818
+70 |464|515.5/567.0|618.5/670 |(721.5/773 |824.5|876 (927.5979
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Composition is important principally because dry ice is sometimes
used in tests to produce the low temperatures required to simulate field
conditions. This procedure may lead to serious error in frequency,
because at normal atmospheric pressure and temperature the dielectric
constant increases approximately 375 ppm in a linear manner as dry
air is replaced by 100 per cent carbon dioxide.
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Humidity has an additional effect which may be both serious and
unsuspected. Films of moisture form on the surfaces of metals and
other materials under such conditions that no true condensation is
possible. Such films not only degrade the insulation resistance of
apparatus but also affect the equivalent spacing of an air condenser.
The variation is small, but can be significant in precise apparatus.

Cavity resonators are ordinarily filled with a dry gas, usually nitro-
gen, and completely sealed. They are then immune to the effects
of humidity. They are also insensitive to pressure if the walls are
sufficiently thick so as to avoid mechanical distortion. Coils and
condensers may also be sealed to good advantage, but it is frequently
sufficient to impregnate them under vacuum with a suitable highly-
fluid wax or plastic.

Sealing, or impregnation, is desirable not only because it stabilizes
the frequency but also because it increases and stabilizes the values of
Q and of voltage breakdown. Special precautions must be taken if
the apparatus is to operate under conditions of high humidity because
damage due to mold and corrosion is greatly accelerated.!?* 248 Spe-
cial precautions are also necessary to avoid arcing between terminals
in components which must operate at low pressure due to high altitude.

6.5 Properties of condensers

In a majority of oscillators the resonator consists of a combination
of coils and condensers. Because the reactive elements are very
different in econstruction and properties it is appropriate to discuss
them separately. Condensers are discussed first, because they are
substantially free from losses and are somewhat simpler in behavior.
Those who wish a general review of components are referred to Ter-
man’s Handbook,;**? and those who wish a more comprehensive treat-
ment of condensers should read the books by Brotherton?® or Coursey.56
It is assumed that the reader has a fair knowledge of the properties
and construction of typical components; and emphasis is placed upon
the performance of components applicable to the present problem.
For fixed condensers the silvered-mica construction is very desirable
because of its low temperature coefficient and good secular stability.
Blocks of high-grade ruby mica, ordinarily imported from India, are
first cut and split into thin sheets of suitable area and thickness.
These are then coated on both sides with a thin layer of metal, usually
silver, by vacuum evaporation or similar means. Several of these
sheets are stacked to build up the desired capacitance, and leads are
attached by soldering to the exposed area of the electrodes. Finally,
the assembly is packaged as a unit, ordinarily by surrounding the
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actual condenser with a body of high-grade thermosetting plastic.
This construction leads to a very low value of parasitic inductance.

Mica has high secular stability and an inherently low temperature
coefficient of capacitance. These desirable properties are preserved
in the present construction by applying the electrodes directly to the
material. In typical specimens the temperature coefficient of capaci-
tance®! is substantially constant at a value 420 ppm per °C over the
range —60 to +80°. The power factor is very low, of the order of
0.02 per cent. Silvered mica condensers are commercially available
in capacitances ranging from about 5 to 5000 uuf. The effects of
aging are so small as to be negligible in most applications.

Ordinary mica condensers are constructed of alternate layers of
mica and metal foil. Their stability is inferior to that of silvered-mica
units because the electrodes are not in such intimate contact with the
surfaces of the mica. However, they are entirely satisfactory in many
situations where the stability requirements are only moderate. Com-
pact units having capacitances in the range of 5 to 10,000 puf are
generally available, and larger capacitances can be procured. Mica
condensers of either construction have low losses and excellent d-c
insulation. In typical units the power factor is substantially less
than 0.1 per cent. Direct-current leakage is usually due principally to
currents over the surface of the plastic jacket. It is therefore com-
parable to other leakage currents and is almost always negligible.

TABLE 6.2
ErEcTRICAL PROPERTIES OF SOME SoLID DIELECTRICS AT 25°C
Power factor Temperature Volume
Material at One Me, € Coefficient, Conductivity,
% ppm/°C mhos/meter
Mica 0.015 6 +20 5 X 10718
Fused quartz 0.015 4.4 ... 2 X 10777
P100 12 +100
P30 16 +30
NPO 30 0 10-°
Group A ceramies | N30 31 —30
basedon  JNso [ 092 36 ~80 to
titanium N150 005 41 —150 10-14
dioxide N220 : 45 —220
N330 50 —330
N470 60 —470
\N750 85 -750
Titanium dioxide 0.05 85 —750

A variety of ceramic materials are now being used as dielectrics for
condensers. In general, ceramic bodies have good secular stability
and are not greatly affected by temperature, humidity, chemical
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attack, etc. However, the dielectric behavior of some of these
materials, notably barium titanate, is very complicated, so that we
must exercise some discrimination in choosing a ceramic capacitor.20s

Ceramic materials which include compounds of titanium have two
exceptional properties. The values of dielectric constant are far
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F1a. 6.5. Typical temperature coefficient curves for group A ceramic dielectrics
at a frequency of 1 Me.

higher than those of ordinary materials, and the temperature coefficient
is negative. Large values of the dielectric constant are desirable
because they lead to large capacitances in compact, light, noninductive
structures. Negative temperature coefficients are desirable because
they permit partial compensation of the positive coefficients, character-
istic of most coils.

The ceramic materials which are most useful in the present applica-
tion are prepared by mixing titanium dioxide with other more con-
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frequency. Average coefficient over the range +25 to +85°C is shown for nominal
0 and — 750 coefficient materials.

Fia. 6.8. Variation with temperature of power factor and insulation resistance
of typical ceramic condenser units.

ventional compounds. The principal characteristies of a number of
these ceramic materials, known to the trade as Group A, are presented
in Table 6.2. Values for mica and for fused quartz are included for
comparison. The principal characteristics of Group A ceramics,
which are ordinarily designated in terms of the nominal temperature
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coefficients, are presented in Figs. 6.5 to 6.8. In Fig. 6.6 the range of
variation indicated depends more upon process variations than upon
the nominal temperature coefficient of the material.

Ceramic materials based on titanium dioxide but having still larger
values of dielectric constant and negative temperature coefficients are
available under the trade designation Group B. They may be used
when a very large temperature compensating effect must be obtained
in & small capacitance, but they have inferior values of power factor
and of stability, and are generally undesirable for frequency control.

A number of ceramics known to the trade as Group C are based upon
barium titanate. They have values of dielectric constant in excess of

=
EACJ jl
B I
c =
—5 I

Fi6. 6.9. Construction of a 50 puf vacuum capacitor (simplified). Parts, which
are assembled by welding, are: A, evacuation tube; B, end cap; C, fernico end cup;
D, borosilicate glass body; and E, copper cylinders.

1000, but they are nonlinear and behave in a complicated manner with
respect to temperature and frequency. They should therefore be
avoided except for by-pass purposes.

Ceramic condensers are commonly manufactured in tubular or disk
form. The electrodes are ordinarily produced by application of a
metallic suspension which becomes integral with the dielectric when
the unit is again fired to a temperature which fuses the metal. Leads
are attached by soldering to the metallic electrodes, and the unit is
finished by application of a waterproof wax or plastic coating. Con-
densers based on Group A dielectrics are generally available in the
capacitance range of 1 to 1000 uuf. Capacitances up to about 0.03 uf
are commonly available in Group B and Group C materials, but are
subject to wide variations, as previously mentioned.

The technigques which permit the mass production of vacuum tubes
are employed in the production of the vacuum capacitor. Because the
dielectric is vacuum, these condensers are free from any inherent
dielectric instability. Such capacitance changes as do occeur result
entirely from dimensional changes of the supporting structure. A
temperature coefficient of +30 ppm per °C is typical of commercial
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units.’® However, it appears that much smaller or even negative
coefficients could be obtained by careful choice of materials and the use
of differential expansion effects. The construction of a typical vacuum
capacitor is shown in Fig. 6.9.

These capacitors have exceptionally low losses, typified by a power
factor of 0.01 per cent at one megacycle, and show good secular stabil-
ity. Atmospheric pressure and humidity affect only the exterior of
the condenser and therefore have extremely little effect. The gravest
faults of the construction shown are that the practical range of capaci-
tance is rather small, perhaps 10 to 100 ppf, and the size is somewhat
large.

Air dielectric condensers are also almost always variable, because
suitable fixed condensers are more easily constructed in other ways.
Variable air condensers have been the subject of extensive development
and have been brought to a high stage of perfection. A wide variety
of curves relating capacitance to rotor position may be obtained by
shaping the rotor plates, and in large units the maximum capacitances
may be as much as forty times the minimum. Maximum capacitances
ordinarily lie in the range of 5 to 1000 uuf. The power factor may be
made low, ordinarily less than 0.1 per cent, by the choice of suitable
dielectric materials to support the stator. And, finally, proper
design!® 310 leads to a temperature coefficient which is small for all
settings of the rotor. For these reasons adjustable frequency oscil-
lators are almost always tuned by means of variable condensers.

The actual design of stable variable condensers is quite complicated,
but the objective can be stated fairly simply. The shape and tem-
perature coefficients of all the members used in the mechanical assem-
bly should be such that there is no change of shape as a result of
unavoidable changes of dimensions with temperature. If this objec-
tive is met, the behavior will be cyclic, and the temperature coefficient
of capacitance will be equal to the coefficient of linear expansion, which
is fairly small. If this objective is not met, the relative shape and
spacing of the plates will change, and the capacitance variation with
temperature will be complicated and ordinarily considerably increased.
However, a very low or negative temperature coefficient may be
secured in a condenser which has an aluminum frame and stator, and a
rotor made partly from aluminum and partly from invar.288

The fact that a variable, or other, condenser is relatively stable
with respect to slow temperature variations does not guarantee that
it will be stable with respect to rapid temperature changes. The
unequal temperature distributions which inevitably accompany rapid
temperature changes are likely to produce differentials of expansion
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which warp the shape of the assembly and modify the capacitance.
This difficulty is alleviated by constructing the condenser so as to
have a good thermal conductivity and by insulating the entire assembly
from ambient changes. Both these steps tend to reduce the tempera-
ture gradients which can exist.

Contact to the rotor is ordinarily made by means of a wiping or
sliding spring. Unless the construction and the materials are carefully
chosen, this contaet will give trouble in the form of a high and variable
resistance. This difficulty may be prevented by means of an elastic
spring or pigtail, provided that the condenser is not capable of con-
tinuous rotation and that the appreciable and variable self-inductance
of the pigtail is tolerable.

Soldered, brazed, or welded contacts throughout are greatly favored
in the interest of long and reliable service. In addition, it is often
necessary or desirable to electroplate all surfaces so as to prevent
deterioration due to corrosion.

Paper condensers are not often used for frequency control. As
ordinarily constructed, they have relatively poor secular stability
and complicated and noneyelic behavior with respect to temperature.
In addition, the power factor is poor and varies with respect to tem-
perature and frequency. However, new materials and construction
techniques offer promise of at least alleviating these limitations.®
The performance of several types of paper condensers is shown in Fig.
6.10. The reason for avoiding these units, especially if low tempera-
tures are encountered, is evident from these curves.

The technique of depositing metal directly upon dielectric paper for
the construction of condensers has only recently been developed.*
Condensers made with metalized paper are remarkably compact and
light in terms of their capacitance and voltage rating; and they have
the virtue of being self-healing if punctured by a voltage surge. How-
ever, both the equivalent series resistance and the shunt leakage con-
ductance tend to be high; and it appears unlikely that these units will
be significantly better than other paper capacitors for frequency
control.

The remarkable advances in the field of plastics have led to the
possibility of construeting condensers with a plastic film as the dielec-
tric. The general construction is the same as that of paper condensers,
but the performance with respect to frequency and temperature is
markedly superior. Moreover, plastic materials are subject to excel-
lent manufacturing control, so that desirable results, when once

* Information on the properties of such paper is available from Smith Paper,
Inc., Lee, Mass.
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achieved, should be accurately reproducible. In combination with
silicone?® impregnants these materials offer considerable promise.

Available compact commercial units have temperature coefficients
of capacitance of +700 and —500 ppm per °C, capacitance values
ranging from about 50 to 10,000 uuf, and are useful up to 75°C. The
power factor is about 0.03 per cent, and the capacitance is substanti-
ally independent of frequency.

Condensers employing a thin film of glass for the dielectric have also
been developed in the last few years. They are known to stand quite
high voltages and to operate successfully at temperatures in excess of
300°C. It appears that they may have excellent secular and at least
fair thermal stability.

6.6 Properties of inductors

Inductors exist in a great variety of forms and sizes. However, only
a few types of construction lead to coils which are sufficiently stable
to be useful for frequency-control purposes.?'® Because the losses in
physical coils are nearly always large compared to those in condensers,
the @ of LC resonators depends almost entirely on the coil loss, and it
is customary to speak of the @ of a coil with the understanding that a
loss-free condenser is used. This somewhat loose practice is followed
here because it is convenient and almost universal.

The design of an inductance coil is a relatively complicated problem
because of the many factors which must be considered.?’> The desired
inductance must be obtained and must be stable with respect to time,
temperature, etc; the effective @ must be high and reasonably stable;
and the parasitic capacitance must not be too large. Finally, require-
ments on mutual inductance or coupling coefficient exist in many cases.

Very large inductances are required only for low-frequency applica-
tions. They are most readily obtained in multilayer coils of solid
wire wound on laminated iron cores. The construction differs from
that used in ordinary power transformers only in that the core material
and lamination thickness are chosen with unusual care, and that a
controlled air gap is ordinarily employed. The inductance depends
principally upon the number of turns, the effective permeability of
the core material, and upon the length of the air gap; variations of
the geometry of the winding have very little effect. The stability of a
given coil therefore depends mainly on the properties of the core and
the manner in which the air gap varies. It is necessary to limit both
direct and alternating currents through the coil; otherwise saturation
may greatly change the effective inductance. Moderately good
thermal and secular stability in inductance values ranging from 0.1
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to 1000 henries may be obtained. The useful frequency range is
about 20 to 20,000 cycles, and the @ value ranges from about 5 to 50.

At frequencies above a few kilocycles the eddy current losses in
laminated iron cores are so large as to be prohibitive. However, cores
made of finely divided iron powder or dust suspended in an insulating
binder are useful to much higher frequencies of the order of 50 Mec.
Ordinarily, the binder is some sort of plastic, and the mixture is molded
under high pressure to an appropriate geometrical form. The mag-
netic properties of the final core depend upon the size and composition
of the magnetic particles and the relative volume of iron and insulator.
Effective permeapbilities usually range from about 5 to 200.

Powdered-iron cores for use at frequencies upwards of one mega-
cycle are ordinarily made in the form of a circular cylinder. Although
the effective permeability is rarely in excess of ten, such cores are
useful because they contribute to the values of @ and coupling coef-
ficient which may be realized, and facilitate inductance adjust-
ment. An excellent discussion of the properties and measurement
of powdered-iron cores is given in papers by Foster and Newton,*® and
by Jaderholm.!55

At frequencies of the order of 50 ke the core is commonly made
toroidal, and the winding is uniformly distributed over its surface.
The flux is almost entirely confined to the core so that the inductance
is essentially independent of everything except the effective permeabil-
ity. Moreover, a very high coupling coefficient between separate
windings may be achieved; and undesired magnetic couplings to other
circuits may be made negligibly small. The temperature coefficient
may be made small and cyelic if the magnetic material is properly
processed. Direct current should be avoided if possible; and other
influences on the inductances are ordinarily negligible. Inductance
values ranging from about one millihenry to one henry and @ values in
the order of 150 are readily obtained in toroidal dust core coils.

Comparable results are achieved by interchanging the positions of
the iron and copper. A multiple-layer coil, often of the universal
form discussed in the following paragraph, is associated with a pair
of molded cores which are shaped so as to produce a closed path to
the magnetic flux. The principal advantage of this construction is
the relative ease with which the windings may be made and adjusted.

In the frequency range of about 10 k¢ to one Mec and for induct-
ances of about 100 uh to 100 mh the “universal” winding produces
compact coils satisfactory for many purposes. Selectivity values
as high as 250 are obtained, particularly when suitable powered-
iron cores are associated with coils carefully wound of litz wire.
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The construction is not particularly conducive to good thermal
or secular stability because the winding is self-supporting, and any
change in temperature or humidity is likely to change the size and
relative location of the various turns. However, the stability of
typical coils, particularly those which are impregnated with a good
wax or plastic, is quite good.!'® A relatively simple but fairly pre-
cise machine is required for producing this sort of winding, and the
setting of the various adjustments involves a considerable amount
of mathematics, 162 283

The single-layer solenoid is the most flexible and generally use-
ful form of coil in the frequency range of about 50 ke to 50 Mc. Pow-
dered-iron cores are often used to improve the @, especially in small
coils, or to provide a convenient means for adjusting the self-induct-
ance. Inductance adjustment may also be secured by means of con-
ducting cores, such as copper, which act as short-circuited secondaries.
However, it is best to avoid all such cores where good stability is
required.

The inductance of an air core solenoid depends only upon the num-
ber of turns and the geometry, because the permeability of air differs
from that of vacuum by only 25 parts in 10°. However, the geometry
of a physical coil is not readily subject to exact control. Moreover,
the self-inductance of a given structure varies with the resistivity of
the conductor and with frequency because of current redistribution
due to skin and proximity effects. Since the resistivity of most
materials changes rapidly with temperature, the inductance of a given
coil may, at a given frequency, be sensitive to temperature even
though no change of dimension oecurs. The problem, therefore, is to
design a coil in which the dimensions are independent of time, tem-
perature, and atmospheric conditions and the current distribution is
independent of temperature over the range of temperatures and fre-
quencies in question.

Self-supported coils are sometimes made by winding a metal rod
or tube in the form of a solenoid. One end is then rigidly supported,
and the connection to the other end is made by means of a flexible
lead such as copper braid. This construction results in reasonably
stable coils having relatively low losses, but is unsuitable where severe
vibration is encountered. The use of additional supports greatly
reduces the difficulties due to vibration, but introduces new difficulties
in controlling the temperature coefficients of the various members used.
If a single support is used and if the metal is carefully annealed by
repeated temperature cycles, the shape of the coil will not change with
change of temperature, and all the dimensions will change according
to the linear temperature coefficient of the metal. However, the
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temperature coefficient of inductance is still likely to be large. Such
coils are necessarily of low inductance and therefore useful only at
high frequencies, and at such frequencies the conductor thickness
required for mechanical stability is many times the skin depth.
Accordingly, the resistance change associated with a change of tem-
perature will cause an appreciable change of current distribution and
therefore of inductance.

That the self-inductance of a conductor is affected by skin effect,
which is in turn a function of conductivity, is readily shown in terms
of a coaxial structure. At very low frequencies the current flows
uniformly throughout the cross section of the conductors, whereas at
very high frequencies the current flow is confined to a shallow surface
layer. Over some range of intermediate frequencies the current
partially penetrates the conductors.’%® In this range the penetration,
and hence the inductance, is sensitive to both frequency and resistivity.
Because the resistivity of good conductors increases rapidly with
increase of temperature, the inductance also increases with tempera-
ture. The temperature coefficient of resistivity of copper is about
4000 ppm per °C, and the temperature coefficient of inductance due
to this cause alone may readily be as high as 100 ppm per °C.123. 302

A coil will possess cyclic behavior with respect to temperature only
if there is no relative motion between the conductor and its support.
The temperature coefficient will be low only if the dimensions are
substantially constant and if the current distribution is independent of
temperature. These several objectives are met in a coil made by
depositing a thin helix of silver on the surface of a fused-quartz rod or
tube. The thermal coefficient of linear expansion of fused quartz is
exceptionally low, approximately 14 ppm per °C. The quartz form
will control the dimensions of the finished coil because of the good
adherence which can be secured and because of the relatively large
volume of the quartz with respect to the silver. The film should be
very thin in comparison to the radius, but not appreciably thinner
than the skin depth of silver at the operating frequency. If the
metal has a thickness of 1.5 skin depths the current distribution will
be virtually independent of temperature and the value of @ will
be about 10 per cent higher than that obtained with a much thicker
conductor.33? 342

Excellent coils may also be made by depositing silver or other
metals on the surface of glass* or ceramic forms in eylindrical, toroidal,
or other shapes. High conductivity and good adherence in the

* Coils made by depositing silver on the surface of a tube of pyrex glass are

available on a commercial basis from the Corning Glass Works. See Bulletin
ES-100, Electronic Sales Department, Corning Glass Works, Corning, New York.
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metallic film, and good thermal and secular stability in the form are
desirable, but ridges or grooves of any sort in the form are to be avoided
because they promote nonuniform current distribution with consequent
loss of Q and thermal stability. The conductor should occupy the
largest practical fraction of the surface of the form.in the interest of a
high Q. One way of achieving this objective is to apply the metal
uniformly over the entire surface and then grind a fine helical cut to
produce the winding. However, the spacing between adjacent turns
must not be too small or the distributed capacitance is excessive.
The same general objectives are met in a coil produced by winding a
very thin ribbon of copper or silver under tension on an unglazed
ceramic form. With proper care this construction leads to a cyeclic
thermal behavior and good secular and thermal stability.

Variable inductances are rarely used in oscillators which must have
good frequency stability, because it is difficult to achieve the necessary
mechanical and electrical stability. They are occasionally useful
where requirements are not severe or as an ineremental adjustment.

An inductance ratio of about ten to one associated with a uniformly
high Q may be obtained by inserting a suitable powdered-iron core
into a long slender solenoid or “progressive universal wound”’ coil.
When such a coil is associated with a fixed capacity, the frequency
variation may be made almost linear with respect to the core position.
This arrangement has been used in both commercial and military
radio receivers and is capable of meeting fairly exacting requirements.
It appears to be most suitable at frequencies of a few megacyecles.
The arrangement has the advantage that there are no moving contacts
in the entire tuned cireuit.

The variometer construction, widely used in early radios, is still
occasionally used in variable-frequency oscillators. Relatively wide
frequency ranges can be covered, but the construction is inherently
expensive and presents serious problems of stability.

A useful continuously variable inductance may be obtained by
sliding a contact along the conductor of a single-layer solenoid (helix)
or a plane multiturn spiral. The entire coil is rotated about its axis,
while an auxiliary mechanism guides the contactor longitudinally or
radially so as to “track’” the conductor as it slides by. Contact
to one end of the coil is made by a suitable slip-ring or similar arrange-
ment, and the unused portion is ordinarily short-circuited to avoid
undesired coupled-circuit effects. This arrangement, which has
received considerable commercial development, has the advantages of a
long effective scale, typically more than ten complete rotations. The
distributed capacitance of the coil is small, and the ratio of maximum
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to minimum inductance is readily made larger than ten to one, by
the methods previously discussed. Moreover, in typical applications
the impedance level is lower than that in a condenser-tuned oscillator,
so that small capacitance changes inherent in vacuum tubes produce
considerably less frequency shift. The principal drawback arises
because the sliding contacts tend to give erratic performance, especially
after the unit is exposed to dust and oxidation.

Because it is difficult and expensive to produce coils which have low
or negative temperature coefficients of inductance, the use of negative-
coefficient condensers for compensation has received considerable
attention. Although simple in concept, the method presents serious
problems in application. No significant compensation is possible
unless the several elements are cyclic and have good secular stability.
Moreover, from a production viewpoint, the method is worthless unless
the characteristics of the several elements are reproducible within a
range which is considerably narrower than the individual coefficients,
and is less than the total performance tolerance. Finally, if the fre-
quency must be adjustable by tuning, the temperature coefficient of
the adjustable element must be independent of its setting. If, for
example, a coil having a temperature coefficient of 10 ppm per °C is to
be compensated and tuned by a variable condenser, the condenser
including any padding must have a coefficient of —10 ppm per °C at
all settings. This fact greatly restricts the usefulness of negative
coefficient fixed condensers for temperature compensation.8¢. 275. 202

6.7 The butterfly circuit

Several tuned circuits, exceptionally useful for ultrahigh frequencies,
have been devised by Karplus'®® and others of the General Radio
Company. They are commonly referred to as butterfly circuits,
because of the shape of the rotor, as shown in Fig. 6.11. An anti-
resonant impedance is developed between points 1 and 2 of this figure.
The structure may be thought of as two variable condensers in series
shunted by two single-turn inductors in parallel. However, the
equivalent inductance is not constant because the rotor serves as
a short-circuited secondary which reduces the inductance as it is
unmeshed to reduce the capacitance. The behavior of the unit of
Fig. 6.11 is shown in Table 6.3 and in the curves of Fig. 6.12. The
characteristic impedance is quite suitable for operation with typical
vacuum tubes and is remarkably constant.

Because of the symmetry of the strueture it is unnecessary to provide
contact to the rotor, so that no sliding contact is present. It is there-
fore possible to drive the rotor continuously at very high speeds for
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special frequency-modulation applications. Moreover, the paths of
current flow are such that no soldered, welded, or other contacts are
involved. The secular stability of frequency and of @ and the uni-
formity between units are therefore very good. The temperature
coefficient of frequency is comparable to the linear expansion of the

©

(a) () (c) (d)

F1a. 6.11. Components of butterfly circuit for 220-1100 Mc. The parts are,
respectively: (a) stator plate, (b) stator spacer, (¢) rotor plate, (d) rotor spacer.
Five rotor and six stator plates used. Drawn about half size.
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Fic. 6.12. Characteristics of butterfly circuit.

material, typically 420 ppm per °C for brass. By shaping the rotor
plates it is possible to control the variation of frequency with respect
to angle of rotation, much as in ordinary variable condensers.

A number of variations of the basic butterfly circuit have been
devised for various applications. Karplus describes several, including
coaxial structures well adapted to operate with disk-seal tubes of the
“lighthouse” variety. A somewhat different structure having the
same useful properties is due to Summerhayes.?’? Perhaps the most
important limitation of butterfly structures is a tendency to resonate
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TABLE 6.3
Benavior or A BurTerrLy CIrculT
Parameter Symbol Range Nature of Variation

Frequency I 200-1100 Me n?

Inductance L 0.011-0.0041 pgh n!
Capacitance C 48-5 upf n3
Selectivity Q 650-300 nt

Series resistance R =wL/Q 0.023-0.095 ohm n?

Ratio L/C 15.2-28.6 ohms n

Impedance Z =QL/C 9800-8600 ohms Constant

at unwanted frequencies which are not simply related to the principal
resonance. These undesired modes of resonance can ordinarily be
suppressed or avoided, and in any event they are present in almost all
forms of high-frequency resonators.

6.8 Transmission lines

Parallel-wire or coaxial transmission lines have been used as resonators
for a long time, and information concerning their properties is com-
monly available.?® This section will therefore be limited to a brief
discussion of their application to oscillators and a compilation of
formulas.

The parallel structure is inherently balanced, is convenient, and
gives good performance, especially at moderate frequencies. The
coaxial structure is inherently unbalanced and less convenient but
has superior mechanical stability and is preferable at the highest fre-
quencies because it is completely shielded. It therefore does not
couple to adjoining apparatus or lose energy by radiation.

The arrangement most widely used is a line a quarter wavelength
long at the frequency of interest, short-circuited at the far end. Near
this frequency the line approximates a high-@ antiresonant circuit.
However, a lumped antiresonant circuit has only one response, whereas
the transmission line also gives a comparable response at 3, 5, 7, ete.,
times the frequency of the lowest antiresonance. Occasionally these
higher order responses are used in oscillators; in which case special
precautions are necessary to ensure that oscillation occurs at the desired
rather than some other frequency.

Because circuits are commonly designed on the basis of lumped
circuits, the equivalent circuit of Fig. 6.13 is convenient.?®® In this
connection it may be noted that, subject to a fized inner radius of the
outer conductor, an air-filled coaxial line of a given conductivity has a
maximum value of @ for a diameter ratio of 3.592, corresponding to a
characteristic impedance of 76.64 ohms. However, with the same
outer conductor a substantially higher antiresonant impedance is
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obtained with a smaller inner conductor corresponding to a diameter
ratio of 9.185 and a characteristic impedance of 132.9 ohms. These
and other useful relationships are very clearly presented by Smith.28

Subject to fized center to center spacing D, parallel wire lines have a
maximum value of @ when each conductor has a diameter d which is

Zy, a, B, 0

R
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e 7 —>]

L = 81Zy/x% Zy = n \/L/2C

C =1/2Zw /v = v v/LC
if { R = Zo/al or { fl =x/2

wp = Py a = $/2Q

Q = B/2« Q = R/woL

Fia. 6.13. Equivalence between line and lumped ecircuit.

D/2, corresponding to a characteristic impedance of 158 ohms.3°® The
maximum antiresonant impedance occurs for d = D/4, corresponding
to a characteristic impedance of 347 ohms. In all the foregoing
developments it was assumed that the short circuit at the end has
negligible impedance. This is not true in all cases, and a suitable
correction is necessary, as shown in the following section.

Short  Position If, as is often the case, the anti-

circuit  of tap resonant impedance is larger than that
Line desired, the appropriate impedance

] transformation is readily obtained by
Relative connecting to the resonator at some

v=k sin fx  voltage intermediate length. The situation is

shown in Fig. 6.14 in terms of the free

Relative oscillation of a parallel wire line. If
, impedance  the Q is reasonably high, the voltage

z,=K sin? 3x . . . . .
distribution is accurately sinusoidal,

F16.6.14. Impedancetransforma- and the equivalent impedance trans-
tion obtained by means of a tap  fqrmgation is therefore deseribed by a
on & quarter-wave line. factor of the form (sine?). Impedance
transformations in excess of ten to one are readily obtained in this
way, usually with a marked improvement of frequency stability with
respect to the driving system. The same effect is readily obtained in a
coaxial structure by means of a hole or slot in the outer conductor.
Transmission lines may be made quite stable with respect to time
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and temperature. The thermal coefficient is equal to the linear
coefficient of the material unless some distortion of shape occurs as a
result of unequal expansion. With careful construction and choice
of materials it is possible to reduce the temperature coefficient to a
few parts per million per degree centigrade.

6.9 Cavity resonators

At frequencies in excess of about 100 Mec the unavoidable parasitic
inductances and capacitances of leads and terminals become com-
parable with those of the desired elements. Poor frequency stability
is ordinarily observed because the parasitic elements are not under
control, and radiation losses are sufficient to be troublesome. It
is clear that the radiation losses would vanish and that the other
difficulties would be greatly reduced if the resonant circuits were made
self-shielding. Cavity resonators which are inherently self-shielding
and have very creditable values of @ are logical for this application.
A particularly lucid account of the basic features of cavity resonators is
given by Pierce and Shepherd on page 622 of their article.?!!

Cavity resonators may be thought of as the logical development from
transmission lines. In fact, a half-wave coaxial line short-circuited at
both ends is an important form of cavity resonator. The coaxial half-
wave resonator is ordinarily long compared to its diameter and is
employed in its dominant or lowest-frequency mode of resonance,
which is the usual transverse electromagnetic mode in which the elec-
tric field is radial, and the magnetic field consists of circles concentric
with the conductors. The magnetic field is most intense at the ends
where the coaxial conductors are connected by disks, whereas the elec-
tric field is most intense halfway between. As in all resonators, the
total energy is nearly constant; therefore, the electric and magnetic
fields are in time quadrature.

The coaxial structure just described also resonates at three times the
frequency previously described as a #A line. And in addition to this
series of modes it is capable of resonating in many other modes, which
are not in simple harmonic relation to the dominant frequency. A
major problem of cavity design, therefore, is to obtain operation at
the desired frequency or mode and to avoid the effects of other resonant
modes. This subject already has an extensive literature and is far
too complicated for treatment here.?#¢ It should, however, be noted
that the problem of unwanted modes of oscillation arises in quartz
crystal units as well as in cavity resonators; and that similar although
less severe problems exist in connection with transmission lines,
butterfly circuits, and even complicated LC circuits.
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Where very large values of ¢ are required, particularly at frequencies
upwards of 3000 Me, the TE,; circular electric modes in hollow ¢ylin-
drical cavities are useful. These modes have the desirable property
that tuning may be achieved without the use of sliding contacts.
Moreover Kinzer'’? has shown that, at a specified frequency, a pre-
scribed high @ is obtained in the smallest possible volume by a TEy1,
mode in a right circular eylinder. This is of importance because he
has also shown that the total number of possible modes is approxi-
mately proportional to the volume; therefore, the problem of suppress-
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Fia. 6.15. Couplings to eavity resonators: (a) coaxial cable with probe coupled

to TM 10 mode in a hollow circular cavity; (b) coaxial cable with loop coupled to

TEM mode in coaxial cavity; (c) rectangular wave guide coupled to TEg11 mode

in circular cavity by round iris; and (d) rectangular wave guide coupled to TEg1
mode in circular cavity by slit iris.

ing or avoiding undesired modes of resonance is greatly simplified by a
reduction of volume.

Because the walls of a cavity provide complete shielding, it is neces-
sary to pierce the wall in one or more places to provide the necessary
couplings.!?” As indicated in Fig. 6.15, there are three principal means
for coupling to a cavity resonator. The probe may be thought of as
coupling to the electric field within the cavity, and is therefore most
suitable for use with modes which have a strong electric field per-
pendicular to the metal wall at some point. It is unsuited to TEgs
modes in which the electric field is paralled to all boundaries. The
loop may be thought of as coupling to the magnetic field and should
therefore lie in a plane perpendicular to it. Loops are suitable for
coupling to nearly all modes if properly located and oriented. The
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iris coupling also couples to the magnetic field at the wall of the
cavity and is suitable for use with wave guides at the higher microwave
frequencies. The slit iris is particularly desirable because it produces
a minimum disturbance of the cavity boundary. The slit should be
parallel to the magnetic field in both cavity and guide, and the coupling
depends almost entirely on the length of the slit.

6.10 Resonator theorems

A number of general theorems apply to the behavior of resonators.
Their presentation is logical at this point because they involve multiple
responses and other ideas which have been developed in the previous
sections. However, they apply to simple as well as complicated
systems and give considerable insight into a variety of situations.

The principle of similitude is a special case of the Buckingham® pi
theorem.’®® In the present context it states that all natural fre-
quencies of a resonator system are increased by a factor N if all the
dimensions are decreased by a factor N and vice versa. The applica-
tion to quartz crystals and cavity resonators is obvious. It applies
with equal validity to ordinary LC resonators, and since we can readily
show that the capacitance of a parallel-plate condenser of a given shape
is proportional to its linear dimensions we may conclude that the same
statement applies to all condensers and all coils. The principle is
very helpful in calculations of temperature coeflicients and in modify-
ing apparatus for operation at another frequency.

In the form given, the principle of similitude tells nothing about the
change of selectivity with dimensions. However, in cavity resonators
where the wall thickness is large compared to the skin depth, the
selectivity, @, of a given mode associated with a given metal varies
inversely with the square root of the frequency or directly with the
square root of the dimension. The same principle applies to single-
layer solenoids associated with high @ condensers, provided all the
coil loss is due to imperfect conductivity rather than dielectric losses.

Because the natural frequency of all types of resonators is dependent
upon the dimensions, we are concerned with the coefficient of thermal
expansion of various materials. Table 6.4 gives the expansion coef-
ficients of a number of selected materials. It is seen that large tem-
perature coefficients of frequency and noncyclic behavior will result
unless materials and design are chosen with considerable care.

A second theorem, related to Foster’s reactance theorem,'®! is that,
if losses are neglected,!®® 2°° the behavior of any resonator may be
represented in terms of any one of the equivalent circuits of Fig. 6.16.
In this connection it should be noted that an infinite number of ele-
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ments are required for the complete representation of distributed
systems such as cavity resonators.??

From a practical standpoint, the theorem just stated needs some
amendment. Analysis indicates that in a specified cavity resonator
each mode has a certain natural frequency and a certain value of Q.

TABLE 6.4

LiNEAR EXPANSION OF MISCELLANEOUS MATERIALS
(Parts per million per °C at 20°C)

Aluminum +23 Hard rubber +50 Polystyrene +70
Bakelite +50 Invar +0.9 Porcelain +4
Brass +19 Lucite +80 Pyrex +3
Catalin +20 Magnesium 425 Silver +19
Celluloid 4110 Mica +3 Solder +25
Copper +16 Monel +14 Steatite +8
Ebonite +84 Nickel +12 Steel +11
Fused quartz +40.5 Nylon +100 Tantalum +6.5
Glass +8 Platinum +9 Tungsten +4
Graphite +6 Polyethylene 4190 Vyecor +0.8

Moreover, in perfect rectangular, cylindrical, and spherical cavities
the modes are orthogonal in the sense that any one can exist in the
absence of the others. It is also known that the resonant frequencies
change in an orderly way as the dimensions are modified and that the
Q of each mode changes quite slowly with such tuning. We are there-
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Fi16. 6.16. Equivalent circuits for idealized resonators.

fore led to identify LC pairs of the equivalent network with particular
modes within the cavity. This useful idea requires some qualifica-
tion. In the first place, the relative impedance levels of the various
circuit branches depends upon the extent to which the given input
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device is coupled to the mode in question. Even more important, any
departure from the ideal geometrical shape introduces couplings
between the elements of the equivalent circuit.

An equivalent cireuit applicable to a physical loop-coupled cavity
is shown in Fig. 6.17. The couplings are represented as magnetic
fields within the cavity. They are ordinarily quite small and hence
are pegligible except where two modes have nearly identical fre-
quencies. Then, complicated coupled-circuit effects are observed,
and the effective Q of the system is likely to be seriously degraded.
The control or avoidance of these couplings is one of the major prob-
lems in designing cavity and quartz-crystal resonators. If a given
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Figc. 6.17. Equivalent circuit of a practical resonator. The condensers are
assumed to vary at different rates with respect to a common tuning control.

mode is not excited by the coupling device, it will be observed only
by its influence on other modes which have external coupling, when
the two are simultaneously resonant. This situation may be treated
by allowing the impedance level in the appropriate arm of Fig. 6.17 to
approach infinity or by representing the mode in question as an
isolated resonant loop magnetically coupled to the rest of the systems.

6.11 Piezoelectricity

It is well known that certain crystalline substances are piezoelectric,
that is, they change their dimensions when subjected to an electric
field, and conversely generate an electric field when subjected to
mechanical strain. The effect is distinet from electrostriction in that
the deformation is proportional to the applied field and reverses with
reversal of polarity. Piezoelectricity is of concern to us because it
offers an excellent means of electromechanical coupling whereby the
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mechanical resonance of a solid body may control the frequency of an
electrical oscillator.

Rochelle salt has a very large piezoelectric response and is widely
used in electromechanical transducers such as phonograph pickups.
However, crystalline quartz is the only piezoelectric material used to
any considerable extent for oscillator applications. This material,
which occurs rather commonly in nature, has a relatively large piezo-
electric coefficient, is little affected by ordinary chemicals, and has
excellent secular stability. The internal visocosity is very low, so
that mechanical vibrations have a high inherent Q, and the crystalline
structure is such that resonators having very low temperature coef-
ficients may be produced. This combination of desirable properties
is so exceptional that it appears quite unlikely that crystalline quartz
will ever be replaced for the precise control of frequency. However,
recent work?’ offers great promise that high-grade crystals may be
produced synthetically from low-grade quartz in such quantity that
importation from Brazil, the present principal source, may no longer
be necessary. Dr. W. G. Cady®? has contributed greatly to our under-
standing of the fundamental principles of piezoelectricity, and Dr.
Heising!®” and others of the Bell Telephone Laboratories have done
most of the work toward the practical application of crystal units for
frequency control. The subject is so extensive and specialized that
we can present only a few of the most important results. Papers by
Van Dyke,?? 326 Watanabe,®*® George,''® and others serve to indicate
the methods used and give typical numerical data.

6.12 General properties of crystal units

In the present connection, a crystal unit comprises a block of crystal-
line quartz supported between suitable electrodes so as to be usable in
an oscillator. Ordinarily, the quartz has the form of a thin rectangular
parallelopiped or circular disk, but long slender bars,'*? cylinders,
and even toroidal shapes have been used. The electrodes are usually
parallel metal plates close to or touching the faces of the quartz plate,
but in many units the metal is actually deposited on the surface of
the quartz by vacuum evaporation, cathode sputtering, or chemical
reaction. The quartz plate and its electrodes are supported in some
sort of holder which provides means for connection to the electrical
circuit and protects the crystal from mechanical damage. The
holder is usually hermetically sealed to exclude dust and moisture,
and is often evacuated as well, to reduce damping by acoustic absorp-
tion. Several typical electrode arrangements for crystal units are
shown in Fig. 6.18.
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When an alternating electrical voltage is applied to the terminals of a
crystal unit, an alternating electric field is created in the quartz
between the electrodes, and a corresponding displacement current
flows. Small alternating forces are set up in the volume of the quartz
as the result of these displacement currents, but no considerable
response occurs unless the electrical frequency corresponds very
closely to a frequency of mechanical resonance of the quartz plate.
In this event a considerable mechanical vibration occurs, and the
current observed in the external circuit is greatly affected. As we
might anticipate, the relative magnitude of this effect is greater if the
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Crystal
Bottom X
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Fic. 6.18. Methods of mounting erystal plates: (a) with air gap, (b) pressure
mounted; (¢) plated and wire mounted, and (d) plated and mounted at the edges.

electrodes are close to the crystal, if the crystal has a large piezoelectric
coupling factor, and if the mechanical vibration is not restrained. Itis
further observed that the piezoelectric coupling factor differs from
material to material and depends upon the angles at which the plate is
cut from the natural crystal. Imperfections in the crystal from which
the plate was cut may affect either or both the mechanical vibration
and the piezoelectric coupling.

From the discussion of Section 6.10 it is seen that the equivalent
circuit of a quartz crystal unit has the form of Fig. 6.19, in which the
heavy lines govern the behavior in the region of the desired response,
and the remaining branches describe other responses. In this con-
nection it should be noted that this equivalent circuit of the crystal
resonator was independently identified by Van Dyke3?* before the
general resonator theorems were derived. Ordinarily, the principal
mesh is sufficient for analysis of the operation of a crystal unit over
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the range of interest, and the remaining branches of the network are
ignored. The extra responses are present, however, and often affect
the measured response.

Natural quartz stones or crystals are rarely perfect throughout their
volume. It is therefore necessary to select the region of quartz as
well as the angles of cut in order to secure a satisfactory resonator. In
addition to ordinary cracks, quartz erystals are subject to inclusions
and twinnming. Inclusions usually are fine bubbles within the solid
volume of the material, and may be filled with a gas, liquid, solid, or
a mixture. They are avoided as far as possible because they introduce
mechanical damping, thereby degrading the @ of the finished resonator,
and because they tend to reduce the amplitude of vibration which may
be used without risk of fracture. Twinning is a local reversal of the
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Fi6. 6.19. Equivalent circuit of a quartz crystal unit.
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sign of the piezoelectric coupling and is due to a change of the inherent
crystal structure into its mirror image or a reversal of the entire crystal
orientation. Twinned plates are to be avoided because the piezoelec-
tric action of the separate regions tends to cancel, thus decreasing the
overall coupling, and because the temperature coefficient of frequency
is likely to be adversely affected.

The temperature coefficient of a quartz crystal unit depends upon
the proportions and orientation of the block and upon the mechanical
vibration employed. A great deal of work has gone into the study of
these factors and some remarkably stable units have resulted. The
secular stability of a quartz crystal depends greatly upon the methods
used in its fabrication. The usual grinding process leaves the sur-
faces covered with fine pits and seratches and in a state of stress similar
to that which is employed in cutting ordinary window glass. TUnless
this disoriented and partially dislodged surface material is removed
with extreme care it will gradually loosen and separate from the
finished unit, ordinarily raising the frequency. Mechanical scrubbing,
chemical etching, optical polishing, and baking?4* have been used to
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alleviate this effect, and it now constitutes a problem only in the most
exacting applications.

In the region of its principal mechanical resonance the impedance
of a quartz crystal varies in the manner shown roughly in Fig. 6.20.
It is seen that there are two frequencies at which the reactance is zero,
corresponding to unity power factor, and that the resistance is very
low at one and very high at the other. In a general way, the lower
frequency, at which the low impedance is observed, is referred to as
the series resonant frequency, and the higher frequency corresponding
to the high impedance is called the antiresonant frequency. In
practical oscillators the crystal is sometimes operated at or near the
series resonant frequency as in the Meacham oscillator. Ordinarily,
however, the crystal is in parallel with an external capacitance, called

+

Resonance§ Antiresonance X
f—>

Relative resistance or reactance

F16. 6.20. Impedance variation of 2 crystal unit.

the load capacitance, and the effective antiresonance of this combination
is employed. The antiresonant resistance developed is referred to as
the performance index, abbreviated PI. The equivalent circuit of
Fig. 6.19 is important because, in this limited frequency region, it has a
response which is closely equal to that of the actual crystal. Given
the equivalent circuit, it is always possible to calculate the response,
and vice versa.

6.13 Detailed properties of crystal units

From the application standpoint, a crystal unit is characterized by
its frequency, selectivity, impedance level, capacitance ratio, and
temperature coefficient. The following paragraphs discuss these
parameters for the designs now in common use. The fundamental
parameters are supplemented by auxiliary data, which are useful in
selecting a crystal for a particular practical application. It is to be
hoped that future developments will lead to still more desirable units.
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Figure 6.21 shows the orientation* of the more widely used crystal
resonator plates in terms of the natural axes of the parent crystal.
It must be remembered that there are three distinct pairs of X and ¥
axes, so that a desired orientation may be obtained in three different
ways from a given stone. It may be helpful to note that AT and CT
cuts are nearly parallel to one of the three pyramidal caps of a perfect
natural crystal. The precise angular measurements required to
obtain desired orientations are made by means of x-rays and polarized
light.
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Fi1G. 6.21. Orientation and motion of the principal crystal elements.

Although every cut is capable of vibrating in many different ways,
most of which have considerable piezoelectric coupling, desirable
temperature characteristics are obtained only when the vibration and
the cut are appropriately related. A crystal element consists of a plate
or bar cut in a prescribed way from the natural stone and vibrating
in a particular manner. Thus an 4 element consists of a plate having
the AT orientation} or cut and vibrating in thickness shear. The
dotted lines of Fig. 6.21 show the mechanical vibration used in the
more important crystal elements. The only vibrations of any practical

* The notation of Fig. 6.21 follows that of ““Standards on Piezoelectric Crys-
tals,” Proc. I.R.E., 37, 1378 (1949).

1 Similarly, the B element corresponds to the BT cut, etc.; however, the E and

F elements do not correspond to the little-used ET and FT cuts, which are approxi-
mately CT and DT plates operated on a mechanical overtone.
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utility which are not shown are the mechanical overtones of the thick-
ness shear mode, which are employed in some A and B type units.
Both even and odd overtones may exist, but only odd overtones have
appreciable piezoelectric coupling. These overtones bear nearly, but
not exactly, integral ratios to the fundamental frequency.

Although quartz is not isotropic, the dielectric constant is sub-
stantially independent of direction and equal to 4.54. Therefore, if
edge effects are neglected, the shunting capacitance of any fully plated
crystal unit is given by the formula

Co = 4.54¢gA/D farads or 0.4020w/t puf, (6.3)

where A is in square meters and D is in meters, while I, w, and ¢ are
in centimeters. The equivalent series capacitance is smaller than the
value above by the inherent capacitance ratio rq and is therefore given
by the equation

C1 = Co/To b 0402l’bl)/t7'0 m.mf. (6.4)

The resistance depends very greatly upon the mounting used and
other details of manufacture. Because @ values vary less with fre-
quency area, etc., than resistance values it is convenient to obtain the
resistance from the defining equation

Ry = owl/Q = 1/wC1Q. (6.5)

Like other components, crystals may be damaged by excessively
large values of current or voltage. In thickness-shear elements such
as A or B, the limit is usually set by overheating. In typical units it
is safe to dissipate continuously a power as great as 25 milliwatts,
although an appreciable frequency change due to the resulting tem-
perature rise may be observed. In other plates the limit is likely to be
set by fracture or by excessive change of frequency, presumably due to
nonlinearity in the mounting. For example, a typical 100-kc G type
element shows a frequency change of 10 ppm when the current reaches
a value of the order of one milliampere per centimeter of width, It
appears that the current per unit width is a useful criterion in all
extensional vibrations and may serve approximately for other modes;
and that densities in excess of a few milliamperes per centimeter are
to be avoided.

The effect of temperature upon the natural frequency of the various
crystal elements is shown in Fig. 6.22. The curves are idealized in
that they represent the response of a plate accurately cut from a sub-
stantially perfect block of quartz. Units achieved in quantity pro-
duction vary somewhat from these curves.
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In B, C, and D elements the temperature at which the temperature
coefficient becomes zero, called the turning point, may be varied over a
range of about 50°C by variation of the orientation angle.?® That is,
the curves may be shifted along the temperature scale without greatly
changing their shapes. In A and G elements, on the contrary, the
curve tends to rotate about the midpoint, without significant change of
the temperature range covered. Other elements behave in a manner
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Fia. 6.22. Temperature characteristics of typical erystal units.

similar to the B, C, and D, but the temperature range over which the
turning point may be adjusted is somewhat less. In elements of all
kinds the cost is greatly increased if the temperature characteristic and
nominal frequency must be controlled to very close limits.

The size of a practical crystal plate is limited by weight and avail-
ability on the upper side and by power dissipation, fragility, and
techniques on the lower side. Operation over a wide frequency range
is obtained by choosing the mode of vibration in addition to the dimen-
sions of the plate. Approximate frequency ranges over which various
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elements are applicable, together with other properties, are given in
Table 6.5.*

The symbols used in the orientation columns have a relatively
simple interpretation. The resonator is a rectangular parallelopiped
of thickness ¢, length I, and width w, respectively. The first two
letters in parentheses represent, in order, the natural axes of the quartz
crystal along which the thickness and length of the resonator lie before
rotation. The third letter in the parentheses represents the dimension
of the resonator which serves as axis for the first rotation. The
fourth letter, when present, indicates the dimension which serves as
axis for the second rotation. The angles which follow represent the
magnitude and direction of the rotation angles. It is seen that these
expressions are in agreement with Fig. 6.21.

The data of Table 6.5 are reasonably accurate except for the resist-
ance and PI values, which are correct only in order of magnitude.
Moreover, the temperature characteristics, capacitance ratios, and
frequency constants are subject to considerable variation due to
deliberate or accidental variations of orientation and relative dimen-
sions. However, the compilation does show orders of magnitude,
and contrasts the behavior of different units.

6.14 Magnetostriction resonators

The usefulness of quartz crystals as resonators stems from the fact
that quartz is piezoelectric.t Another important class of resonators is
based upon the property of magnetostriction.®** This property is
observed in a number of pure metals and alloys, notably those based
on nickel, as a dependence of the mechanical dimension upon the mag-
netic condition. In a typical magnetostriction resonator,?? applica-
tion of a longitudinal magnetic field results in a shortening of a rela-
tively long bar of the metal. However, the behavior depends greatly
upon the material and the relative orientation of the field. Moreover,
because the dimensional change is independent of the direction of the
applied field, a simple proportionality cannot exist between cause and
effect; and the dimensional change usually varies approximately as
the square of the field. This difficulty is ordinarily avoided by bias-
ing the material with a constant magnetic field which is substantially

* Substantially all the data for Table 6.5 and Figs. 6.21 and 6.22 was obtained
by the Bell Telephone Laboratories and is taken from the section prepared by Dr.
R. A. Sykes for the Prentice-Hall Handbook on Elecirical Communication.

t Electrostriction has not found application in resonators because the electro-
mechanical coupling is much inferior to that provided by piezoelectricity, and is
inadequate for most purposes.
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larger than the maximum value of the varying field. However, the
basic length, the natural frequency, and the electromechanical cou-
pling vary somewhat with variations of the biasing field.

Magnetostriction resonators have not been widely used, although
they possess certain advantages over quartz or other alternates,
especially at frequencies of a few kilocycles. This limited use is due
in part to the difficulty of procuring and mounting suitable rods and
in part to inherent difficulties associated with the smallness of the
electromechanical coupling,

The equivalent circuit of a magnetostriction resonator is shown in
Fig. 6.23. It differs from that of a quartz crystal in that the shunting
capacitance is replaced by an inductance and resistance in parallel.
These account for the reactance and losses of the winding in the absence
of vibration of the rod, whereas the high-Q branch, L;, B, and €, accounts

Support at node
L ]

F1e. 6.23. Magnetostriction resonator and equivalent circuit.

for the desired response due to mechanical vibration. The inductance
ratio Ly/Lq, together with the @ of the mechanical response, plays an
important part in determining the characteristics which may be
obtained. In available units this ratio is relatively high, in the order
of 5000. The @ of the mechanical resonance is approximately 10,000;
under these conditions we may show that the net reactance of the
system is never capacitive. A corresponding situation exists in
quartz crystals operated at a high mechanical overtone, and in both
cases the driving system must be carefully designed if the output
frequency is to be under adequate control of the mechanical vibration.
In magnetostriction resonators this difficulty is sometimes evaded by
using two coils so that the system acts as a highly seleetive four-ter-
minal network.

The frequency of a simple bar vibrating in the extensional mode
depends upon the length, density, and elastic constant of the materjal.
In ordinary materials these quantities vary with temperature to an
objectionable degree. However, Ide!s® has shown that an alloy of
8 per cent chromium, 37 per cent nickel, and 55 per cent iron has the
relatively excellent response indicated in Fig. 6.24.
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Recent work at the Armour Research Foundation has been directed
toward producing magnetostriction resonators useful at frequencies in
the order of a megacycle. Details of this work are not available, but
it appears to have met with a reasonable degree of success.
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Fia. 6.24. Temperature characteristic of a magnetostriction resonator using

extensional mode: (¢) alloy annealed and operated in a field of 13,500 ampere turns

per meter and (b) alloy quenched and operated in a field of 8100 ampere-turns
: per meter.

6.15 Tuning forks

The simple tuning fork has been used as a standard of frequency for
acoustics and music for a long time and has received extensive develop-
ment. It was, therefore, one of the first mechanical resonators to
be used with electric circuits. In the earliest work the fork was driven
magnetically by varying the current in an appropriate electromagnet
and executed its control by opening and closing an electric contact
in the driving circuit, as in an ordinary buzzer. This arrangement
was never very satisfactory because of contact troubles and the
mechanical loading due to the contact. Considerably better results
were obtained when the contact was replaced by a pressure-sensitive
resistance, similar to the ordinary carbon microphone. In fact, such
units are still used to some extent because of their simplicity, compact-
ness, and moderate power requirements.

Modern precise tuning fork resonators??? are mounted in vacuum to
avoid damping due to the air, are mechanically isolated from the
support in such a way that very little energy is lost in the mounting,
and are constructed of a material which leads to a very low tempera-
ture coefficient of frequency. A typical construction is shown in
Fig. 6.25. One tine is driven by the varying pull of an electromagnet,
while the other tine generates an alternating voltage in a second coil by
its motion in conjunction with a permanent magnetic field.!®* Thus
the unit acts as a four-terminal network in which the principal trans-
mission takes place through the mechanical motion of the fork. The
minimum loss is of the order of 40 db, but this presents no great
difficulty because adequate gain may be secured by means of a single
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vacuum tube with suitable transformers.?? However, there is some
difficulty with undesired oscillation because of direct magnetic coupling
through the fork and permanent magnet.

Tuning forks have been built for frequencies of about 100 to 10,000
cycles, and have a typical @ value of about 10,000. Temperature
stabilities of the order of 0.1 ppm per °C have been achieved in some
cases by careful choice of materials and construction, but a much larger
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Fie. 6.25. Typical precision tuning fork.
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coefficient is typical. The temperature characteristic of a good mod-
ern fork is shown in Fig. 6.26.

6.16 Molecular resonance

The resonators so far described are relative rather than absolute;
that is, the natural frequency depends upon dimensions or other
properties which are under control. An entirely different situation
exists with respect to atomic and molecular resonances.

It has been known for a long time that the optical frequencies (or
wavelengths) characteristic of various atoms are absolute, highly
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stable, and virtually independent of all known influences. However,
this knowledge was of little use to the oscillator art because of the
tremendous frequencies (order of 10'®) involved. Later it was dis-
covered that ammonia and a number of other gases show selective
absorption effects at frequencies of the order of 20,000 Mec. The
ammonia response at 23,870.127 + 0.003 Mec is particularly strong
and has been extensively studied at the Bureau of Standards and else-
where.11. 139 The sharpness of response corresponds to a selectivity
of about 100,000; and the central frequency appears to be absolutely
independent of everything except static electric and magnetic fields,
which are readily reduced to values producing negligible error.

The simplest device for making use of this effect is a section of
rectangular wave guide with inside dimensions approximately one-
half by one centimeter. The guide is fitted with air-tight mica windows
and filled with dry ammonia gas at a pressure of about 10™° atmos-
phere. Under these circumstances the unit acts as a band-rejection
wave filter having, per meter length, a fixed loss of about one decibel
and a variable loss increasing sharply by several additional decibels
at the ecritical frequency. Alternative arrangements employ wave
guides of enlarged cross section or cavity resonators in which the
intrinsic @ is low compared to 100,000.

The sharpness of the response is degraded if the gas pressure or the
electric field intensity becomes too high, presumably because of inter-
action between the molecules. Therefore, it is necessary to maintain
a low and fairly uniform pressure and to limit the signal applied.
Everything else being equal, it appears that the permissible power level
is directly proportional to the number of molecules, hence the gas
volume. Therefore, in cavity-type absorption resonators a large
rather than a small ratio of volume to inherent selectivity is desirable.

At the present time circuits for use with this form of resonator are
somewhat complicated and troublesome to maintain. However, the
method shows promise of providing a standard of frequeney, and time,
which is superior to anything yet developed.

A still more exact standard of frequency exists in the molecular
beam.'%® A beam of molecules of a suitable material is produced by
evaporation and is projected through an evacuated region where it is
subjected to alternating electric and magnetic fields. When the
frequency of these fields has a particular value, characteristic of the
molecule in question, the beam is strongly deflected. Exceptional
features of this arrangement are the sharpness of diserimination, which
corresponds to a @ of 107, and the fact that the critical frequency
depends solely upon the kind of molecules used. The molecular



PROBLEMS 125

beam, therefore, offers an absolute standard of frequency substantially
superior even to the molecular resonance. However, from the practi-
cal standpoint it seems even farther from use as a working standard of
frequency.

PROBLENMS

6.1. An antiresonant circuit has a capacitance of 1000 puf, a Q of 200, and a
natural frequency of one megacycele. What is its impedance level? What
properties must an associated driving system have?

6.2. In a cavity resonator operating at 30°C and standard pressure the humidity
changes from 20 to 70 per cent. Whatis the fractional change of natural frequency ?

6.3. In Prob. 6.2, half of the air (at 20 per cent humidity) is replaced by carbon
dioxide. What is the fractional change of natural frequency?

6.4. Prove that the temperature coeflicient of capacitance of a condenser is equal
to the linear coeflicient of its material if the shape is the same at all temperatures.

6.6. Repeat Prob. 6.4 for an inductance.

6.6. A coaxial conductor is made of copper. The center conductor has a
diameter of one centimeter and the outer tube has inner and outer diameters of
2 and 3 cm respectively. By suitable references determine the inductance per
meter at very low and very high frequencies and the frequency region where the
transition occurs (at 30°C).

6.7. A simple cavity resonator is made of brass. What is its temperature
coefficient of frequency? Explain.

6.8. Design a coaxial quarter-wave resonator in which the temperature coef-
ficient of frequency is canceled by differential expansion of aluminum and steel.

6.9. How might one distinguish hetween piezoelectricity and electrostriction:
between piezomagnetism and magnetostriction?

6.10. A quartz crystal has parameters, R; = 400 ohms, L; = 200 henpries,
C1 = 0.02 puf, and Cy = 7upf. What is its performance index (PI) with a load
capacitance of 30 puf?
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A great majority of the oscillators in practical use are nonlinear;
that is, the vacuum tube simultaneously serves as amplifier and limiter.
In such oscillators the current through the tube is far from sinusoidal,
although the voltage wave forms are often almost pure because of
the filtering action of tuned circuits. The use of the tube as limiter
is effective and economical ; and such oscillators adequately meet most
application requirements. However, where the highest order of fre-
quency and amplitude stability is required or where harmonics must
be avoided and reliable operation over long intervals is needed, the
linear oscillator is used.

Two principal classes of linear oscillators exist. In one, limiting is
accomplished by means of a thermaistor, that is, a thermally sensitive
resistor. In a thermistor-controlled oscillator the amplitude of oscilla-
tion may be made almost independent of the condition of the vacuum
tube and its bias voltages; however, it is necessarily dependent upon
the ambient temperature. In the second class are electronically con-
trolled oscillators in which the gain is varied as a function of amplitude
by an auxiliary device in such a way that no appreciable non-linearity
is produced. Certain multiple-grid tubes designed primarily for fre-
quency conversion have characteristics suitable for accomplishing this
end. In electronically controlled oscillators the amplitude depends
mainly upon some reference voltage.

7.1 Thermistors for oscillator use

Thermistors are elements in which the resistance is a function of tem-
perature but not of the instantaneous current. They are therefore well
suited for use as limiters in oscillators because, for any but the lowest
frequencies, thermal inertia prevents the temperature, and hence the
resistance, from changing appreciably during any one cycle of the oscilla-
tion. The resistance is therefore a function of the oscillation amplitude
but is linear from the standpoint of waveform distortion.

Two types of thermistors are commonly used in oscillator circuits.

126
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Cheapest and most generally available is the tungsten filament lamp.
The common feature of all tungsten lamps is that the resistance at
incandescence is about ten times as great as that at room temperature.
In oscillators it is undesirable to use this full range because of the
relatively high power required to produce incandescence and because of
the imited operating life which results. However, small filaments are
raised to a temperature of about 900°K (corresponding to a dull red)
by a power of only a few milliwatts. At this temperature the resist-
ance is about four times that at room temperature, and the life is
virtually unlimited.

7.2 Lamp characteristies

Tungsten filament lamps are manufactured in a great variety of
physical forms for operation throughout a wide range of voltages and
currents. For the present purposes, however, we need consider only
lamps of small physical size designed for relatively low voltages and
currents. The properties of interest are the resistance; its variation
with respect to the current, voltage, or power; and the thermal time
constant of the filament. The thermal time constant for a slender
filament rated at about 30 ma is of the order of 0.02 second. For a
somewhat heavier filament rated at 200 ma this increases to about
0.06 second.

Different points along the filament operate at quite different tem-
peratures because of unequal radiation losses and the cooling effect
of lead and support wires. For this reason the variation of overall
resistance, which may conveniently be expressed with respect to the
applied voltage, is relatively complicated. The variation of resistance
with applied voltage for representative lamps is shown in Fig. 7.1.
Voltage, rather than current or power, is chosen for the abscissa
because the lamp voltage is closely proportional to the output voltage
in a number of important thermistor-controlled oscillators. Log-
arithmic scales for both voltage and resistance are chosen to accommo-
date a wide range of variables and because fractional rather than
absolute changes are of interest. The principal axes of voltage and
resistance are supplemented by diagonals of power which are very
helpful in actual design. It is seen that a great impedance range is
available, and that a marked increase of resistance is obtainable with
relatively small power dissipation. An example of the use of these
curves follows in Section 7.5.

An important property of a thermistor is the sensitivity s defined*

* Our s is comparable to the parameter 5 used by Aigrain and Williams.* How-
ever, they refer the resistance to the current rather than the voltage.
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by the ratio
dr/r d(log r)
= = ) 7.1
= 4E/E " d(log B) 7.1
where E is the terminal voltage and r is the resistance. It is seen that
s is simply the slope when the curve is plotted to logarithmic scales.
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F1a. 7.1. Properties of tungsten lamps at 300°K.

Accordingly, attention is focused upon the steepest part of the curves
of Fig. 7.1. Fortunately, the slope is near its maximum value over a
wide region of low power input, so that long life is to be expected.

Two additional practical problems need to be considered, especially
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if quantity production is anticipated. Because lamps are manu-
factured in large numbers at small cost, there is a considerable varia-
tion between units; the circuit design must take account of this
resistance variation, which is typically about =+ 20 per cent for a given
voltage. Unfortunately, because the sensitivity s is only about one-
half for typical lamps the resistance variation may result in an output
voltage variation as great as 40 per cent; a variation of more than
two to one! When lamps are desigred for illumination, there is no
substantial contact problem, and the filament is often connected to
the lead-in wire by a simple hook-clamp joint. Although this arrange-
ment is satisfactory for lighting, it is likely to give trouble in an oscilla-
tor. In other lamps the filament is connected by spot welding or by
pressing it into the softer lead-in wire. Neither of these constructions
should give contact trouble. However, all lamps in which the filament
has additional supporting hooks are subject to slight instabilities
because the support wires short-circuit one or more of the tiny coils
of the filament.

7.3 Semiconducting thermistors

Materials whose conductivity is much less than that of typical
metals, but is much greater than that of good insulators, are called
semiconductors. Carbon, silicon, and germanium are familiar exam-
ples of semiconductors. The behavior of semiconductors is very
complicated and canpot be discussed here. It is sufficient to note
that the number of mobile charges or current carriers, and hence the
conductivity, is quite sensitive to the amount of impurity present, to
the temperature, and to other influences such as radiation. Most
semiconductors have high negative temperature coefficients of resist-
ance. The thermal variation of resistivity of a typical semiconducting
material is compared with that of tungsten in Fig. 7.2. This property
is employed in semiconducting thermistors. A

Thermistor units are manufactured for electrical application? in
two distinet classes. Simplest are the self-heated thermistors which
are simple two-terminal elements, comparable with lamps. More
complicated and versatile are the separately heated thermistors in
which the temperature may be controlled by heat generated in a coil of
resistance wire associated with the semiconductor. The latter
arrangement permits the control of very small signals by currents in an
entirely separate network, and is desirable in 2 number of situations.
Commercial units are quite small and resemble other circuit elements
in general appearance. The characteristic of a sensitive self-heated
thermistor designed for oscillator application is shown in Fig. 7.3.
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Its resistance variation is opposite to and much greater than that of
tungsten ; however, this advantage is considerably offset by the marked
effect of ambient temperature.

In a linear oscillator the gain is independent of the signal level,
and is ordinarily quite insensitive to the ambient temperature. There-
fore, equilibrium will demand a unique value of resistance and hence a
unique temperature of the thermistor. Because the heat loss from
the thermistor is a function of the ambient temperature, it is clear
that the power, and hence the oscillation amplitude required to main-
tain the equilibrium, also depends upon the ambient temperature.

270°K
7
107300 N
i ) \\
D350k \\
106| Ambient ~
105 2 |temperature N \
. _ S \ %
107 — Semiconductor 2’;105 \
[ =4
102 |- s 2
B
10° | ~—e & N
" \&2
10 - 104 \
. 7
10 '~ Tungsten %, <
107°- i
| | ! 108 | 4
0 200 400 600 1072 1072 107! 10° 10"
Temperature, absolute degrees ( °Ki Power, milliwatts

Fic. 7.2. Resistivity of a semicon- Fig. 7.3. Characteristics of a semicon-
ductor. ducting thermistor.

In thermistors which operate near 1000°K, the principal heat loss is
by radiation, which is little affected by the ambient. However, when
the operation temperature is near 400°K the heat loss is largely by
conduction, and is greatly affected by the ambient, as shown in Fig.
7.3. Unfortunately, semiconducting thermistors tend to drift in
value if subjected to excessive temperatures, so that it is difficult to
eliminate the temperature effect.

The undesirable effect of ambient temperature on the output of
thermistor-controlled oscillators may, however, be greatly reduced by
a balancing method. Ordinarily, the oscillator employs a bridge cir-
cuit in which the thermistor resistance substantially equals a fixed
resistance. If the fixed resistance is replaced by a suitable second
thermistor, then a first-order balance may be obtained over a con-
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siderable range of ambient temperature. The added thermistor must
have a power rating or heat exchange rate which is large compared to
that of the primary thermistor so that its resistance will be governed
solely by the ambient temperature and not by the oscillation ampli-
tude. If this added thermistor is to appear in an arm adjacent to the
primary thermistor—the usual case—it should have a thermal coef-
ficient of the same sign but smaller than that of the primary thermistor.
Becker et al.?” describe such arrangements in some detail.

The thermal time constant of semiconductive thermistors tends to be
somewhat longer than that of lamps. The unit of Fig. 7.3 has a time
constant of about 0.1 second, and is stated to be satisfactory for use
in oscillators at frequencies above about 100 cycles.

7.4 A thermistor bridge oscillator

The oscillator shown in Fig. 7.4 is capable of excellent performance in
that the output is nearly constant in amplitude and frequency and is
virtually free from harmonics. The system is particularly convenient

Turns ratio Turns ratio
N:1

Output

Tungsten filament
lamps

F16. 7.4. Lamp bridge oscillator.

for analytic purposes because the amplifier, limiter, and resonator
functions are performed by separate portions of the circuit and because
linear equations are adequate to describe the performance.

When the circuit is first energized, the lamp filaments are cold and
have a relatively low resistance so that the bridge circuit is far from
balance and has little loss. If the transformers are suitably wound and
connected a considerable loop gain exists, and oscillations build up at
the natural frequency of the resonator, that is, the tuned grid circuit.
The oscillatory currents heat the filaments, thereby increasing their
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resistance and bringing the bridge nearer to balance. This action
reduces the net loop gain, and decreases the rate at which the oscilla-
tions expand. Equilibrium is reached when the loss of the lamp bridge
equals the gain of the rest of the system. It is practical to adjust the
element values so that the equilibrium amplitude is considerably below
the overload point of the tube, which then operates in a conservative
class A condition.

The fact that limiting ean be achieved without distortion is due to
the thermal inertia of the lamp filaments. Although the temperature
(and hence the resistance) changes rapidly enough to maintain equilib-
rium, the temperature does not change appreciably during any one
cycle. Therefore, with respect to the oscillatory current, the lamp acts
like an adjustable linear resistor rather than a nonlinear resistor.

2I/N = 2 >
+ +

- ’,1 4 T

Fic. 7.5. Equivalent circuit.

In the most exact sense the foregoing statements are only approxi-
mate. For, no matter how high the frequency of oscillation and how
slow the thermal response of the lamp, there is necessarily some
variation of resistance during the cycle, and therefore some distortion
of the wave. If the frequency is in order of 100 ke, the variation is
extremely small and the distortion is less than that inherent in the
vacuum tube. At the lower audio frequencies, on the other hand, the
resistance of ordinary lamp filaments does vary appreciably over the
cycle, and significant distortion occurs.

To facilitate analysis of the lamp bridge oscillator, we assume that
the plate resistance of the tube is infinite; that the output transformer
is so tightly coupled as to be effectively ideal; that the input trans-
former has finite inductance but negligible loss and leakage; and that
the loop gain is so large that the bridge is nearly balanced. These
conditions are used to obtain Fig. 7.5 in which the transformer turns
ratios correspond to Fig. 7.4. The governing equations are linear and
relatively simple, in part because the tuned grid circuit is assumed to
have no losses. Because of the symmetry of the bridge the driving
current divides equally so that

Vs =I(R — 7). (7.2)



DESIGN PARAMETERS FOR BRIDGE OSCILLATOR 133

Since the plate current is given by
2I/N = gmnVs, (7.3)

the condition of sustained oscillation is obtained by eliminating I and
V3 to give
2 =gunNER —r) = gunNR(1 — r/R). (7.4)

7.5 Design parameters for bridge oscillator

The substitution of numerical values is frequently helpful in inter-
preting analytic results. Reasonable values for the present example
are ¢, = 2000 micromhos, B = 200 ohms, N = 20, and n = 40.
Substitution in eq. 7.4 yields

2 = 40 X 20 X 0.002 X 200(1 — r/R), (7.5)

which requires
r = 198.667 ohms. (7.6)

The Western Electric type Al Switchboard Lamp is suitable for this
application. As shown in Fig. 7.1, the resistance reaches 200 ohms at
a voltage of about 1.3 volts. In thisregion the curve is closely approxi-
mated by the empirical equation

r = 180E%4, ‘ .7

where E is the lamp voltage. The sensitivity, s, which corresponds to
the exponent is thus equal to 0.4. Substitution of eq. 7.6 into eq.
7.7 requires that

E = 1.27 volts. (7.8)

The remaining circuit voltages are readily seen to be Vy = 51, ¥V =
2.55, V3 = 0.008, and V2 = 0.32 volt, values which are consistent with
highly linear class A amplification. Under the assumptions made, the
frequency is identical with the natural frequency of the grid circuit.
In a practical circuit this condition is very closely approximated.

The operation of this circuit can be analyzed from another view-
point which offers certain advantages. The curve of Fig. 7.6 shows
the variation of the output V3 of the lamp bridge as a function of the
applied voltage V. The output first increases linearly with the input,
but decreases from this relation as the temperature of the lamps
increases. The output reaches a maximum, then decreases rapidly
toward zero as the input is further increased, passing through zero
and reversing in phase as the input is increased through that value
which balances the bridge.

Because the amplifier is linear, the voltages ¥V, and V3 are propor-
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tional to each other. This relationship is represented in Fig. 7.6 by
the dot-dash line which has a slope equal to the reciprocal of the volt-
age amplification. The condition of sustained oscillation corresponds
to the intersection of the dot-dash line with the characteristic curve
of the lamp bridge. This construction shows clearly that a large
change in the amplifier gain, corresponding to a large change in the
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F1c. 7.6. Loss characteristics of a lamp bridge.

slope of the dot-dash line, will produce only a small fractional change
in the output voltage V,. That is, the system has a large value of
amplitude stability.

7.6 Amplitude stability of bridge oscillator

The preceding discussion of the bridge oscillator has shown, in a general
way, that a large change in the tube transconductance produces only a
small change in the output voltage, V. This general idea can be
reduced to a quantitative relationship by the following mathematical
process. We begin by noting from Fig. 7.5 that the lamp voltage, E, is
related to the amplifier output voltage Vo by the simple expression

E = Vo/(R + 7). (7.9)

If we multiply eq. 7.9 by (B + r) and take differentials, considering E,
Vo, and r as variables, we obtain

R+ 7rdE + Edr = Vydr + rdV,. (7.10)

Division by eq. 7.9 and use of the fact that the bridge is almost bal-
anced so that r and R are nearly equal yield

dE/E - -i-dr/r = dV()/Vo. (711)

The loop gain eq. 7.4 is now differentiated with respect to g and r to
obtain

gmdr = (R — r)dgm or dr/r = (R/r — 1) dgm/gm- (7.12)
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Combining eq. 7.1 with eq. 7.11 and 7.12 yields
(/s — %) (B/r — 1) dgm/gm = dVo/Vo. (7.13)

The amplitude stability with respect to transconductance is defined in
Chapter 1 as

dgm/9m
= .14
Sa aVo/Ve (7.14)

Using eq. 7.4 to eliminate r from eq. 7.13 permits rewriting the ampli-
tude stability as

2s 'R — 2/nNgm s
2—s  2/aNgm  2-—

Sy = 3 (nNgnR — 2). (7.15)
Tt is clear that the amplitude stability approaches zero as the product
nNRg,, decreases toward two (the threshold of oscillation) and that it
approaches intnity as s approaches two. We see by substituting
numbers from the previous example, where the lamp sensitivity s
was 0.4, that S, may become quite high in practical cases,

0.4
Ss = 16 (40 X 20 X 0.002 X 200 — 2) = 79.5. (7.16)

That is, a 0.795-db change in transconductance would result in only
0.01-db change of output.

7.7 A linear tuned plate oscillator

A simple linear oscillator which has several interesting features is
shown in Fig. 7.7. It differs from the conventional tuned plate triode
oscillator in that the grid bias is produced in the cathode rather than
the grid circuit, and by the addition of the lamp and inductance Lj.*
The lamp serves to stabilize the amplitude by reducing the Q and
impedance of the tuned circuit as the amplitude of oscillation increases.
The compensating inductance Lj; serves to make the operating fre-
quency independent of the lamp resistance, as shown in eq. 7.24
below. The cathode resistor, when adequately by-passed, provides a
bias suitable for class A operation. Tests show that the amplitude and
frequency stability are good and that the output is substantially free
from harmonics.

* Except for the addition of the lamp, this circuit is identical with that of
Mallett.2t The operation, however, is quite different, because the addition of
L3zmay actually degrade frequency stability when strong harmonies are present.



136 LINEAR OSCILLATORS

The conditions for oscillation are determined by reference to Fig.
7.8. Because there is no grid current, we may write.

V = joMI, (7.17)
Vo = Li(R1 + jwLy), - (7.18)
I, = jw01V0, (719)
and
(rp + JeLs) 1 + 1) = (uV — Vo). (7.20)

Elimination of the current and voltage variables yields

Tp + ij3 + jw?‘pC1R1 —_ w2L3C'1R1 — wQLlClrp
- jw3L1L301 = joMuy — By — joLi. (7.21)

The real terms must form a separate equation

Ry 4 rp = o’ (LsCiRy + LiCiryp), (7.22)
which becomes independent of R, and reduces to
1/w® = LyCy (7.23)
provided
L, = Ls. ' (7.24)

The equation based on the imaginary terms of eq. 7.21 becomes
with egs. 7.23 and 7.24
p = (L1 + r,C1R1) /M. (7.25)

It defines the gain and resistance conditions which must be met for
oscillations to exist.

F16.7.7. Tuned plate oscil- Fic. 7.8. Equivalent circuit.
lator.

Suppose that a frequency of one megacyecle is to be produced, using
the familiar 6J5 triode with r, = 7500 and p = 20. A suitable lamp
is the type 48 (or 49) switchboard lamp having characteristics shown
in Fig. 7.1.  As a reasonable compromise between sensitivity, freedom
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from ambient temperature effects, and the limited power available
from a small tube let us operate the lamp at a resistance of 10 ohms, a
voltage of 0.25 volt, and a current of 25 ma. It is appropriate to
allow about 10 ohms additional resistance for the coil losses so that
Ry = 20 ohms. The reasonable assumption that the plate coil has an
inherent @ of 100, together with a resistance of 10 ohms at a frequency
of one megacycle, fixes the value of inductance by the relation

27 X 10°L; = 10 X 100 henries (7.26)
50
L, = L3 = 159 uh. (7.27)
Using eq. 7.23, we find
Cy = 159 upuf. (7.28)
Then, from eq. 7.25,
M = 9.15 ph. (7.29)

Because the lamp resistance is 10 ohms only when the rms lamp current
is 25 ma, the rms grid voltage is by eqs. 7.17 and 7.29,

V = 1.44 volts rms. (7.30)

The corresponding plate voltage is closely equal to the voltage across
L;, which by eq. 7.18 is

Vo = 25 volts rms. (7.31)

A plate supply of 150 volts with a grid bias of 4 volts, which leads to
an average current of 6 ma and calls for a self-bias resistor of 666
ohms, is appropriate. The direct current is small enough so that it
does not contribute appreciably to heating the lamp. It is seen that
all the element values are entirely reasonable in magnitude, and that
the voltages are consistent with linear operating conditions.

In practice, there are a number of distributed capacitances which
were not included in the analysis. Moreover, the dielectric losses of
the coil are not effectively in series with the lamp. For these reasons
it is usually necessary to adjust L; experimentally to a value somewhat
smaller than L; for best frequency stability.

Although slightly more complicated, the oscillator of Fig. 7.4 is
superior to that of Fig. 7.7 in several respects. First, it is much less
critical with respect to the values of the elements, because the rela-
tively large loss normally designed into the bridge will accommodate
considerable variations of transconductance and transformer perform-
ance. For the same reason, the amplitude of the output is more nearly
constant. Finally, the frequency of the bridge oscillator is inherently
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independent of the lamp resistance, so that no frequency stabilizing
reactor is necessary.

7.8 Amplitude stability of tuned plate oscillator

The amplitude stability of the linear tuned plate oscillator is readily
determined by methods already established. Since in practice the
amplification factor of a triode is much more constant than the plate
resistance, it is appropriate to differentiate eq. 7.25, regarding only
rp and B; as variables. If the notation of Fig. 7.8 is used, the resulting
equation is

drp/rp + dR1/Ry = 0. (7.32)

The resistance R; represents the sum of the lamp resistance, which
may be designated r, and the coil resistance, which may be represented
by the constant k. With this substitution and use of eq. 7.1 we obtain

drp/rp = —dr/Ry = —(sr/R1)(dv/v), (7.33)
where v represents the lamp voltage itself, and is given by -
v = Ir. (7.34)

Differentiation of this expression leads to
dv/v = dIl/I, + dr/r. (7.35)

Because large values of  are commonly used, the output voltage, V,
is almost proportional to 7, so differentiation of eq. 7.18 leads (with
only a very small error) to

dVo/Vo = dl /1,. (7.36)
The overall amplitude stability now becomes

S, = drp/7p _ —srdv/v _ —sr . (2.37)
dVe/Ve Ri(dv/v —dr/r) (1 —s)(r + k)

Substituting in this equation the values r = & = 10 used in the exam-
ple in the preceding section and the sensitivity s = 0.7 corresponding
to the selected operating point in Fig. 7.1, we have for the amplitude
stability the relatively low value of 1.15. The negative sign arises
from the fact that an increase in output is associated with a decrease of
the plate resistance.

7.9 The Wien bridge oscillator

A circuit which has proved exceptionally convenient for variable fre-
quency oscillators in the audio range?s is shown in Fig. 7.9. It is a
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linear, thermistor-controlled oscillator, which has excellent amplitude
control. Although many variations are practical and are some-
times used,!®* the arrangement shown is ordinarily regarded as most
advantageous.

The key feature of this oscillator is the slightly modified Wien
bridge which serves as both limiter and equivalent resonator. It is
well known that such a bridge is balanced, provided

Ry = 1/wCy, (7.38)
and
Ry = 2r. (7.39)

Oscillation occurs at a frequency such that eq. 7.38 is satisfied to an
accuracy limited only by the presence of unavoidable phase shifts in

Output

Fic. 7.9. Wien bridge oscillator.

other parts of the circuit. The equilibrium amplitude is such as to
heat the lamp nearly, but not quite, to a resistance consistent with
eq. 7.39. In practice, R, is usually large compared to Rs, so as to
obtain audio frequencies with practical values of capacitance.

The Wien bridge may be connected in several ways, of which only
_one yields suitable oscillations under any particular set of conditions.
It is therefore necessary to examine the system behavior with some
care.8 The essential facts are presented in a Nyquist diagram
“determined from the following equations, based on the equivalent
circuit of Fig. 7.10:

Vs =V, — Vy, (7.40)
V1(T + RQ) = Vg?‘, (74:1)

and
Ry/(1 4 jwCiRy)

V,=V : .
’ "Ri/(1 + joCiRy) + mRy + 1/jenC,

(7.42)
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or
Vo/V2 =1 + m + jmelRl + l/n + l/jcmCIRl. (74:3)

Elimination of V; and V. yields

1 1
1+ m~+ 1/n+ jemCiRy+ 1/jenCiRy 1 + Ra/r

V3/Vo = s (7.44)

which may be put in the symbolic form

1
Vi/Vo = m — d. (7.45)

This equation is in the form of a ratio of phasor voltages and therefore
determines a Nyquist diagram. The denominator of the first term
corresponds to a straight vertical line in the complex plane. There-

Fig. 7.10. Generalized Wien bridge.

fore, the complete expression 7.45 represents a circle of diameter 1/a
displaced from the origin by the distance d. Two cases, one for d
small, the other for d large, are shown in Fig. 7.11. In both ecases,
increasing frequency corresponds to clockwise rotation. Because m
and n are inherently positive, the constant a always exceeds one, and
the circle diameter is less than one. Therefore, from eq. 7.45 the circle
will cross the axis to the right of the origin only if the ratio R/ is of
the order of one. In particular, an increase in r also increases d and
shifts the entire diagram to the left. Since a shift to the left corre-
sponds to a reduction of loop gain, a thermistor having a positive tem-
perature coeffictent of resistance must be used as r, to secure proper
limiting action (that is, reduction of loop gain with increase of ampli-
tude). Alternatively, a negative coefficient thermistor may be used
in the R, position if » is replaced by a fixed resistor.

The two vacuum tubes produce no net phase reversal and thus serve
only to magnify Fig. 7.11 without changing its shape or frequency seale.
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Accordingly, with appropriate scale change, this constitutes a universal
Nyquist plot for the system. Stable oscillations are anticipated if r
is a positive-coefficient thermistor. The diagram readily encircles the
point (1, 0) for small amplitudes, but with increase of amplitude the
diagram is displaced to the left so as to pass through the point (1, 0).
This behavior is in interesting contrast to that of the oscillator of Fig.
7.4, whose Nyquist diagram shrinks radially as the limiter takes effect.
Inspection of eq. 7.45 shows that each point on the circle of Fig. 7.11
corresponds to a specific frequency and vice versa. When d is nearly
equal to 1/a, therefore, a relatively small change in frequency results
in a large loop phase shift. This property is common to all bridge
circuits which are nearly balanced and are sensitive to frequency. It

w increasing

F1c. 7.11. Nyquist diagrams.

is desirable in oscillators because unavoidable phase shifts in the
amplifier (driver) unit are automatically corrected by a slight change
of frequency.

A bridge composed of fixed linear elements also has this desirable
property of phase magnification. However, it is impractical to achieve
the desired accuracy of balance because of changes of element values
with respect to age, temperature, etc. Moreover, a separate limiter
would be required in any event. Therefore, the use of a thermistor as
one arm of the frequency-controlling bridge must be regarded as a
necessity in any practical bridge oscillator.

Ordinarily, the tube adjacent to the bridge in Fig. 7.9 is adjusted for
large linear voltage amplification of a small signal. Care must be
taken to see that the total direct cathode current does not contribute
too much heat to the thermistor, which is commonly a 3-watt, 120-volt
tungsten-filament lamp. The other tube is designed as a linear power
amplifier. However, it must operate into a relatively low impedance
and must produce a sufficiently large alternating current to heat the
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thermistor. The cathode by-pass condenser must be omitted from
the voltage amplifier in order to preserve the desired bridge operation;
and it is commonly omitted from the power amplifier to avoid difficulty
with phase shifts at the lower frequencies. The time constant of the
coupling circuit C3R3 (of Fig. 7.9) can be made sufficient to avoid low-
frequency phase shift without serious difficulty. However, because
r and R, have a resistance of only a few thousand ohmes, it is necessary
to use for C; a relatively large capacitance (such as 40 uf) to avoid
excessive phase shift at low frequencies. An additional problem is
to secure suitable operating conditions in the power amplifier without
reducing R, so far that it produces a serious effective shunt across the
bridge. This problem is alleviated, at the expense of the coupling
problem, by lowering the bridge impedance. A considerable advan-
tage is secured by setting n = 2 and m = 14 in Fig. 7.10, in which case
balance occurs for By = 7.

Finally, it is possible to interchange the reactive arms of the Wien
bridge. This arrangement can be used in the oscillator of Fig. 7.9,
provided the cathode and grid leads are reversed to account for the
reversal of phase and if r is a negative-coefficient thermistor. In
practice, the connection of the cathode into the reactive arm of the
bridge leads to intolerable difficulties with d-¢ conditions in the first
tube, and is never used.

A number of other linear resistance capacitance oscillators exis
However, they possess few features not already discussed, and are
omitted here.

1 282

7.10 The Meacham bridge oscillator

The circuit which produces oscillations of the greatest frequency stabil-
ity yet recorded is due to L. A. Meacham ;2% it is used in the frequency
standards of the Bell System, the National Bureau of Standards, and
the British Post Office. The essential features of the circuit are shown
in Fig. 7.12. A tuned amplifier provides a relatively high gain at
zero phase shift. The bridge, which is the heart of the circuit, provides
the combined functions of limiter and resonator. As will presently be
shown, the balancing action of the bridge tends to increase the effective
@ of the series resonant circuit by magnifying the phase shift produced
as a result of any frequency deviation. Consequently, a considerable
phase shift in the driving system produces only a very small shift in
the operating frequency. This action is also present in the Wien
bridge oscillator just described, but the stability of available RC ele-
ments is so poor that it offers little advantage in the Wien circuit.
The operation of the Meacham circuit is conveniently explained in
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terms of the series resonant circuit shown, although, in practice, the
latter is usually replaced by a quartz crystal.

The inherently low harmonic output produced by the tube is further
reduced by the action of the tuned input and output transformers.
The thermistor produces limiting with negligible barmonic distortion
because the circuit is ordinarily used only at frequencies above the
audible, where the resistance is unable to vary appreciably during any
one cycle. In the circuit described in Meacham’s original paper
the second and third harmonics were respectively 67 and 80 db below
the fundamental. Because three of its arms are pure resistors, the
bridge can approach balance only at the series-resonant frequency,

= I

Fi1c. 7.12. The Meacham bridge-stabilized oscillator.

where the reactance of the fourth arm vanishes. Under balanced
conditions the bridge is purely resistive.

During oscillation, the amplitude must adjust itself so that the loss
of the bridge is equal to the gain of the amplifier. Also, the frequency
of oscillation must adjust itself so that the phase shift of the bridge is
equal and opposite to that of the amplifier, which is adjusted by means
of input, output, and interstage networks to have as small a phase
shift as possible. With the simplifying assumptions that the amplifier
input impedance is large compared to the bridge resistances and that
no phase shifts exist, it is possible to describe the system by means of
relatively simple equations:

VQ = LLV5 (746)
and
Rs R
Vy=V [ - ] 747
=V | @it R Bt E) (7.47)

where u is the effective voltage gain of the amplifier.
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Because the bridge is operated at a condition very near balance, it is
convenient to express the situation in terms of 8, the degree of unbal-
anee, defined by
R 2R 3

e

Introducing & (which equals zero when the bridge is balanced) into
eq. 7.47 and then using eq. 7.46, we obtain

Ri= (1 — &) (7.48)

- [ R R ]
—F 1—-8R;+R R3y+ R

1 1
= uB [R +R;— Ry R+ Ra]' (7.49)

Because & is very small we may write to an adequate approximation

1
—— =143 7.
= + (7.50)
Use of this approximation in a slightly modified form converts eq. 7.49
to

R e R S )
If an equal-arm bridge is used,
R; = R. (7.52)
For this relationship eq. 7.51 requires that
b = 4. (7.53)

The equal-arm condition is desirable because, consistent with a pre-
scribed value of p, it leads to maximum amplitude and frequency
stability. If the equality of eq. 7.52 is not achieved, an increase of
the product ué is required for oscillation. Thus, when

R3; = 4R or R/4, (7.54)
the required unbalance is increased to
ué = 6.25. (7.55)

In a typical example p = 400 and B3 = R;then § = 0.01, and oscil-
lation occurs when R, is only one per cent below the value which pro-
duces exact balance. Where the absolute maximum in performance
must be achieved, the amplifier unit may consist of two or even three
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tubes in conjunction with transformers and interstage elements,
carefully adjusted with respect to the overall gain and phase-shift
characteristics. Ordinarily, however, a single tube in conjunction
with tightly coupled, high impedance input and output transformers is
sufficient. Suitable transformers for frequencies in the region of
100 ke usually employ toroidal cores of powdered iron. Accordingly,
the design of the bridge represents the chief problem. Several
questions as to the proportioning of the bridge are discussed in the
following section.

7.11 Design of the Meacham bridge

The principal requirements which govern the design of the bridge
circuit are these. (1) A maximum possible rate of change of phase

+ —

Vi

- _ Bridge
_ 2 output
vV,

¥ J+

Fre. 7.13. Bridge circuit.

shift with respect to frequency is desired to minimize the change of
frequency which results from a change of amplifier phase. (2) In
terms of ratios, a maximum change of bridge loss for a small specified
change of thermistor resistance is desired to minimize the change of
output which results from a change of amplifier gain. (3) A certain
maximum amount of current or power is safely allowable in the resona-
tor, especially when a quartz crystal is used. (4) A certain minimum
amount of power or current is required to operate the lamp thermistor.

The phase magnification will be ealculated first in terms of the bridge
circuit of Fig. 7.13 and the associated phasor diagram of Fig. 7.14,
in which the magnitude of the unbalance has been exaggerated for the
sake of clarity. The governing equations are

Vs =Vy—Vy, (7.56)
Vi(R1 + Rs) = VoRy, (7.57)

and
V3(R3 + R -I- ]wL + l/ij) = V()Ra. (758)
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Fig. 7.14. Phasor diagram of Meacham bridge.

A complete solution, although practical, is unnecessary, because
interest is confined to conditions near the balance point, which is
reached when

v=0=¢=0 (7.59)
and
RiR = R:R;. (7.60)
For conditions of small phase shift we may write
tan ¢ = ¢, tan 6 = 4, and tan ¢ = ¢. (7.61)
The use of similar triangles then yields
d)/ip = Vo/V34 and /Y = Va/V5. (762)
Division yields

6/6 = ViVi/VoVs = (Va/Vo)(Va/Vo)(Vo/V5)
= (V3/Vo)(V4/Vo)u. (7.63)
But

V3s/Vo = R3/(R+ R3) and V,4/Ve= R/(R + Rj). (7.64)
Therefore, we may use eq. 7.51 to obtain the relationship
60/¢ = 1/3, (7.65)

which is important because it proves that a bridge which yields optimum
frequency stability also yields optimum amplitude stability and vice versa.

7.12 Parameters for optimum stability

The proportioning of the bridge is affected by the power rating of the
resonator and the power required by the thermistor. In systems
designed for the greatest frequency stability, the resonator is a GT
cut quartz crystal, and must be operated at a power level substantially
lower than that required by the lamp. Therefore, it is often necessary
to use a bridge composed of unequal arms.
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It is assumed that the power rating P, and elements of the resonator
are fixed, and that the thermistor requires a specific power P, for its
operation but that its resistance may be chosen at will. Consistent
with usual conditions, it is also assumed that the grid and plate
resistances of the tube are effectively infinite, and that the associated
transformers have negligible loss. However, the impedance levels
(number of turns) of the high impedance windings of the transformers
are limited by parasitic capacitance and other considerations, and this
fact must be considered in the analysis.

The design problem now reduces to choosing B, R, and B3 so as to
obtain the smallest fractional unbalance § and hence the greatest
possible amplitude stability consistent with a given transconductance
gm, prescribed plate and grid circuit impedances, and power levels
consistent with resonator and lamp limitations.

Near the balance point we may write

Py =V{*/Ry and P,= V,*/R. (7.66)

Introducing the dimensionless parameter k, and taking advantage of
the fact that V; = V3, we may obtain the relationship

k2 = Pl/P4 = Rs/Rz. (767)
Near balance the grid and plate impedances are, respectively,

Zy =n’(R1+ R3)(R: + R)/(R+ R1+ Ra + R;)  (7.68)

and
Z, = N*Ri+ R2)(Rs + R)/(R + Ry + Ry + R;). (7.69)

Consistent with the assumed conditions, we may calculate u as defined
in eq. 7.46 in terms of gm, Zy Z,, and the bridge resistances. Sub-
stitution of the resulting expression in eq. 7.51 yields the useful
relationship

RR;  VRi+Ry, VE+R;

1 J—
= =gaNVZ,N 7y . (7.70)
5 *7 7" R+ R)* VR + Ry VR+R,
Introduction of the parameter
m = R3/R, (7.71)

and use of egs. 7.60 and 7.67 reduces this expression to

1/8 = gm NV Zy N Z, (km)/(m + 1)(m + k2). (7.72)
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Differentiating to minimize § shows that the conditions for greatest
stability are
Ry =R, Ry = R/k, and B3 = kR. (7.73)

Like other typical conditions for minima, eq. 7.73 is relatively broad.

It sometimes happens that current rather than power is the impor-
tant parameter in limiting the performance of the bridge thermistor.
This condition is represented by the equation

Vi/R, = KV,4/R. (7.74)

Under these conditions differentiation for a minimum value of §
leads to the relationships

R3 = R and R1 = Rz b R/K (775)

At the present time it is possible to produce 100-ke erystals which
have resistances of about 10 ohms and Q values in excess of 109,
but, unfortunately, such crystals are adversely affected by currents in
excess of 2 hundred microamperes. On the other hand, the power and
current required to actuate a tungsten filament thermistor do not
continue to decrease as the diameter and length of the filament are
reduced. The E1 lamp operating at a resistance of 30 ohms appears
to approximate the limit which can be reached in this way. There-
fore, it is not always possible to employ the optimum relationships.
The relationships developed in the following section indicate the
extent to which performance is sacrificed by such a compromise.

7.13 Amplitude and frequency stability

Conditions for optimum stability were established in the preceding
sections; it remains to show what actual stability factors result when
these conditions are met. Because the frequency stability is of princi-
pal concern it will be treated first.

In terms of the simple tuned circuit of Fig. 7.13 the phase shift d¢ is
related to the selectivity of the resonator at frequencies near resonance
by the equation

do = 2Q dw/w. (7.76)
Moreover, from eq. 7.65, we have
d¢ = 8de. (7.77)

Therefore, consistent with Chapter 1, we have as the frequency
stability with respect to amplifier phase shift the relationship
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de 2Q
== 7.78
Sr dw/w 8 ( )
In terms of Fig. 7.12, with eq. 7.72, this reduces to
-~ S k
Se = 2Q0m N2,V Z, m (7.79)

(m+ 1)(m + k%)

In practice, increments in the amplifier phase shift 8 usually result
from variation of the plate-to-ground and grid-to-ground capacitances
of the vacuum tube. It is therefore appropriate to investigate this
relationship. In the normal operating condition the grid faces a pure
resistance equal to Z,. The phase angle d6 which results from a capaci-
tance increment dC is, therefore,

d6 = Z,w dC, (7.80)

where the angle and its tangent are taken as equal. The frequency
stability with respect to the grid capacitance therefore is

iC _ 2Q _ 2m

Ny —.

dw/w N nga - w (m + 1)(m +k2) (781)

This equation shows that, with respect to grid capacitance variations,
the frequency stability is increased by increasing the plate impedance
and decreasing the grid impedance. However, it is clear that eq.
7.81 (with Z, and Z, inverted) also represents stability with respect
to C,; therefore, a compromise is necessary.

In typical pentodes the grid capacitance is about ten times less
stable than the plate capacitance. Therefore, typical random deviations
in these capacitances will produce the smallest total frequency deviations
if the contributions are made equal by letting Z, = 10Z,.

The amplitude stability is obtained by differentiating eq. 7.57 to
obtain

R1dV:i+ VidRy+ RedVy = R1dVo+ VodR:..  (7.82)
Division by eq. 7.57 yields
dv, | VidRi _dRy, dVy

= 7.83
Vi Vo R B, Vo (7.83)

Substitution of eq. 7.1 and the parameter m yields
d_Vo=_——.—1+m—S.d_Vl. (7.84)
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Differentiation of eq. 7.51 and its reuse leads to

du = — @; (7.85)

m 6

in which ¢,, may be substituted for ¢ because only the fractional varia-
tion is of interest. Making this substitution and introducing the
derivative of eq. 7.48 gives

R dR, = —ds R3R;. (7.86)

Finally, introducing the value of 3 from eq. 7.70 gives

_ Agm/gm _ S skm )
84 = dVe/Ve In N 23N Zy (14 m— s)(m+ k%) (7.8D)

7.14 Numerical example

Let us design a single-tube Meacham oscillator using the type 6AC7
pentode at a frequency of 100 ke. Reasonable numerical values are:

R = 100 ohms I, = 2 ma max. in crystal
= 10° (quartz crystal) I; = 8 ma min. in lamp
Z, = 10* ohms gm = 0.01 mho

Z, = 10° ohms

o
I

If eq. 7.75 were followed, we would have R3 = 100 ohms and By =
R, = 25 obms. However, no available lamp has this resistance and
from Fig. 7.1 we choose as most suitable the E1 lamp with a resistance
of 50 ohms and a current of 8 ma at 0.4 volt. As a compromise
between eq. 7.73 and 7.75 we choose B3 = 200 ohms and R, = 25
ohms. »

From eqs. 7.68 and 7.69 we have n = 10.9 and N = 34.6. Con-
sistent with the bridge currents and resistances we have ¥V, = 0.6
volt corresponding to the conservative rms plate voltage of 24.5.
Because the tube has a voltage gain of 1000, the grid voltage is only
24.5 mv.

From eq. 7.70 we have § = 0.0168, corresponding by eq. 7.65 to a
phase or @ magnification of 59.8. Thus by eq. 7.78 the frequency
stability against phase shift is 1.2 X 107. That is, the frequency will
change only one part in 10® if the amplifier introduces a phase shift of
0.12 radian (about 7°). By eq. 7.80, g.capacitance increment of about
6 puf in the grid circuit (or 0.6 puf in the plate) would produce this
phase shift.
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The amplitude stability is obtained from eq. 7.87. The value
s = 0.5 obtained from Fig. 7.1 yields S, = 35.8. That is, a trans-
conductance change of 3.58 db would result in a change of only 0.1 db
in the output.

7.15 Automatic output control

At approximately the same time Arguimbau'4 in America and Grosz-
kowski!?? in Poland announced independently the invention of a
linear oscillator in which the gain of the vacuum tube is controlled to
produce amplitude limiting by means of a bias derived from the output
signal. A similar principle had already been used to stabilize the
output of an amplifier subjected to 2 variable input signal. The terms
automatic volume control (ave) or, preferably, automatic output con-
trol (aoc) are used to identify both amplifiers and oscillators of this
kind. Oscillators of this sort compare favorably with the Meacham
in regard to amplitude stability and purity of wave form. They are
inferior to the Meacham in frequency stability because they lack the
phase-magnifying property of the bridge circuit.

The electronic problem common to all automatic output devices is
to provide a tube in which the transconductance may be varied through
a considerable range by means of a bias voltage, without at the same
time introducing intolerable nonlinearity and signal distortion. In
amplifiers for radio receivers the problem is not difficult because the
linearity requirements are moderate and because the control may be
exercised in early stages where the signal amplitude is very small.
A conventional remote cutoff (variable transconductance) pentode
with both signal and control bias applied to the first grid meets this
need very nicely.

In an oscillator, we ordinarily wish to produce signals approaching
the power rating of the tube. Moreover, the problem of providing a
suitable control bias is complicated if the amplitude of oscillation
must be small. Because the remote cutoff pentode is ill fitted to the
present application we are led to investigate the properties of other
types of tubes. The closest parallel to the present problem in the
existing art appears to be the volume expander,?? sometimes used to
increase the dynamic range of recorded speech of music. Volume
expanders sometimes employ thermistors in circuits similar to those
already described in this chapter. Of greater present interest, how-
ever, are the electronic expanders which employ pentagrid tubes,
such as the 6L7, 6SA7, 68B7-Y and FM-1000. All these tubes have
the common feature that the plate current is a function of the potential
of the first and third grids, whereas the second and fourth grids are
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internally connected to serve as a positive screen, and the fifth grid
serves as a simple suppressor. The essential fact, which is ably pre-
sented by Wing,347 is that, for a fixed screen voltage, the plate current
may be represented by a simple product, 7, = F(e1) - F(e3), where
F(e1) depends only upon the voltage of the first grid, and F(e;) depends
only upon the voltage of the third grid.

The 6L7 is a double-ended tube in which the first grid (cap connec-
tion) has a remote cutoff characteristic whereas the third grid is
designed for sharp cutoff. The 6SA7 and 6SB7-Y are single-ended
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F1a. 7.15. Characteristics of a typical FM-1000. Conditions Egs = 0, E;p =
Eygy = +100, E, > +40 volts. (Courtesy Philco Corporation.)

tubes in which the cutoff characteristics of the first and third grids
are reversed from the 6L7. The FM-1000 is a single-ended tube of
the lock-in type. The characteristics of both the first and the third
grids are essentially linear; and the fifth (suppressor) grid may also
be used as a control electrode, though its effective transconductance is
quite low. In all these tubes the cathode current depends principally
upon the potentials of the first and second grids. Although the plate
cuwrrent is substantially independent of the plate voltage, as in other
multiple-grid tubes, it is affected by the potential of the third grid,
which controls the fraction of the cathode current which escapes the
screens and reaches the plate. Characteristics of the FM-1000 are
shown in Fig. 7.15. It is seen that signals having a peak amplitude of
several volts may be applied to the third (or first) grid, and that by
means of a reasonable bias on the first (or third) grid the transcon-
ductance to the plate may be reduced from about 1300 micromhos to
zero without producing serious nonlinearity. Moreover, both grids
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are negatively biased so that they require negligible current and power
for operation.

7.16 An automatic output control oscillator

A great variety of oscillators employing automatic control have been
constructed. All the essential principles are, however, illustrated by
the circuit of Fig. 7.16, which differs from a conventional tuned plate
oscillator only by the choice of the tube and the manner in which bias
is applied to the first and third grids. For small oscillations the peak
valtage induced in the auxiliary coil Lz is less than that of the bias
battery Vi, and no current flows through the rectifier. The first

F1c. 7.16. Automatic output control osecillator.

grid, therefore, is at cathode potential, and the plate current and
transconductance are normal. The tube operates as a linear amplifier,
and the oscillations are sinusoids which expand with time.

As the amplitude of oscillation increases, the voltage induced in Lj
increases proportionally and presently reaches a value in excess of V.
Rectification then occurs, and the resulting current through the high
resistance R biases the first grid negative with respect to the cathode.
This bias voltage reduces the cathode current, with the result that the
effective transconductance drops to such a value that the loop trans-
mission is (1,0). The equilibrium is stable because a reduction in
amplitude results in an increase of transconductance, and vice versa.
It 1s readily shown that the condition for sustained oscillation is

gmR1M 1 = L. (7.88)

The wave forms of both voltage and current are nearly sinusoidal
if the circuit constants are properly chosen. Fortunately, the calcula-
tion of the parameters is greatly facilitated by the fact that the tube
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operates in a linear fashion in such a manner that its properties may
be calculated from the curves of Fig. 7.15.

The design of the bias system involves several factors which are not
capable of exact specification. However, the FM-1000 will operate
well if the following conditions are realized: Vo = 10 voltsrms, ¥V, = 1
volt rms, V; = —2 volts, and Vz = +10 volts. Moreover, these
conditions are readily obtained with circuit elements of convenient
size.

7.17 Amplitude stability of controlled oscillator

Like other linear oscillators, the automatic output control system is
capable of good amplitude stability. The extent of this stabilization
may be evaluated by using the equations already developed. From
Fig. 7.16 we may write

M3V = Li(Vy — Vo). (7.89)

Since a change in the tube parameters will affect only ¥V and V;, we
may differentiate to obtain

MydVy = —L;1dV,. (7.90)

In the desired operating region the transconductance, g, (between
third grid and plate), may be expected to vary in a linear manner
with the bias voltage, V;, according to the simple relation

gm = go + kVy, (7.91)
which when differentiated yields
dgm = kdV,. (7.92)

If the circuit parameters do not vary, a change in output can occur
only if a change in the inherent properties of the tube tends to modify
gm, thus necessitating a modification of ¥, to restore g, to the value
required by eq. 7.88. The fractional change of the inherent tube
transconductance may thus be written

% _ leMl dV1'

7.93
gm L, ( )
The amplitude stability, S,, is then by definition
dgm/gm kV0M2 kV0R1M1M2
Sy = = = - )
ST WV guls L 7.84)

which shows the desirability of large values of k, R}, and M, and of the
ratio M 1. L]



DESIGN CONSIDERATIONS 155

7.18 Illustrative design

Suppose that a frequency of one megacycle is to be generated, that
coils having a @ of 100 are available, and that the plate swing is to be
40 peak volts. The FM-1000 is chosen for the reasons already given,
although comparable results may be obtained with other pentagrid
types. The nominal transconductance is about 1300 micromhos,
but allowance for variation of circuit parameters and the gain-reducing
action of the third grid requires that this be approximately halved to
500, for a margin of safety. The static characteristics of Fig. 7.15
indicate that a high degree of linearity will be achieved by use of a
plate load resistance of 50,000 ohms with a screen bias of +100 volts
and a bias of —3 volts on the third grid.

If no useful power is to be drawn, the load resistance will consist
solely of the coil losses which, on the basis of @ = 100, fixes the react-
ance of L; and C; at 500 ohms, corresponding to an inductance of
approximately 80 ph and a capacitance of approximately 320 uuf.
The mutual inductance is then found by eq. 7.88 to be 3.2 xh. Con-
sistent with this value, a peak alternating plate voltage of 40 volts
leads to a control grid voltage of V, = 1.6 volts.

Inspection of Fig. 7.15 shows that the required transconductance
will be obtained provided ¥V, = —2.2 volts. In the interest of ampli-
tude stability let us choose Vz = 420 volts, which with eq. 7.89 calls
for My = 44.4 ph. The curves of Fig. 7.15 show that &k has the value
0.0003 in the region of interest. Use of this value in eq. 7.94 gives as
the amplitude stability the value S, = 13.5.

An important feature of all automatic output control oscillators is
that the amplitude is substantially independent of the tube parameters
and plate voltage but varies in a nearly linear fashion with the control
voltage Vz. When an accurately constant output is required it is
therefore necessary to stabilize this voltage in an adequate manner.
Alternatively, it is possible to modulate the amplitude of oscillation by
deliberate variation of V;. More is said of this matter in Chapter 16.

7.19 Design considerations

The automatic output control oscillator just discussed involves several
questions which have not been answered. Perhaps first among these
is the nature and magnitude of nonlinearities present. This question
may, for the system of Fig. 7.16, be divided into three questions, con-
cerning the vacuum tube, the rectifier, and the RC bias holding system.
The vacuum tube may, in principle, be made linear to any preseribed
degree by suitable construction, choice of operating voltages, and
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restriction of amplitude. In practice, the degree of linearity may be
made quite good, so that with the aid of the tuned circuit it is reason-
able to expect all harmonic voltages to be at least 50 db down from
the fundamental.

The simple rectifier shown loads the resonator with a current which
flows through Lj in short pulses. It therefore tends to introduce
harmonics in the output, and to degrade the frequency stability as
shown in Chapters 3 and 4. In principle, this effect can be made
negligibly small by increasing the bias resistor to a value sufficiently
large in comparison with the tank resistance R;. This increase is not
always practical, but there are other means for obtaining the bias
voltage which do not reflect nonlinearity into the tuned circuit. Two
such means which immediately suggest themselves are the use of a
buffer amplifier in conjunction with a diode or the so-called infinite
impedance (cathode-follower) detector.

The bias-holding system is readily controlled to meet its principal
requirement, that the bias shall not change enough during the period
of any one cycle to affect appreciably the tube transconductance. The
effect is readily calculable in terms of the transfer characteristics of
the tube and may be made adequately small in practice.

A second basic problem is the separation of signal paths. The
previous discussion assumes that the first grid introduces only a
control bias, completely free from voltage at the oscillation frequency.
In practice, it is not only impossible to achieve such a perfect separa-
tion but even difficult to secure an adequate one. Because the signal
which leaks through the bias system is likely to be substantially out of
phase with that deliberately returned to the third grid, the operating
frequency is likely to differ from the resonator frequency by an amount
which varies with the degree of control being exercised. This difficulty
may be alleviated by the use of a symmetrical (push-pull) rectifier
which tends to balance out the oscillation frequency and by use of
additional filtering elements which attenuate this frequency without
unduly affecting the time constant and low-frequency behavior of the
system.

A third problem is inherent stability, discussed at much greater
length in Chapter 10. For the present it is sufficient to say that
intermittent oscillation, which often occurs in bias-controlled oscil-
lators, will be avoided if the RC time constant is very long and if the
operating conditions are such that the loop gain at the operating fre-
quency steadily decreases with increase of oscillation amplitude for a
fixed control bias. The latter criterion is readily tested by manually
adjusting the bias and observing the amplitude of oscillation, which



PROBLEMS 157

should be a continuous single-valued function of the bias. Chapter 10
shows that the criterion just described is sufficient but not necessary,
and is indeed rather severe. However, it is met in the circuit of
Fig. 7.16, provided the bias on the .third grid is such that operation
occurs at the inflection point of the transfer characteristic (maximum
transconductance).

PROBLEMS

7.1. Calculate the curve corresponding to Fig. 7.6 for a bridge of E1 lamps and
50-ohm resistors.

7.2. Using the above bridge, design an oscillator to operate at 300 ke, using
N =n = 30 and ¢,, = 5000 micromhos.

7.8. Calculate the amplitude stability and operating voltages of the above
oscillator.

7.4. Calculate for your design the frequency deviation which will result if the
grid capacitance is increased by one micromicrofard.

7.8. Verify the correctness of eq. 7.73 and defend the associated assumptions.

7.6. Verify the correctness of eq. 7.75.

7.7. It would appear that the frequency stability of the Meacham osecillator with
respect to changes of tube capacitance could be reduced by addition of a stable
padding capacitance. Prove that this is not true.

7.8. Discuss the use of unequal impedance levels in grid and plate circuits in
the interest of frequency stability.
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CONVENTIONAL HARMONIC
OSCILLATORS

Chapter 7 has described in some detail a number of linear oscillator
circuits, which generate waves of great purity having good amplitude
and frequency stability. However, the circuits most widely used in
practical apparatus operate in a markedly nonlinear manner. The
present discussion is devoted to a presentation of these widely used
circuits and their properties; it has been deferred to this point in order
to present the extensive background which is necessary to the under-
standing of a number of important features of such circuits.

This chapter is concerned principally with low-power oscillators
which operate at ordinary frequencies, have moderate values of ampli-
tude and frequency stability, and are characterized by simplicity and
economy. However, most of the results are independent of frequency.
The problems which are peculiar to high-power levels are discussed
separately in a later chapter.

The exact analysis of nonlinear systems is so difficult and cumber-
some that some alternative must be found if useful engineering results
are to be obtained. On the other hand, some form of analysis is
necessary if the performance of existing oscillators is to be understood
and if new circuits are to be designed intelligently. The following
analysis is based on idealized class C operation; it is a form of the
method of equivalent linearization discussed in Chapter 4. No
effort is made to obtain a frequency correction term.

8.1 The tuned plate oscillator

The circuit of the conventional tuned plate oscillator is shown in

Fig. 8.1. The schematic diagram is a very close approximation

to the actual physieal system, the principal idealization being the repre-

sentation of the load as a pure shunt resistor B. In actual operation

some grid current always flows, but if R, is relatively high the effects
158
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of grid current are negligible. The tube is assumed to have an ideal-
ized cutoff characteristic. That is, the curves of plate voltage versus
grid voltage, with plate current as parameter, are assumed to be uni-
formly spaced parallel straight lines with slope equal to —u as shown
in Fig. 8.2.
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Fic. 8.1. Tuned plate oscillator.
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Fic. 8.2. Idealized triode characteristics and paths of operation.

The analysis is begun by assuming that the tube has a small negative
bias, consistent with class A operation, and that the circuit parameters
are adjusted so that oscillations just begin. With this idealization it is
possible to employ linear equations, which at the natural frequency of
L and C take the form

ep/eg = L/M and e, = pe,R/(R + 1p). (8.1)
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Eliminating the amplitudes to obtain the conditions for sustained
oscillation, we have

p=(R+r)L/RM or r,/R=uyM/L -1, (8.2)

where u and M, as well as the other parameters, are taken as positive.

The amplitude of oscillation is readily obtained from Fig. 8.2. The
assumption that R, is very large ensures that the grid cannot be driven
appreciably positive, since otherwise large grid currents would flow.
Moreover, the tube cannot be driven appreciably beyond cutoff,
because the loop gain condition of eq. 8.2 would be violated. Finally,
¢, and e, are exactly in phase opposition by the assumptions made,
so that the path of operation becomes a straight line of slope —L/M
centered on E;, and terminating on the boundaries 7, = 0 and e, = 0.
The grid bias will automatically adjust itself to meet this condition.
The resulting path of operation is designated A in Fig. 8.2.

The operating condition just described is evidently unstable and
undesirable, because any decrease in R or u will cause the oscillations to
stop. We therefore need to explore the consequences of modifying
the parameters in such a way as to secure a margin of safety. This is
conveniently treated by assuming that yu, rp,, M, and L are fixed and
that R is increased. It is clear that the small-signal loop gain is now
larger than one, so that the amplitude will tend to increase. - When
this occurs the bias will also increase, and plate current will flow during
only part of each cycle. It will be shown that both the amplitude of
oscillation and the portion of each cycle during which plate current
flows are determined when R is specified.

8.2 Class C operation

The equilibrium condition which corresponds to a particular value of R
is best obtained by a method due to Everitt.s% 8 The calculation is
based on the tube idealization already shown in Fig. 8.2. That
is, the instantaneous plate current 7, of Fig. 8.3 is represented by the
expression

7 = (ep + l‘ec)/rp = gm(ec + en/u) (8.3)

subject to the physical restriction that 7, cannot be negative. The
principal assumption of this method is that the alternating grid and plate
voltages are sinusoidal and 180° out of phase. Introducing the excita-
tion ratio A which is characteristic of the circuit and defined by

h = Epn/Egm, (8.4)
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we may establish an artificial driving voltage

E = (Egm - Epm/i‘) = Eam(l - h/l‘) (85)
Using the variable § = wf, we may express the current as
iy = gm(E' cos 8 + Ey), (8.6)
where
Ey = (By/u — Eo) (8.7)
is the amount by which the bias differs from the cutoff value.
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F16.8.3. Calculation of plate current. Fia. 8.4. Parameters for idealized class
C operation.

The fundamental component of the plate current is evaluated by use
of the Fourier series expression

21]' 2 m
Ipm = —/(; 1y cos B db = —[) 1y cos 8 dé. (8.8)

™

Because the current is zero and eq. 8.4 does not apply over part of the
cycle, it is desirable to modify the limits by use of the new variable

8, = cos™! (Ey/E"), (8.9)
which represents half the angle over which plate current is conducted.

The maximum value of the fundamental component of plate current
is now

20m [
Ipm = _g_‘/; (E' cos 6 + Ey) cos 0dé (8.10)

kg
Integration and substitution of limits yields, after simplification,
20, — sin 20,  gnE’
2w B Bo ’

Ipm = gnE' (8.11)
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where
2

= _— 8.12
20, — sin 26, ( )

Br
The parameter g, is useful in all kinds of class C calculations; its
variation with 6, and some related parameters are given in Fig. 8.4.
The principal result of the foregoing analysis is that in class C operation
the effective transconductance s decreased and the effective plate resistance
is increased by the factor B,. The transconductance reduction is
immediately apparent. The increase in plate resistance is demon-
strated by setting E,, = 0 (b = «) in eq. 8.5.
By an integration similar to that of eq. 8.8 we may show that the
average component of plate current is given by

sin 6, — 0, cos 6,

Iy = guE’ (8.13)

T
and that the maximum instantaneous plate current is
Tom = gmE’'(1 — cos 6,). (8.14)

An additional relationship which is often useful is shown in Fig. 8.4
and is given by

B = = B,(1 — cos 6,). (8.15)

ibm
Iom
8.3 Effect of grid current
The current which is rectified in the grid circuit flows through the
grid leak to produce the bias. If the resistance of the grid leak is high
compared to other circuit impedances, the grid is never driven appreci-
ably positive and the associated power loss is small. The equilib-
rium amplitude of oscillation is readily calculated, and the associated
operation is conducive to good frequency stability but small power
output.

A substantially greater power output is obtained by lowering the
grid leak resistance to a value comparable to the plate load impedance.
The losses in the grid circuit are somewhat increased by this change,
but the power output is increased by a much larger amount. The
losses in the grid circuit and the corresponding effective grid circuit
impedance, R, may be calculated by a process similar to that employed
in the previous section.

Experimental results show that, in typical triodes and pentodes, the
current drawn by the control grid when positive is approximately pro-
portional to the grid voltage and not greatly affected by the plate
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voltage. The corresponding grid resistance r, is usually about one
thousand ohms. Evidently, the ratio of this resistance to that of the
grid leak will determine the bias developed and the extent to which
the grid is driven positive,

Following the indicated analysis, we find that the equivalent a-¢
grid resistance Ry is equal to B, where 8, is defined by eq. 8.12 in
terms of 6, the angle of grid current conduction. Unfortunately, this
form for the expression is inconvenient and may lead to serious error
in numerical work. Therefore, the results presented in the curves of
Fig. 8.5 are recommended for ordinary use.
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Fi1c. 8.5. Effect of grid rectification.

When the grid leak is subjected to an alternating as well as a direct
voltage, asin the circuit of Fig. 8.6, an additional power loss is incurred.
This has no effect upon the rectified bias, but increases by one the
value of the ratio R./RK, 1If, for example, we have R./r, = 100,
the ratio B,/R, is equal to 2.8.

Returning to the circuit of Fig. 8.1, we find that grid rectification
has two principal effects. First, there is an additional loading which
may be accounted for by substituting for R, in eq. 8.2, the quantity

__ L*RR, __h’RR,
" M’R + L*R, R+ h’R,
Second, the extent to which the grid is driven positive must be taken
into account by writing

R’ (8.16)

E, = ~vE,,, (8.17)
where v is given by Fig. 8.5.
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8.4 Prediction of the amplitude of oscillation

The amplitude of oscillation in the tuned plate circuit may be predicted
by appropriately combining the information now available. From
eq. 8.2, modified to account for R, by means of Fig. 8.5, we may
determine the parameter 8, and hence the conduection angle 6,. Then
from eq. 8.15 or Fig. 8.4, we may obtain the additional parameter B.
These are sufficient to determine the amplitude as shown in the follow-
ing paragraph.

Using eqs. 8.4, 8.7, 8.9, 8.15, and 8.17 we may eliminate E,, E,,
E,n and 6, to obtain the maximum alternating plate voltage

_ hBpEy
(l-" - h)(B - Bp) + #'Yﬁp
It is seen that the amplitude is proportional to Ej, increases with

increase of h, and is affected by 8,, B, u, and v. In class B operation,
where B = 8, = 2, the expression simplifies to

hE,
)
wy

(8.18)

m

Epm = (8.19)
which is readily checked by direet calculation.

Because egs. 8.18 and 8.19 do not depend upon the circuit configura-
tion, and because the development involves only the assumption that
grid and plate voltages are sinusoidal and 180° out of phase, they may be
applied to any circutt which meets this condition; that is, they are applica-
ble to nearly all practical oscillators.

The amplitude of oscillation just calculated represents a stable
equilibrium in most practical cases. That this istrue may be shown by
assuming that the amplitude is momentarily increased (or decreased)
by some external influence. A consideration of the class C process
shows that there is a strong tendency for the amplitude to return to its
original value.

There are, however, two situations in which stability may be lacking.
In high-power oscillators where maximum efficiency and power output
are desired the grid is driven considerably positive with respect to
the cathode, and may even become positive with respect to the plate. -
Under these conditions secondary emission of electrons may ogeur,
the grid current is greatly increased, and the plate current is reduced.
Because the situation differs widely from that assumed in the fore-
going analysis the results may be in great error. More is said of this
in Chapter 11. Under other conditions the time constant of the grid
circuit is excessive compared to the envelope time constant of the
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tuned circuit. We may then observe intermittent oscillations, dis-
cussed in detail in Chapter 10.

8.5 INlustrative design of tuned plate oscillator

To illustrate the application of the equations developed above, let us
design an oscillator to operate at a frequency of one megacycle and
yield a relatively large output from a 6J5 triode. The approximate
parameters of this particular tube are u = 20, r, = 8000 ohms, g,, =
2500 micromhos, and r; = 1000 ohms. We may choose as reasonable
values the additional parameters E, = 300 volts, h = 6.0, 6, = 60°,
and v = 0.70. With these values we have, from Fig. 8.4, 8 = 5.0 and
B = 2.5. Therefore, from eq. 8.17, we have

E,m = 256 peak volts, (8.20)

from which we obtain E,,, = 42.66 and E, = 29.9 volts. The curves

of Fig. 8.5, together with r, = 1000, yield the grid leak resistance

R, = 15r, = 15,000 ohms and R, = R./1.3 = 11,500 ohms.
Introducing B, and R’ into eq. 8.2, we have

R’ = 17,170 ohms. (8.21)

Now using / and eq. 8.16, we have as the actual plate load B = 17,900
ohms.

If we select as a reasonable value of capacitance C = 120 uuf, we
find for resonance at one megacycle L = 210 ph and M = 35 ph.
Assuming a selectivity of @ = 100, we find that the equivalent shunt
resistance of the coil is R, = QwL = 132,000 ohms. FEvidently, the
power delivered to the useful load is reduced by that lost in the coil.
Correcting for this effect, we have an equivalent load resistance of
20,800 ohms. The maximum alternating plate current is 256/17,100
or 15.0 ma. The average plate current is, from Fig. 8.4, 15.0/1.80 =
8.33 ma. The useful power output is 2562/(2 X 20,800) or 1.57 watts.
The efficiency, which is relatively high, is (1.57 X 10%)/(300 X 8.33)
= 62.5 per cent. The design is completed by selection of a grid con-
denser, which should be large compared to the internal capacitance of
the tube; C, = 200 uuf is a suitable value.

8.6 The Colpitts oscillator

The circuit diagram of a practical form of the Colpitts oscillator is
shown in Fig. 8.6. In fundamental principles, this circuit differs
very little from the tuned plate oscillator just deseribed, but a number
of practical differences exist. The grid leak is connected directly from
grid to cathode so that an a-c as well as a d-c loss will occur unless a
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suitable choke is used in series with it. Both the plate and grid are
returned directly to ground through the condensers C, and C, of the
resonator or tank. This is an advantage, because the highly distorted
grid and plate currents, characteristic of high-efficiency operation,
can return to the cathode without impedance from coil resistance or
leakage reactance. However, if the frequency is to be adjustable, the
two condensers should be varied in such a way as to preserve their
ratio; otherwise the excitation ratio and performance are modified
with tuning.

The conditions for oscillation are conveniently determined with
reference to the generalized circuit of Fig. 8.7. Using the principle of

Y/H
——— AMAMW——E,
- -
e
R,,=1/G,, {load) _
AW ——— =
Fi1c. 8.6. Shunt-fed Colpitte Fi1e.8.7. General oscillator cir-
circuit. cuit.

equivalent linearization in the form of the preceding sections, we may
write the phasor nodal equations

E;(Yo + Yu) — Ex¥m = 0, (8.22)
—EY,+E,(Y,+ Yn) = —Ew., (8.23)

in which Y,,, Y,, and Y, are taken to include the internal admittances
of the vacuum tube, and ¢,’ represents the effective transconductance,

defined by
gm' = gm/Bop. (8.24)

Elimination of the voltage variables yields the generally useful

equation
: —gm’ =Y, + Y, + (Y, X,/Y0). (8.25)

Neglecting the grid-plate capacitance in the Colpitts oscillator of



THE HARTLEY OSCILLATOR 167

Fig. 8.6, and representing the total conductances of grid and plate
circuits by G, and G, respectively, we may write

Y, =G, +juC;; Y, = Gy + jwCp; and Y,, = G + (1/jol). (8.26)
Substitution of these values in eq. 8.24 yields
—gn’ = Gy + jwC; + Gp + julp

n JoL(G,Gp — *C,Cp + juGpC, + JuGeCp)
1 + jwlGam
In each of the admittances, the real part is small compared to the
imaginary part. Therefore, negligible error is produced when several

squared terms are neglected in rationalizing the last term of eq. 8.27 to
obtain by separation of real and imaginary parts

C, + Cp = wLC,Cp — L2 n(GoCp + GoCp) . (8.28)

(8.27)

and

gn' = —Gp — Gy + &’L(G,Cp + G,C,) + «*L¥G,,C,C,.  (8.29)
In typical situations the last term of eq. 8.28 is very small compared
to the others, and the operating frequency represents series resonance
of L with Cy and C,. Using this value of w, together with the excita-
tion ratio

h=Epn/E,;m = C,/C,, (8.30)
we obtain from eq. 8.29 the gain equation
gn' = hGp + Gy/h + Qp(h + 1)%/h. (8.31)

If a pentode is used, G, is effectively zero; moreover, the term G,/h
may often be made negligible. Under these circumstances the effec-
tive transconductance required for oscillation with a fixed value of G,
reduces to 2 minimum value of 4(@,, for an excitation ratio of unity.
Equation 8.31 is useful in adjusting the impedance level of the circuit
because the last two terms represent the total admittance presented as
load to the plate of the vacuum tube. With this modification, the
amplitude of oscillation may be predicted by use of eq. 8.18. As
previously noted, the two condensers should be varied in the same
ratio if the excitation ratio is to remain constant as the frequency is
varied.

~ 8.7 The Hartley oscillator

The circuit diagram of the series-fed Hartley oscillator is shown in
Fig. 8.8. It is seen to bear considerable resemblance to both the
tuned plate and the Colpitts circuits. It differs from the tuned plate
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oscillator principally in that the grid leak is in shunt and that the
tank condenser and load resistance are connected across the entire
coil rather than the plate section only. The circuit will operate if
there is no mutual inductance between the two sections of inductance.
However, it is much simpler to construct the coil as a single continuous
tapped winding, and this is almost always done because the overall
efficiency and performance are considerably improved thereby. The
coupling coefficient between the two portions of the coil should be
made as large as possible, because the leakage may be represented as an
inductance in series with the cathode lead. Such an induetance inter-

I
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n
R,.,=1/G,, (load)

AWM

Fia. 8.8. Series-fed Hartley ecir- Fi1a. 8.9. Tuned grid oscillator
cuit.

~

feres with efficient class C operation. This circuit has the practical
advantages that it is readily tuned by means of a single variable con-
denser, and that the total number of components is small.

The operating frequency is very nearly that of resonance between C
and the total inductance, and the excitation ratio h is the effective
turns ratio of the coil. The general eq. 8.25 or the specific eq. 8.31
developed in the preceding section may be used to calculate the con-
ditions for oscillation; eq. 8.18 may again be used to predict the
amplitude.

When the Hartley circuit is used to generate large amounts of power
it is ecustomary to modify the circuit to employ shunt feed such as that
shown in Fig. 8.6. An additional choke and blocking condenser are
required, but the tank now has no direct potential to ground, and
therefore constitutes much less of a hazard to operating personnel.
The same objective is achieved in various ways in almost all high-
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power oscillator applications. Additional discussion of the Hartley
oscillator is given by Heising'® and Record and Stiles.253

8.8 The tuned grid oscillator

An oscillator circuit which is occasionally useful is shown in Fig. 8.9.
It is seen to differ from the tuned plate oscillator only in that the load
and tuning condenser are transferred from the plate to the grid coils.
It is, therefore, also closely related to the Hartley circuit. All three
of these circuits become identical, except for impedance levels, as
the coupling coefficient of the coils becomes unity. Of the three,
however, this circuit suffers the most from imperfect coupling. Its
principal advantage is that one end of the tank may be grounded.

The operating frequency is very close to the natural frequency of L
and C, provided proper account is taken of the effects of parasitic grid
and plate capacitances. The effective plate load impedance R’ is

R’ = RR?, (8.32)

where the excitation ratio h is the turns ratio of the plate to the grid
coil. Using this relation and eq. 8.31, we may calculate the amplitude
and frequency of oscillation by the method developed for the tuned
plate oscillator.

8.9 The Clapp oscillator

An oscillator circuit having exceptional practical advantages has been
described by Clapp.® The circuit diagram, shown in Fig. 8.10, dif-
fers from the Colpitts oscillator of Fig. 8.6 in three respects. A pen-
tode is used instead of a triode, the plate rather than the cathode is at
a-¢ ground potential, and the tank coil, L, is replaced by the series
combination of L, and C3. The tank change is the important one,
although the others are necessary to obtain the frequency stability
which thereby arises. An incidental advantage of the system is that
it is readily tunable over considerable frequency ranges by means of
the single condenser Cs.

The best frequency stability obtainable with this arrangement is
theoretically equal to that of an ordinary Colpitts oscillator employing
the same tube and a coil of equal Q. The difference lies in the fact
that the Clapp arrangement lends itself to a much closer realization of
the theoretical limit.

The analysis of the Clapp oscillator is facilitated by assuming that
the effective plate resistance of the tube is infinite, that grid circuit
losses are negligible, and that the effective transconductance is repre-
sented by g»’. In typical oscillators operating in class C the effective
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transconductance is only about one fifth of the nominal value. How-
ever our purpose is to determine the effect upon frequency stability
of the added capacitor C3; and it is therefore appropriate to assume
that g,,' is a prescribed constant. The relatively long analysis* which
follows is included because it gives considerable insight into the
behavior of all kinds of oscillators, and because it is directly applicable
to the important Pierce crystal oscillator.

The problem to be solved is this. Assuming that the Clapp circuit
is to oscillate with a given transconductance g,,’, and that the coil has a
specified value of @, how shall C,, Cp, and C; be adjusted so that an

8

Fic. 8.10. Clapp’s oscillator.

arbitrary increment in C, or C, produces the smallest frequency
deviation?
The analysis starts by making the substitutions

C, = hCp, = kCs. (8.33)
At the normal operating frequency we see that
L, =1/C3 + 1/Cp + 1/C, = (k + h + 1)/C,. (8.34)

Now if the grid capacitance increases by an amount 8C, the frequency
changes to a value represented by

(@ + 80)’L, = 1/C, + 1/C3 + 1/(C, + 5Cy). (8.35)

Neglecting second-order terms and using the approximation valid for
small values of z,
1/04+2) =1 —xz, (8.36)

* The following analysis is almost identical with that of Gouriet,!!” which, how-
ever, did not come to the author’s attention until the present section was completed.
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we obtain
W Le(1 + 26w/w) = (1 — 8C,/Cy + b + k)/C,. (8.37)
The value of L, is eliminated by means of eq. 8.34 to obtain
w  C, 24 2h+ 2% (8.38)

It is clear at this point that large values of h, k, and C, are desirable
in order to reduce the frequency deviation; however, these values are
limited by the fact that only a given transconductance is available to
produce oscillation. To determine the extent to which C, may be
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F1e. 8.11. Clapp's resopator.

increased we must obtain an expression for the conductance of the
resonator. Referring to Fig. 8.11, we may write

RG/X = XGm (8.39)
and
X =1/wCy + 1/uCp = (1 + h)/wC,. (8.40)
Neglecting grid and plate circuit losses in eq. 8.31, we have
Im’ = Gm(h + 1)%/h = R.(h + 1)2/X’h. (8.41)
Introducing the selectivity
Q = wlL.,/R,, (8.42)
we obtain
g’ = wCo(1 + h + k)/Qh. (8.43)

Combination of egs. 8.38 and 8.43 to eliminate C, yields the important

result
dw/w = — wbC,/2Qhgm’. (8.44)

Because the parameter k, which fizes the value of Cj, disappears in
the final substitution, we conclude that in iiself the added capacitor Cj
contributes nothing to frequency stability. That is, subject fo a fixed



172 CONVENTIONAL HARMONIC OSCILLATORS

value of Q, a properly proportioned Colpitts oscillator is just as stable
as a properly proportioned Clapp oscillator. However, the Clapp
arrangement is much the more flexible, because the inductance value
may be chosen on the basis of convenience, selectivity, stability, com-
patibility with available tuning condensers, ete. The impedance
level presented to the tube may then be adjusted for best operation by
means of C, and C,. In this way all the important parameters are
under good engineering control. In the Colpitts oscillator, on the
other hand, the reactances required for optimum stability are often
impracticably small; and an attempt to realize the calculated values is
frustrated by poor values of @, impracticably large variable condensers,
and other similar limitations.

The development of eq. 8.44 is such that by substituting 6C, for
8C, the same expression may be used to determine frequency changes
due to increments of plate capacitance. Assuming that C, and C,
are subject to equal random deviations, we obtain best results by
setting h = 1. In many cases, however, C, is about ten times more
stable than C,. When this is true the smallest total frequency devia-
tion results when h = /10 = 3.

A numerical example may be helpful. Suppose then a frequency of
159 ke (w = 10°) is to be generated by a 6SJ7. It is assumed that the
nominal transconductance of 1600 micromhos is reduced to an effective
value of 200 by class C operation, and that coils having a selectivity
Q = 200 are available. From eq. 8.43 we have the values €, = 5000
puf, Cp = 1667 puf, C3 = 250 uuf, and L, = 4.8 mh, corresponding to
the choice k¥ = 20 and h = 3. These values are quite appropriate at
the given frequency and are consistent with the assumed value of Q.

In the ordinary Colpitts circuit we have k = 1; therefore, consistent
with b = 3, C, = 30,000 ppf, C, = 10,000 puf, and L, = 133.3 ph.
This value of inductance is too low to be convenient at the given fre-
quency, and in any event the large values of capacitance preclude
tuning over any appreciable frequency range.

8.10 The Meissner circuit

A circuit which is principally of historical interest is the Meissner,
shown in Fig. 8.12. It reduces to the Hartley oscillator if the coupling
coefficients are unity and if the number of turns in L is equal to the
total number of turns in the grid and plate coils. It provides d-c
isolation of the tank and flexibility in the choice of impedance level at
the price of additional complexity and a serious tendency to oscillate
at undesired frequencies which depend upon parasitic inductances and
capacitances. This tendency toward spurious oscillation results from
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the several leakage inductances inherent in the arrangement and is not,
readily controlled.

Closely related to the circuits of Meissner and Clapp is that due to
Lampkin!®! and illustrated in Fig. 8.13. As in the Clapp circuit, the
size of the coil and condenser is chosen on the basis of @, tuning range,
and convenience; the tube is then attached in such a way as to produce
oscillation with a minimum of disturbance of the natural frequency.
The present arrangement is most desirable at low and moderate
frequencies, where relatively tight coupling may be produced. If
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Fia. 8.12. Meissner oscillator.

F1c. 8.13. Lampkin’s oscillator.

tight coupling is not achieved the circuit is likely to generate spurious
oscillations at some relatively high frequency which depends upon the
leakage inductance.

8.11 The tuned grid-tuned plate circuit

A circuit which is the basis of the familiar Miller erystal oscillator is
shown in Fig. 8.14. Its analysis is of further interest because triode
amplifiers and frequency multipliers often generate undesired oscilla-
tions in accordance with the design principles of this circuit. Such
oscillations do not have good frequency stability because the grid-
plate capacitance of the tube is an important element in the frequency-
determining circuit; however, relatively good stability may be obtained
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by adding a stable capacitance to C'; and reproportioning the other
elements. The circuit may be interpreted as a Hartley oscillator in
which the mutual inductance has become zero and the effective
inductance of each coil has been increased by partial tuning.
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Fic. 8.14. Tuned grid—-tuned plate circuit.
Referring to Fig. 8.7, we may substitute
Yn = jBm = juCs,

Y, = jB, = jwCs + 1/jwLs, (8.45)
and
Y, = G, + jBy = Gy + joCy1 + 1/july.

Substituting in eq. 8.25 and taking advantage of the fact that Y,, and
Y, are pure imaginary, we have

Bmgml + Gl(Bg + Bm) = Oy (846)
and
1/Bn + 1/B, + 1/B, = 0. (8.47)

The first of these equations represents the transeonductance required
for oscillation, and shows that B, and B,, must be of opposite sign;
that is, the grid circuit must be inductive. The second equation shows
that oscillations are sustained at the frequency at which the reactive
elements alone produce a resonant loop.

Introducing the excitation ratio, which is

h = — (By+ Bw)/Bun, (8.48)
we may reduce the loop gain equation to the form

gml = h(}l. (849)



THE GUNN CIRCUIT 175

In practical oscillator circuits the losses in the grid circuit are usually
small but not always negligible. The analysis is considerably compli-
cated by including these losses, which have as their principal conse-
quences an increase in the required transconductance and a slight
modification of the operating frequency.

8.12 The Gunn circuit

An interesting circuit which secures phase reversal by the use of two
tubes was described by Gunn.!?® The arrangement, as shown in Fig.
8.15, is symmetrical, and requires well-shielded tetrodes or pentodes for
best results. Because the power output is not large, and two con-
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F1:. 8.15. The Gunn oscillator.

densers must be varied in tuning, its use is limited to applications
where frequency stability is the primary concern. Gunn explained
its operation in terms of an infinite series process considering suc-
cessive transmissions around the loop, but it appears that the more
conventional analyses also apply here, and that his analysis could
be applied to any oscillator. Whether the frequency stability is
actually superior to that of a properly adjusted one-tube oscillator
remains dubious.

Since the two stages are identical, the small-signal voltage gain of
each need be only slightly in excess of unity. Even with low trans-
conductance tubes, this permits the use of quite low impedance tank
circuits with correspondingly large values of the C/L ratio. The
frequency shift which will result from a given change in tube capaci-
tance or harmonic content may thus be made very small. The output,
which is not large, may be taken at any convenient point in the circuit,
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provided the usual precautions to avoid frequency change due to the
load are observed.

8.13 The Franklin oscillator

A circuit due to Franklin'®? which has excellent frequency stability
is shown in Fig. 8.16. Although developed independently, it differs
from the Gunn circuit mainly in that the two tuned circuits are
replaced by load resistors, and that the resonator is very loosely
eoupled to the resulting driving system because C; and Cs have
capacitances of only about 1 uuf each.’® Limiting occurs prineipally
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Fic. 8.16. The Franklin oscillator.

in the tube at the left, and the other tube may well be provided with a
cathode biasing resistor to increase the impedance which the grid
presents to Cy. This is desirable because the grid conductance in
conjunction with the input capacitance affects the phase angle of the
equivalent voltage divider, thereby affecting the frequency.

At frequencies near 500 ke, where the circuit is usually operated, the
load resistances may be made so small with respect to the associated
capacitances that the phase shift in each stage is substantially 180°.
The operating frequency is then very nearly the natural frequency of
the resonant circuit. The arrangement has the advantages that tun-
ing may be accomplished by means of a single variable inductor or
capacitor, and that one side of the tuned cireuit is directly grounded.
In the original models the tuned circuit was a relatively massive unit
constructed with great care so as to minimize drift due to aging and
temperature change.’® However, the same congtruction could be
used profitably with other circuits, so that the merits of the circuit
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and of the resonator should be considered separately. In both this
and the Gunn circuit it may prove desirable to use a tapped coil as
indicated by the dotted line. This preserves the advantages of a low
impedance level without requiring an inordinately large tuning con-
denser, as discussed in Sections 8.9 and 8.10.

8.14 Electron coupling

In simple triode oscillators the operating frequency varies appreciably
with load impedance. The effect is always present, and takes on
troublesome magnitudes when the frequency must be accurately con-
trolled or the tube must be operated for maximum output. This
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Fi1c. 8.17. Choice of ground point.

difficulty is greatly reduced by the use of multiple-grid tubes such as
tetrodes, beam tetrodes, or pentodes. A basic property of these
tubes, is that all the electrode currents are independent of the plate
voltage, provided the plate is sufficiently positive with respect to the
cathode. To see how this property may be exploited let us examine the
effect of grounding different points in an oscillator.

Figure 8.17 shows a shunt-fed Hartley oscillator grounded respec-
tively at the cathode, grid, and plate. For clarity, an actual physical
ground is shown in each case, although the direct potential of the
cathode ordinarily is small or zero for practical reasons. Here, as in
a preceding section, the operation of the oscillator is not affected
by the choice of the grounding point, since the energy transfer depends .
only upon the relative voltages of the various tube electrodes. Practi-
cal oscillators employ all three arrangements; however, the grounded
plate arrangement is of the greatest present interest.
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The next step in the development is to replace the triode by a cor-
responding ideal tetrode in which the screen and plate are connected
together. It is seen that no change in operation is involved. The
crucial step 1s that there will be no change in operation if the screen and
plate voltages differ in any manner whalever, so long as the plate voltage
never becomes too small. Therefore a load having any phase angle
whatever, or tuned to an entirely different frequency, may be con-
nected in the plate lead without affecting the frequency or amplitude
of oscillation. Oscillator circuits using this idea were introduced by
Dow? and are called electron coupled.

To obtain perfect decoupling it is necessary that perfect screening
exist between the plate and the control grid. If coupling external to
the electron stream is present it allows the load impedance to affect
directly the operating frequency. If coupling exists within the elec-
tron stream the dynamic plate conductance is not zero, and additional
coupling between load and resonator is introduced. Practical tetrodes
and pentodes achieve a close approximation to such ideal shielding.

8.15 Design of electron-coupled oscillators

The principle of electron coupling can be applied to almost every
form of oscillator, ordinarily with good results. However, certain
precautions must be taken if the full advantage of the method is to
be obtained. The electron-coupled Hartley oscillator of Fig. 8.18
serves to illustrate the discussion. In the first place, the maximum
alternating voltage in the output circuit must not exceed Eps or the
plate voltage will fall below the screen voltage during part of the cycle.
Such a situation is objectionable because the plate current is affected
by the plate voltage in this region. Therefore, the impedance of the
plate circuit must be chosen with suitable regard for the applied volt-
ages and the actual amplitude of oscillation.

Because the cathode current is not affected by the plate voltage,
the oscillator portion of the circuit may be designed from a knowledge
of the tube as an equivalent triode, without regard to the division of
the current between screen and plate electrodes. Specifically, the
Sull transconductance of the tube is available for feedback, in contrast with
other arrangements to be described later. Although practical designs
are ordinarily achieved by cut and try, it is clear that a method differ-
ing only in detail from that used in connection with the tuned plate
oscillator may be used to obtain adequate engineering results.

Finally, pentodes with the suppressor internally connected to the
cathode are not desirable in this circuit because the direct capacitance
introduced between plate and cathode at least partially defeats the
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purpose. Beam tubes, which almost always have internal connections,
are objectionable on the same basis, although the direct capacitance is
frequently small enough to be tolerable. Pentodes with available
suppressor leads operate well in this circuit if the suppressor is con-
nected to a fixed (by-passed) potential equal to the maximum alter-
nating voltage of the cathode. Shielding is preserved, and conduction
occurs at times when the cathode and suppressor are at practically
the same potential.

In summary, the optimum tube for Fig. 8.18 is a tetrode with
excellent shielding, a large ratio of plate to screen current, high trans-
conductance, and a high ratio between the safe plate voltage and the
required screen voltage. Available tubes such as the 24A and 36
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F16. 8.18. Electron-coupled Hart- Fi1g. 8.19. ZElectron-coupled pentode
ley oscillator. oscillator.

approximate these objectives reasonably well. Pentodes with separate
suppressor leads are equally desirable and more commonly available.
When a pentode with internal suppressor connection must be used a
neutralization scheme similar to one described in a following paragraph
may be employed.

An essentially different form of electron coupling is shown in Fig.
8.19. The cathode is grounded and the second or screen grid is used
as an equivalent plate in a tuned plate oscillator. In this circuit
the current which flows through the tank circuit to produce oscilla-
tions is not the entire cathode current but is only the fraction thereof
captured by the screen. The effective transconductance to be used
in calculating the performance is given by the approximate relation

gm’ = (gm/ﬁp) < (Leo/Iy), (8.50)

where g., is the normal control-grid-to plate transconductance, 8, is
the class C parameter given in Fig. 8.4, and the average screen and
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plate currents are evaluated at some representative point on the
characteristic.

In designing this circuit it is desirable to use an abnormally low
value of the excitation ratio, in the order of h = 14, so as to obtain
adequate voltages in the control grid circuit without producing large
voltages in the screen circuit. Otherwise, adequate values of plate
current are not produced because the instantaneous screen voltage is
reduced too greatly from its average value. The power output of
this circuit is good, because the alternating plate voltage may be
allowed to approach the total B voltage. As in the circuit of Fig.

L L Creut
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circuit

F1c.8.20. Capacitance compensated electron-coupled tetrode oscillator,
(C3/Cs =h = Cy/Cp).

8.18, however, the load impedance must be suitably controlled or the
proper operating range will be exceeded.

Finally, a good shield between screen and plate is required. Other-
wise, the alternating voltage in the plate circuit would react upon the
frequency of oscillation through the direct screen to plate capacitance.
Pentodes having a relatively fine suppressor mesh are preferred for this
circuit because of their superior shielding. Internal connection is
acceptable because both cathode and suppressor are to be grounded.

If a suitable .pentode is unavailable, the desired result may be
obtained by means of a bridge balance. The method is applicable
to any of the conventional configurations but is most readily explained
in terms of the Colpitts circuit of Fig. 8.20. Under the specified
conditions, the oscillations present in the control and screen grid cireuit
would deliver no current to the plate circuit exeept through the actual
electron stream because the contributions through €4 and C; cancel.
By reciprocity, therefore, reactances which may exist in the plate
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circuit are unable to affect the frequency or amplitude of the oscilla-
tions in the controlling circuit. Ordinarily, C4 represents only the
unavoidable internal capacitance of the tube and C; is a small neutral-
izing condenser adjusted for the desired balance. The pentode
arrangement of Fig. 8.19 is preferable to the balanced arrangement of
Fig. 8.20 because of the larger plate voltages which may be employed
and because of the difficulty of achieving and preserving a suitable
balance.

The basic principles of Figs. 8.18, 8.19, and 8.20 may be applied
with minor changes to a great variety of oscillators. In all cases,
the output circuit may be tuned to a harmonic of the frequency being
generated. If the tube is operating well into class C, as is usually the
case, the output is a substantial fraction of that which would have
been obtained at the fundamental. The design of the load circuit
requires a knowledge of the desired component of plate current, which
may be obtained by applying Fourier analysis to the actual plate
current wave.

8.16 Reactance stabilization of frequency

Both theory and experiment show that the frequency stability of
practical oscillators is improved by the use of small L/C ratios in the
tank circuits. However, where tuning by means of a variable con-
~ denser is necessary, or for various other reasons, it may not be possible

to achieve the required stability in this way. In such cases the reac-
tance stabilization of Llewellyn!®? is useful.

Llewellyn’s analysis is based upon the principle of equivalent
linearization, although the term was not in general use at that time.
He assumed that the tank circuit is entirely free from loss, so that the
power produced in the plate circuit equals the power lost in the grid
circuit, principally in the grid leak. As shown in Section 8.4, the
amplitude of oscillation will automatically adjust itself to such a value
that the loop gain and phase requirements are satisfied. The idealiza-
tions of that section lead to values of plate and grid resistance which
are independent of the applied voltage, but in actual oscillators these
resistances change somewhat with the amplitude of oscillation. In
general, the frequency of oscillation depends somewhat upon the
resistances as well as the reactances present in the circuit. Therefore,
changes in the applied voltages will lead to a change in frequency by
changing the values of the tube resistances.

If, however, the grid and plate vollages are exactly 180° out of phase,
the frequency s independent of the equivalent tube resistances and hence
of the applied voltage. Llewellyn’s paper shows a variety of arrange-
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ments for accomplishing this objective. Unity coupling between the
coils of the Hartley or tuned plate oscillator would clearly meet this
requirement, and Llewellyn also shows how to obtain the desired effect
without actually obtaining perfect magnetic coupling. In the stand-
ard Colpitts oscillator, for example, the desired phase relationship is
obtained by the addition of a small inductance in series with the plate
or grid leads.

The analysis leads to the following logical procedure: (1) Use the
lowest ratio of L/C consistent with the situation. (2) Use the largest
practical grid leak in order to obtain a large value of effective grid
resistance.* (3) Obtain the highest practical coefficient of coupling
between the coils if magnetic coupling is used. (4) Use a compensat-
ing reactor to correct the remaining departure from 180° phase.
Llewellyn and others have obtained very stable oscillators following
this procedure.

The foregoing discussion does not include the effects of intermodula-
tion, as discussed in Chapter 4. In most class C oscillators the equiv-
alent reactance due to intermodulation is quite small. Since the
harmonic content is nearly independent of the applied voltage, the
frequency variation with respect to applied voltage due to this cause is
relatively unimportant, in marked contrast to the dynatron and
related oscillators. Additional information on this subject is pre-
sented by Jefferson.15¢

8.17 Resistance stabilization of frequency

Oscillators employing resistance stabilization can be made to produce
remarkably constant frequency, especially in or somewhat above the
audio range. A Hartley oscillator employing resistance stabilization
is shown in Fig. 8.21. The coil is tightly coupled and has a large
value of @, and the L/C ratio is low. The grid bias is fixed at a value
slightly below the optimum value for class A operation. The feed-
back resistor R;, which is high compared to the plate resistance of
the tube, is adjusted to a value only slightly smaller than that cor-
responding to the threshold of oscillation. Under these conditions
the tube operates with low distortion, the voltage across the tuned
circuit is very nearly free from harmonics, and the frequency is quite
insensitive to the conditions of the tube and to variations of the applied
voltage. i
Although the superior performance of such oscillators is in large
part due to the care with which they are ordinarily built and operated,

* Intermittent behavior, which may occur if the grid leak is too large, is discussed
in Chapter 10.
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the feedback resistor contributes to this performance in two ways. It
provides a very practical and reproducible means for controlling the
feedback to a value near the threshold of regeneration, and it isolates
the tuned circuit from the plate of the tube, thereby improving the
wave form and minimizing the reaction of varying plate resistance
upon the output frequency. Because of the fixed bias and the absence
of a grid leak the amplitude of oscillation is limited in a way which is
quite different from that in other oscillators. During oscillation
build-up the operation is almost linear, and the ordinary exponential
expansion occurs; the grid draws no current, and the plate current
increases very slightly because of unavoidable curvature in the tube
characteristics. The amplitude stabilizes at such a value that the
grid is driven positive at the peak of each cycle, at which point the

8

Fi1c. 8.21. Resistance-stabilized Hartley oscillator.

marked loading in the grid circuit rapidly decreases the loop gain.
The average bias is fixed by the battery so that a small change in
amplitude produces a relatively great change in grid ecircuit loss.
Accordingly the amplitude stability is quite good.

Terman3® recommends the use of a triode having low plate resistance
and an amplification factor between 6 and 10 in conjunction with a
center-tapped, tightly coupled, high @ coil. The recommended feed-
back resistor has a value between two and five times the plate resist-
ance. Finally, the plate choke and the blocking condenser should
have reactances respectively very high and very low compared to the
plate resistance. It appears probable that desirable results could
also be obtained with a pentode if the plate choke were replaced by a
suitable load resistor.

8.18 Phase shift oscillators

Inconveniently large coils and condensers are required to generate the
lower audio frequencies in ordinary LC oscillators. The use of resist-
ance and capacitance permits the generation of these frequencies
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much more conveniently. A very simple circuit for obtaining oscilla-
tions in a resistance-capacitance circuit was deseribed by Ginzton and
Hollingsworth, ! and is shown in Fig. 8.22.

At first glance it may seem surprising that such a circuit can generate
harmonic oscillations. It is well known that a passive circuit of
resistance and capacitance is completely incapable of oscillation, and is
characterized by roots which are real and negative. As shown in
Chapter 5, however, the addition of gain or negative resistance in the
form of a vacuum tube greatly modifies this situation. For appropri-
ate values of the parameters the roots become pure imaginary, and
the Nyquist plot passes through the point (1, 0) corresponding to
sustained oscillation.
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Fia. 8.22. Phase shift oscillator: (a) circuit arrangement, and (b) equivalent
circuit.

The conditions for sustained oscillation may be determined by means
of linear equations in connection with the equivalent circuit of Fig.
8.22b. As in other oscillators, the actual gain provided is in excess of
that calculated, and nonlinear operation results. However, the oper-
ating frequency corresponds very eclosely to the calculated value,
and the gain equation serves as a basis for the design of practical
circuits.

The algebra presented by Ginztom and Hollingsworth is relatively
complicated, and is omitted here in the interest of space. However,
the results of their calculations for a variety of circuit arrangements are
presented in Fig. 8.23. Throughout this figure the symbol A repre-
sents the amplification which would be observed for the given tube
‘operating with the load resistor R;. That is,

A = R, /(Ry + 1p). (8.51)
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The arrangements which employ condensers in shunt are particu-
larly attractive for variable-frequency oscillators because variable
condensers usually have a grounded ecommon rotor connection. And
variable condensers are preferred to variable resistors because they
are much more stable and reproducible. Moreover, the gain equation
is unaffected if all condensers are varied alike because the frequency
readjusts itself so that the susceptances are not varied. It is tmportant
to note that in this, as in other RC oscillators, the frequency varies inversely
with the RC product so that relatively wide frequency ratios are easily
covered.
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Fia. 8.23. Equations for design of phase shift oscillators.

It is easy to show that the amplification A required for oscillation is
decreased by the use of more RC networks in tandem and by pro-
gressively increasing the impedance level of the networks. The
results which may be secured in this way are discussed by Johnson.15?
Additional design information is given in papers by Hinton,4® Sulzer, 301
Vaughan,?? and Artz."? '

The results of Fig. 8.23 do not include the effects of grid-to-plate or
other capacitances in the tube. These are sure to become important
at high frequencies, and may be significant at the upper audio fre-
quencies if very high impedances are used to obtain such frequencies
with variable air condensers of moderate capacitance.

The frequency stability of phase shift oscillators is adequate for
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nearly all audio frequency applications. The frequency is quite
insensitive to the applied voltage if the tube is operated with only
moderate gain margin. And the use of good components renders the
frequency reasonably stable with respect to temperature and aging.

Related to the phase shift oscillators are the polyphase resistance-
capacitance oscillators of Bartlett.??2 These are useful in a few special
applications where polyphase sinusoidal currents of variable frequency
are required. A great variety of such arrangements are possible.

8.19 The DeLaup oscillator

A resistance-capacitance oscillator of exceptional simplicity has been
devised by DelLaup.”™ The circuit arrangement, shown in Fig. 8.24,
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Fic. 8.24. Resistance-capacitance oscillator using negative transconductance:
(a) circuit diagram and (b) simplified equivalent circuit.

is identical with that of the van der Pol relaxation oscillator described
in Chapter 12. It is of little practical importance because the fre-
quency stability and wave form are very poor unless the parameters are
controlled within narrow limits. It is discussed because analysis of
this critical behavior serves to explain the behavior of other oscillators.

The simplified equivalent circuit is shown in Fig. 8.24b, where R;
represents the parallel combination of R; with the dynamic screen
grid resistance of the tube. The use of g, for the transconductance
from suppressor to screen grid leads to the group of equations:

t -
. 12
'LR3 = ﬁ a dt, (852)

t .
. 7
iRs = i.R1 + L 0_11 dt, (8.53)
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and
gme = 13 = 11 + 12 + 1. (8.54)

Differentiating eq. 8.53 and substituting to eliminate the current and
voltage variables, we obtain as the differential equation of the system

4% ( 1 1 1 g,,,> di i
dt? + CoR; T C1R:, + CoRy  Co/ di T C1CsR iRy 0. (8.55)

The substitutions

Cq = nCy, (8.56)
2 L (8.57)
= —) .
“0 T C1C:R1Rs
and
= woRiC) = = (8.58)
m = wolvy 1—L‘,0R302 .
reduce the differential equation to the form

2, .
%t—:-i—(mwo—}—‘—;—:—}—:—;; —‘é,—’Z)%—;+woﬂi=o. (8.59)
It is readily shown that sustained oscillations oceur if the coefficient of
the first derivative is zero and that their frequency is given by eq. 8.57.

For other values of the transconductance the oscillations expand or
contract exponentially and the period is increased. Consistent with
Chapter 2, we find that the roots of the auxiliary equation traverse a
circle in the complex plane and are displaced from the horizontal axis
by an angle ¢ given by

—t -1\/ dm’n? -1 (8.60)
¢ = fan (m*n + m 4+ n)2(1 — k)2 :

where
MR 3gm

represents the ratio of the actual transconductance to that required
for sustained oscillation.

The angle ¢ can be real, corresponding to sinusoidal oscillations,
only if the fraction in eq. 8.60 is greater than one. This will be true
over the widest range of the gain variable k if

m=1 and n> 1. (8.62)



188 CONVENTIONAL HARMONIC OSCILLATORS

These relationships justify the usual procedure of making

R1 > R3 and Rlcl = RzCz = l/wg. (863)
Subject to these conditions ¢ is real, provided
0 <k <2 (8.64)

Decaying sinusoidal waves are produced if 0 < k& < 1, expanding
sinusoidal waves are produced if 1 < k < 2, and relaxation oscillations
are produced if £ > 2.

Figure 8.25 shows Nyquist plots and the system roots for the circuit
of Fig. 8.24 having parameters consistent with eq. 8.62. Condition A

+j1 B_-|4_
//,/ \\\
C ’ k
B \A ! [} Y
¥ i\C
1 2 4 He
\ /
\\ //
\\ B //
-j1 ~__JA .~
(a) (b)

F1a. 8.25. Properties of the circuit of Fig. 8.24: (a) Nyquist plot and (b) position
of roots in complex plane.

represents sustained oscillation (X = 1) whereas B and C represent
k = 14 and k = 2, respectively.

8.20 Nyquist diagrams and system roots

The analysis of the preceding section has used the roots of the auxiliary
equation to explain the otherwise puzzling fact that the DeLaup oseil-
lator is very critical as to the transconductance of the tube. The
same general analysis is now applied to other oscillators. The tuned
plate oscillator, which has already been extensively studied, is treated
first.

If the grid leak-condenser combination of Fig. 8.1 is replaced by
a fixed bias battery, we may obtain the Nyquist diagram by inspection.
The plot is a circle with diameter proportional to the amplification
factor of the tube and a frequency scale uniquely fixed by the effective
Q of the tank circuit. It therefore differs from that of the DeLaup
oscillator only in that she rate of change of phase with respect to
frequency is much greater. As shown in Chapter 5, this behavior is
associated with roots much nearer the real frequency axis and cor-
respondingly improved frequency stability.
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The extent to which x may be increased above the value correspond-
ing to the threshold of oscillation before relaxation oscillations occur is
of importance. That it is a large ratio is inferred from the Nyquist
plot. The exact ratio is obtained by finding the roots of the auxiliary
equations.

Referring to eq. 5.25, we see that the roots are pure real provided

dug? = (Mgmwo® — G/C)?, (8.65)

where G = 1/r, + 1/R, and «q® = 1/LC. Similarly the roots are
pure imaginary corresponding to the threshold of oscillation, provided

Mygnwe® = G/C. (8.66)
Taking the ratio of these two transconductances, we have
k= 1+ 2uwC/G. (8.67)

The last factor is recognized as twiee the selectivity of the tuned
circuit as loaded by the dynamic plate resistance. Therefore, we
conclude that relaxation oscillation can occur in a tuned plate oscillator
only if the transconductance exceeds the threshold value by the factor
(1 + 2@), which is readily made large in practical systems, so that a
generous margin exists.

Oceasionally we wish to damp the oscillation of a tuned circuit by
means of a vacuum tube. This can be accomplished by reversing the
sign of M or g, in eq. 8.65; critical damping results when this reversed
equation is satisfied.

Actual oscillators are almost never so simple as the system used to
develop these results. Consideration of the grid leak and condenser
combination always leads to an additional negative real root. More-
over, additional meshes in the system and roots in the corresponding
equation are contributed by the effects of parasitic inductance or
capacitance and imperfect coupling in realizable transformers. How-
ever, the results obtained give a correct general idea of the situation
in the more usual forms of oscillators.

The phase shift oscillator presents an intermediate situation.
Treatment of the general case will not be attempted because algebraic
difficulties cloud the results unduly. If, however, we premise that
each section of the phase shift network of Fig. 8.22 has an impedance
large compared to that of the preceding one, we can obtain the Nyquist
plot and the roots reasonably simply.

The differential equations for the several meshes of the system, using
p = d/dt, have the common form

es/e3 = e3/fes = esfe; = 1 4 1/pCR. (8.68)
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Assuming that r, >> R, or that R, represents the parallel value of the
two resistors, we have

e4 = —gmer1Ry. (8.69)
Elimination of the voltage variable leads to the system equation
(14 1/pCR)® + gnBy = 0. (8.70)

As is well known, this equation may also be interpreted as the auxiliary
equation which yields the desired roots. Let us examine it in this

0654
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Fi1a. 8.26. Variation of roots of phase shift oscillator (plot of p relative to 1/CR).
Fia. 8.27. Nyquist diagram for a three-section phase shift oscillator.

light. First, with the tube off, corresponding to g,» = 0, the root is
triple and has the anticipated value

p = —1/CR. (8.71)

For the value of transconductance which corresponds to the threshold
of oscillation, p must be a pure imaginary, whereas the other coef-
ficients of eq. 8.70 are pure real. This is possible provided the cubed
quantity represents a complex number having an angle of 60°. That
is, if
+j
P=Vacr

Substitution shows that eq. 8.72 satisfies eq. 8.70, provided g, R, = 8.
As g, is varied from zero to infinity, the three roots at —1/CR
separate, tracing the paths shown in Fig. 8.26, and reconverge at the
origin. The exceptional feature of this circuil, which behaves differently
from any previously studied, ts that it cannol generate relazation oscilla-
tions because p cannot become real and positive.
The Nyquist diagram for the phase shift oscillator is readily plotted

(8.72)
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because it represents three times the phase and attenuation character-
istic of a single RC section, modified by a negative factor A, which is
the inherent amplification of the tube, as shown in Fig. 8.27. Itis an
interesting fact, which may or may not have significance, that for the
systems here studied there is a considerable resemblance between the
Nyquist plot and the path traced by the roots as the transconductance
is varied.

8.21 Beat-frequency oscillators

A beat-frequency or heterodyne oscillator consists of two separate
oscillators and a modulator or mixer for producing an output at the
difference (or occasionally the sum) of these frequencies. The arrange-
ment is widely used for generating audio frequencies, but is also
applicable to a variety of other applications for measurement and
signaling. Arbitrarily low frequencies can be produced in this way
provided that adequate measures are taken to avoid synchronization
between the two oscillators; however, the resulting frequency stability
is relatively poor. To obtain reasonable stability it is customary to
make the two oscillators as stable and as nearly identical as possible.
Thus the two drift in a similar manner, and the difference is relatively
constant. Ordinarily, the frequency of the oscillators is about ten
times the maximum output frequency.

A major problem in the design of heterodyne oscillators is the
elimination of spurious frequencies in the output. Unless suitable
precautions are taken, the output of each oscillator contains the com-
plete series of harmonics, and the modulator produces all possible
sum and difference frequencies. If we represent the oscillator funda-
mental frequencies as a and b, respectively, and assume a > b, we
find in addition to the desired difference frequency a — b, components
at 2a — 2b, 3a — 3b, 3b — 2a, etc. A great many other frequencies
are also produced, but are so remote that they are readily removed by
means of filters. The terms such as 2a — 2b are most readily sup-
pressed by designing the oscillators so that they produce practically
pure sinusoids, and by designing the modulator so that it produces
only sum and difference frequencies. Linear oscillators are suitable
from the standpoint of frequency stability and low harmonic constant.
A multiple-grid tube, such as the FM-1000, in which the input is
applied to separate electrodes each of which exerts a lsnear control over
the electron stream is suitable for the modulator. The detailed design
of heterodyne oscillators is beyond the purpose of this work. The
interested reader is referred to papers by Slonziewski,?$® Moore,?'$ and
Kirby.1"3
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8.22 Decade oscillators

An oscillator which is convenient for many purposes is arranged so
that the operating frequency may be set by means of additive decade
dials similar to those used in ordinary resistance boxes.®> A very high
accuracy of setting is achieved in this way without recourse to elaborate
dial mechanisms; though the actual frequency stability is evidently
no better than that inherent in the circuit. The method depends
upon the fact that the frequency of resistance-capacitance oscillators
varies tnversely with some RC product or directly with the reciprocal
product of conductance and stiffness GD. A decade oscillator results
if an appropriate decade of conductance or stiffness is used. Such
decades may be made by connecting resistors in parallel or capacitors
in series by switching arrangements appropriate respectively to
capacitance and resistance decades.

If, for example, the phase shift circuit of the fifth line of Fig. 8.23 is
to be used, it is appropriate to use three-gang switches to vary the three
stiffness decades required. Because only four separate capacitors
are required for each decade, the number of elements required is not
prohibitive. The same objective is reached in the Wien bridge oscil-
lator of Chapter 7 by means of only two stiffness decades. An oscil-
lator employing this arrangement has been described by Young.3!

8.23 Low-frequency oscillators

Oscillators of the phase shift variety are readily adjusted to operate at
frequencies as low as about 10 cycles; and substantially lower fre-
quencies may be generated in this way if suitable precautions are
taken. The most important single factor is leakage, which may occur
in the condensers or in the associated elements and leads. The series
capacitor arrangement indicated in Fig. 8.22 is preferred at low fre-
quencies because it is little affected by parasitic capacitances and leak-
age conductances. Using this arrangement and a thermistor amplitude
control, Fleming® has produced a calibrated oscillator having low
harmonic output and good stability in the frequency range of 0.9
to 10,000 cycles.

At still lower frequencies it is possible to employ the thermal time
constant of a thermistor as the frequency-controlling parameter.
Using a 400-uf condenser and a Western Electric 1-B thermistor,
Stone?¢® has produced oscillations variable over the frequency band of
0.02 to 0.1 cycle. A relatively pure wave form at an adjustable-
frequency is obtained by varying the feedback provided through a d-c
amplifier.

Oscillations lower in frequency by another order of magnitude may
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be obtained by means of capacitances and mechanical relays. Because
the system is inherently nonlinear, a pure wave form is obtained only
if adequate filtering is provided. Means for producing such oscilla-
tions are described by Ives.154

8.24 Wide-range oscillators

Although it is possible to obtain a frequency which varies over a wide
ratio by means of the heterodyne method, it is sometimes desirable to
achieve the same result in a different way. Methods for directly
producing oscillations over wide-frequency ratios have been devised
by Anderson’ and by Willoner and Tihelka.3

The oscillator due to Willoner and Tihelka is of the phase shift type,
as shown in Fig. 8.28, but it uses an artificial line of inductance and
capacitance rather than of resistance and capacitance. The trans-
former produces a stepdown so that the line may operate at a conven-
ient impedance level; it does not produce a phase reversal. Limiting
is produced in the tungsten lamp, which is heated by the alternating
current fed to the phase-shifting line. Oscillation occurs at a fre-
quency such that 180° phase shift is produced in the portion of line
included in the oscillating loop in accordance with the setting of the
potentiometer P. It appears that an even wider range of adjustment
could be secured by means of a sliding contact on a continuously dis-
tributed line.

The ‘“‘seven league” oscillator of F. B. Anderson’ achieves a com-
parable result in a somewhat different manner. The basic element of
this system is a bridge in which the transmission through a complicated
RC network is partially balanced by a simple voltage divider. The
general configuration and response of the bridge is shown in Fig. 8.29.
By properly proportioning the six RC combination it is possible to
secure the characteristic indicated, in which V, the component of Vs in
quadrature with V1, is almost constant over a very wide band of frequencies.
Therefore, for each setting of the potentiometer and associated voltage
Vs, the frequency adjusts itself so that the desired quadrature relation-
ship exists. Oscillation is obtained by using two of these bridges in
tandem to secure the 180° phase reversal required in ordinary vacuum
tubes. The frequency of oscillation varies approximately logarithmi-
cally with the setting of a linear potentiometer.

The actual circuit configuration, shown in Fig. 8.30, is somewhat
complicated by the fact that vacuum tubes are used to obtain high
impedances to prevent interaction between bridge arms. Tubes T
and T, serve as a two-input amplifier to take the required difference
V3 — Vg = Vi The output of T'; represents the amplified quadrature
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voltage Vo in terms of Fig. 8.29. This voltage applied through a simi-
lar bridge to T's and T’y produces an output which may be thought of
as Vi. A single rather than double reversal of phase in the loop is
secured by taking the output from T3 rather than 7', as would be
required for symmetry.

The general method is applicable over the frequency range 0.01
to 107 cycles, although it appears unlikely that the entire range should
be attempted in a single unit. The frequency is stable to about 2 per
cent and may be set to an accuracy of about one-half per cent. The
tracking requirement on the two-gang potentiometer is not severe.
Excellent wave form is preserved by use of a thermistor amplitude con-
trol, and the output is maintained substantially constant over the
entire frequency range by means of a suitable equalizer and additional
thermistor.

PROBLEMS

8.1. A triode oscillator similar to that of Section 8.5 has the parameters p = 70,
r, = 105 7, = 108, E, = 250, h = 10, 6, = 50°, and y = 0.75. Calculate the
operating conditions, grid leak resistance, and resonator parameters, assuming no
useful power output, @ = 107 and @ = 50.

8.2. Repeat Prob. 8.1 for a Colpitts oscillator.

8.8. Develop the loop-gain equation for the tuned-grid oscillator, assuming the
grid coil is shunt-loaded and taking account of grid rectification.

8.4. Referring to the numerical example of Section 8.5, calculate the frequency
deviation produced by adding one micromicrofarad to the plate capacitance.

8.6. Referring to the numerical example of Section 8.9, calculate the frequency
deviation produced by adding one micromicrofarad to the grid capacitance.

8.6. Develop a numerical example of a Meissner oscillator corresponding to
Prob. 8.1.

8.7. Develop a numerical example of the Franklin oscillator based on pentodes
with g. = 2000, a 500-kc resonator with @ = 150 and C = 1000guf, and coupling
condensers of one micromicrofarad each.

8.8. Explain clearly why the transconductance available to produce oscillation
is different in the circuits of Figs. 8.18 and 8.19.

8.9. Verify the results presented in the last line of Fig. 8.23.
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CRYSTAL-CONTROLLED
OSCILLATORS

Crystal-controlled oscillators are characterized by the use of a
piezoelectric erystal rather than a tuned circuit as the frequency-
determining element. Logically, therefore, they are merely har-
monic oscillators, and might well be classified with the other osecil-
lators of that group. They are treated separately here because
their properties are significantly different from those of other oscil-
lators and because separate treatment is customary. The outstand-
ing property of crystal-controlled oscillators is an exceptional degree
of frequency stability. This is a direct result of the high @ and low
temperature coefficient of the crystal unit employed. The differ-
ence, although of degree rather than of kind, is so great as to justify
separate consideration.

Because the frequency is principally determined by the crystal, it is
possible to obtain relatively simple expressions for frequency stability
by combining appropriate partial derivatives. This procedure is
illustrated in the following sections.

The subject matter of the chapter was arranged with a view to pre-
senting a number of useful ideas in a logical order. It is perhaps unfor-
tunate that the most widely used circuits operate in a relatively com-
plicated manner and are therefore described near the end. The
reader who wishes an independent and fairly elementary discussion of
erystal oscillators is referred to the paper by Anderson.?

9.1 The transformer-coupled oscillator

The circuit of Fig. 9.1 is chosen to introduce the subject of erystal

oscillators because 1t illustrates several basic and important ideas.

Although applicable over a wide range of frequencies, it is most useful

at frequencies between about 20 and 150 Mec in conjunction with

erystals operating at series resonance on an overtone of the thickness-
197
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shear vibration.2?®¢ To obtain these frequencies the capacitances of
the grid and plate circuits are reduced to the minimum possible value,
and the transformers consist of small single-layer air-core solenoids.
The autotransformer arrangement is favored because it leads to a desir-
able high coupling coefficient between low- and high-impedance wind-
ings. The tube operates in class C with grid-circuit limiting, and the
useful load is represented by the resistor R in shunt with the plate

it
A
x
j h
0 w

Lg

- (b)

Fre. 9.1. Transformer-coupled oscillator: (a) schematic and (b) idealization for
analysis.

transformer. The operation differs from that of the Meacham circuit
largely by the fact that the circuit resistances degrade rather than
enhance the effective value of erystal Q.

It is assumed that the tube is a pentode operating in class C, with
the effective transconductance reduced to ¢’ by bias resulting from
grid current, and that the transformers are loss-free, have negligible
leakage inductance, and are resonant with the associated plate and
grid capacitances at the operating frequency. Fortunately, the effect
of leakage inductances present in physical transformers is small and
can be canceled by assigning an appropriate value to Cs. The useful
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load is represented as a resistor in shunt with the plate transformer;
however, it will be shown that a tuned load cireuit, magnetically
coupled to the plate coil, has several important practical advantages.
Finally, it is assumed that the holder capacitance, Cy, of the crystal is
negligible or is compensated by methods described later.

Analysis of the conditions for oscillation is facilitated by reference to
Fig. 9.1b, in which the erystal is replaced by its series resistance, and
the useful load and grid-circuit losses are referred to the low side of the
transformers. It is convenient and desirable to introduce at this time
the @ degradation factor D, which is the ratio of the intrinsic selectivity
of the crystal to its selectivity in the circuit. This parameter may be
thought of as the inverse of the @ magnification factor of the Meacham
bridge, and is useful in the analysis of many oscillator circuits. In the
present. case it takes the form

D= (R1+R2+R3)/R1= 1+ m+ n. (91)

Because the tube operates in class C with grid current, and because
transit-time loading is important at the higher frequencies, the tube
requires an appreciable driving power, which is represented by R: in
Fig. 9.1b. Because the plate load impedance represented by Rj3 is
limited by stability and other considerations, the power gain of the
tube is always finite and may be rather low. The equilibrium ampli-
tude is established in the grid circuit; thus, it is appropriate to express
the power in terms of the rms grid voltage. On this basis, the grid
driving power, useful power output, and power dissipated in the crystal
are, respectively,

P, = Vg2/N22mR1, (92)

Py = V,2(1 + m)?/N*m?nR,, (9.3)
and

P,, = ng/N22m2R1. (94)

The power gain G of the tube is a convenient and important parameter;
it is given by

G=(Ps+P.+Py)/Ps=1+1/m~+ (1 + m)¥/mn. (9.5)

In previous discussions it has been assumed that the power-handling
capacity of the resonator was, or could readily be made, adequate. In
crystal oscillators this is rarely true, and the ratio of output to erystal
power must be large if any considerable power output is to be obtained.
In the present circuit this important ratio is

Po/P. = (1 + m)?/n = GD — G — D. (9.6)
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It is evidently increased by making m large and » small, and can be
relatively large only if both G and D are considerably in excess of unity.

The foregoing relationships all assume that oscillation occurs at the
series resonant frequency, a desirable condition. With this assump-
tion we may show that the transconductance required for sustained
oscillation, that is, unity loop gain is

gml = D/R]NlNznm. (97)

Other parameters of interest are the impedances faced by the plate and
grid, which are, respectively,

R, = Ni’Ri(n + mn)/(1 + m + n), (9.8)
and
Ry, = N2Ri(m + mn)/(1 + m + n). 9.9

9.2 Design considerations in the transformer-coupled oscillator

There are at least three important objectives which govern the design
of this and other crystal oscillator circuits, namely: (1) good frequency
stability; (2) large power output; and (3) ability to operate with crys-
tals having substantially different frequencies. It will be shown that
best frequency stability is achieved by obtaining appropriately low
products DR, and DR,, that best power output requires increases of
R, and R, at a sacrifice of frequency stability, and that operation with
crystals varying over the widest possible band of frequencies requires
that R, and R, be decreased, again at a sacrifice of frequency stability.
In Section 7.13, on the Meacham oscillator, it was shown that the
variation of loop phase shift with respect to frequency is directly
proportional to the effective @ of the resonator, and that the phase
shift produced by an increment in plate or grid capacitance is directly
proportional to the associated impedance. Therefore, consistent with
any given erystal @ and tube transconductance, best frequency stabil-
ity is obtained by proportioning the circuit so as to minimize the
products of resistance and @ degradation. If we assume that the
plate capacitance is k times more stable than the grid capacitance, we

should set
R, = kR, (9.10)

The problem, then, is to minimize the product DR, consistent with
eq. 9.7. Combination of egs. 9.1, 9.7, 9.8, and 9.9 with 9.10 yields

R,D = (Vk/gn')(1 + m 4+ n) V1 + m)(1 + n)/mn. (9.11)

From the symmetry of this relationship we see that the minimum value
will occur only if m = n. With this substitution the derivative of eq.
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9.11 is equal to zero, provided
m=n=34V2 (9.12)

That is, mazimum frequency stability with respect to incremental varia-
tions of grid or plate capacitance exists ¢f m = n, D =1 + V2 and
N, = Vk N,. Because eq. 9.12 corresponds to a low ratio (only 4.12)
of output to crystal power, it is often desirable to deviate from the
optimum conditions. Fortunately, the maximum is a broad one so
that a great increase in power ratio is obtained at a small sacrifice in
stability. For example, R, D is increased only 29 per cent by setting
n = 0.3 and m = 1.5, in which case Py/P, = 21.

The frequency stability of the transformer-coupled oscillator with
respect to increments of grid (or plate) capacitance is readily deter-
mined from eqs. 7.76 and 7.80. Note that ¢ is smaller, not larger,
than 8. The resulting expression is

d_Cg —_ ﬂ (9.13)
do/w  wDR,

The ability of the circuit to operate with crystals having different
frequencies depends mainly upon the phase shift introduced by the
plate and grid capacitances, hence upon R, and R,. Therefore, it is
desirable to make B, and R, as small as possible consistent with the
specified value of ¢,,’. Substitution of eqgs. 9.1 and 9.7 in eqs. 9.8 and
9.9 yields

N1 1 + m
RP - ]\]—2 mgm/ (914)
and
N2 1 + n
Ry = N (9.15)

These expressions have no minimum, but approach 1/g,," as m and n
become large. Evidently, there is little profit in giving either m or
n a value in excess of 4, which degrades the frequency stability by a
factor slightly less than 2. When the grid and plate capacitances
are unequal the impedances should be adjusted so that the RC prod-
ucts, and hence the bandwidths, are approximately equal.

In the circuit of Fig. 9.1 the loop phase shift of the system, exclusive
of the crystal, departs rapidly from zero if the frequency deviates
from that to which the plate and grid circuit are tuned. However,
it is possible to make the loop phase shift quite small over a consider-
able frequency band by removing the physical load resistor and
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coupling a suitably tuned load to the plate winding. The method is
not applicable to the grid circuit because the conduction and capaci-
tance of the grid are not separable. Therefore, it is often desirable to
make the natural bandwidth of the grid circuit somewhat greater
than that of the plate circuit; and it is sometimes possible to over-
compensate the plate circuit,

The bandwidth over which the phase shift may be controlled is
limited by the impedance level and capacitance of the plate circuit.
The necessary design relationships may be derived directly'®® or by
applying the band-pass transformation to the familiar shunt-peaked
video interstage network. However, the following rules, based on
that procedure, are sufficient in ordinary situations. (1) The total
useful bandwidth wp is 3/(4R,Cy). (2) The primary and secondary
are both tuned to wg, the geometric mean of the useful band. (3)
The secondary selectivity @ is (3/4)woR,Cp. (4) The primary to
secondary coupling coefficient k is 1/ V1 + (4/3)Q%.  (5) The phase
shift reaches 20°, and the gain rises about 2 db at the edges of the band.
A useful bandwidth of 20 Mc may be obtained with the 6AX5 pentode
in a carefully adjusted circuit.

Because the grid (or plate) transformer must produce a phase
reversal, it is possible to balance the effects of grid-plate and crystal-
holder capacitance. It is readily shown that the required relationship
is

Co = N1iN2Cyp. (9.16)

Fortunately, this relationship is consistent with reasonable values of
circuit parameters. When this condition is approximated the circuit
has little tendency to generate spurious oscillations of any kind.

Alternatively, the effect of Cy may be largely eliminated by anti-
resonating it at the operating frequency with a low-Q coil. Finally,
this physical inductance may be eliminated by providing a suitable
degree of magnetic coupling between plate and grid transformers.

Limiting ordinarily occurs in the conventional manner by rectifica-
tion in the grid circuit. However, if the grid circuit impedance is
made low in the interest of frequency stability or broad-band opera-
tion, the level of limiting may be too high for the crystal unit. This
difficulty may sometimes be avoided by lowering the plate (not
screen) voltage to a value near the knee of the pentode characteristic.
The effective transconductance then decreases rapidly with increase
of amplitude so that limiting occurs ever though the grid is never
driven to cutoff.

A numerical example may prove helpful. Let us assume a 70-Mc
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crystal having a series resistance B; = 100 ohms. A 6AKS5 pentode
having its effective transconductance reduced to 2000 from the nominal
value of 5000 micromhos is suitable. The input and output capaci-
tances are about equal, but the grid circuit capacitance is considerably
the less stable. Therefore, as a compromise between stability and
wide-band operation, let us set k = 21in eq. 9.10. The choicesn = 0.3
and m = 1.5, corresponding to Py/P, = 21, also represent a reasonable
compromise between stability and power output. The foregoing
assumptions yield as the operating conditions: B, = 1900, R, = 950,
R3 = 30, R2 = 150 Oth; N]_ = 8.42 and N2 = 3.70.

Assuming @ = 10,000, an increment of 1 uuf in the grid capacitance
or ¥4 puf in the plate capacitance will lower the frequency by 58 ppm.
If limiting occurs at 3 rms grid volts, the power output and the crystal
power are, respectively, 61 and 2.92 mw. A supply voltage of 75 for
screen and plate is approximately correct. The plate load should be
provided by inductive coupling. The grid impedance will be at least
partially provided by rectification and transit-time effects; but addi-
tional conductance may be required. The effects of erystal-holder and
grid-plate capacitance are balanced if Cy and C,, have the reasonable
values 7.5 and 0.24 uuf. For a more detailed treatment of high-
frequency oscillators the reader is referred to a report prepared for the
Signal Corps by the author.3¢

9.3 The C.I. meter circuit

The circuit of Fig. 9.2 was developed for the measurement of the
effective series resistance of crystal units in an arrangement called the

[ -ﬂz;]-?—mmv

Fic. 9.2. The C.I. meter circuit.

“crystal impedance meter.”” The measurement is based upon a
substitution procedure in which the frequency and amplitude of oscil-
lation are unchanged when. the crystal is replaced by a resistance or
specified resistance-capacitance combination. Other oscillator circuits
may also be used for this purpose, but the present circuit is particularly
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suitable because the tuned circuits remove the harmonic currents
which might otherwise flow through the substitution resistor and
thereby produce error. Conversely, the present circuit is useful for
applications other than measurement.

The circuit may be viewed as a transformer-coupled oscillator in
which the required impedance transformations and phase reversal are
provided by a pair of quarter-wave artificial transmission lines con-
nected in tandem. Moreover, R and R3 are normally so low that C»
and C3 have negligible effect and may be omitted.

It is well known that a quarter-wave loss-free transmission line has
the property of impedance inversion. Therefore, high values of
plate and grid impedance are associated with low values of B3 and Ro.
Moreover, the impedances faced by the crystal are very low provided the

o
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F1c. 9.3. Alternative form of transformer-coupled oscillator.

impedances of grid and plate are very high. It is in this one respect
that the present circuit differs most significantly from the transformer-
coupled circuit.

The load resistor R3 has a value of about 10 ohms in typical situa-
tions. Because such a resistance is rarely identifiable with a useful
load, we are led to examine other arrangements. Usually, it is desired
to drive another vacuum tube serving as an amplifier or frequency
multiplier. Although it is possible to connect the amplifier grid to
the oscillator plate, it is undesirable to do so because of the associated
@ degradation and increased capacitance. It is preferable to use a
second artificial line, which develops a suitable grid-driving voltage by
series resonance, joining the lines at the terminals of C3. Appropri-
ately interpreted, the equations developed in connection with the
transformer-coupled oscillator apply also to the C.I. meter circuit.

Another useful variation of the transformer-coupled oscillator is
shown in Fig. 9.3. The phase relationships correspond to those of
Fig. 9.1, the required reversal being produced by resonance of L, with
C. and C,. The voltage delivered to the crystal is reduced by the
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potentiometer action of C, and C4. The principal advantage of this
circuit over Fig. 9.1 is that no tapped coils are required. The dis-
advantage is that the resulting system is somewhat less flexible and
stable. The equations previously developed apply reasonably
accurately provided the equivalent transformer ratios are taken as

Ny = Cg/(Ca+ C.) and Ny =C/(Cc+ Cp). (9.17)
9.4 The grounded-grid cireuit

A very simple series-mode circuit is due to Butler®! and shown in Fig.
9.4. It may be thought of as a special form of transformer-coupled
oscillator in which no phase reversal is necessary and one transformer
may be omitted. Although operable at ordinary frequencies, this

I— ;= R
®
:
©
J1llli—
) (®)
Fi1e. 9.4. Grounded-grid series-mode oscillator: (a) schematic and (b) equivalent

circuit,

circuit is rarely employed except at relatively high frequencies and in
conjunction with overtone crystals.

The tube may be thought of as a grounded-grid, class C amplifier,
and as such delivers a plate current which is equal to the current
injected at the cathode. Desirable operation, therefore, requires
that a considerable fraction of the total plate current flow through the
load resistor R, and that this loss be compensated by the current
step-up ratio of the autotransformer. As is well known, the impedance
presented to the crystal by the cathode is nearly the reciprocal of the
effective transconductance—a few hundred ohms in typical tubes.
The circuit therefore operates quite well with crystals having series
resistances as high as a thousand ohms. Limiting occurs, as in other
class C oscillators, as a result of the bias developed by rectification in
the grid circuit. However, an additional tendency to limit arises
from the fact that grid current is necessarily robbed from that delivered
to the plate.
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To analyze the circuit, we assume that the cathode-to-ground
capacitance is small or tuned out by the cathode choke, that the direct
plate-to-cathode capacitance is negligible, that the plate transformer
has negligible leakage inductance, and that the plate circuit is tuned
to the frequency at which the erystal is series resonant. The trans-
former is assumed to be ideal, with a turns ratio of N, and the effects of
grid current are neglected. With these idealizations, which are
reasonably approximated in practice, the conditions for sustained
oscillation may be written

N%(ry’ + Ri + uRy)

= —Dar1-™

(9.18)

where r,’ represents the effective plate resistance of the tube as
increased by class C operation. Low values of R are desirable where
good frequency stability must. be obtained at a high operating fre-
quency, but larger values of power output are obtained when R is
comparable to r,’. Low values of r,” and R; and a large value p are
favorable. :

The impedance B; presented to the crystal by the tube is simply

Ve 1 (N — DR
NI u+1' (u+ 1N

The first term, which is often considerably larger than the second, is
nearly equal to the reciprocal of the effective transeonductance.

The impedance R, presented to the other terminal of the erystal is
obtained by taking the parallel combination of the load impedance
and the effective plate resistance of the tube, as modified by the turns
ratio of the transformer. The exact value involves a complicated
expression that is not justified in practice, because the value is closely
bounded by the relations

Ry = (9.19)

Rr,’
N*R + 7))
It is ordinarily possible and desirable to make R substantially smaller

than R, or Ry.
The crystal @ degradation factor is

R R R R

p-fit Bt B B

R, Ry

The most serious limitation of this circuit is that the power gain of a
grounded-grid amplifier cannot exceed the amplification factor of the

<Ry < (9.20)

e

(9.21)
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tube. Therefore, it is hard to obtain a large ratio of output to crystal
power without seriously degrading the frequency stability. It is
readily shown that the approximate form of eq. 9.6 also applies to the
grounded-grid circuit. Thus, we see that values of G in excess of ten
and values of D around three are required to obtain a favorable ratio of
output to crystal power. However, the frequency stability is degraded
by increase of either parameter, so that a compromise is necessary.

In spite of this limitation, the grounded-grid circuit is capable of
excellent frequency stability because the plate capacitance is relatively
stable, the cathode impedance very low, and the crystal @ not unduly
degraded. Ordinarily, the impedance faced by the cathode is so low
that frequency instability due to variation of the cathode capacitance
is relatively unimportant. When this is true, best frequency stability
is obtained by proportioning the circuit so as to minimize the DR,
product. No detailed analysis is offered ; however, results obtained in
connection with the transformer-coupled oscillator indicate that the
value is not critical and good results are obtained if D = 3. Provided
u is relatively large, it is readily shown from eq. 9.18 that R reaches a
minimum when N = 2. This condition is conducive to frequency
stability and broad-band operation on a erystal-substitution basis.

Under some circumstances the impedance R presented by the tube
is either too high or too low for suitable operation with the available
crystal. In this case an additional impedance transformation at the
cathode is desirable. This is most conveniently obtained by sub-
stituting a suitable tightly coupled autotransformer for the cathode
choke, the total inductance antiresonating the cathode capacitance.
A significant improvement in operation may sometimes be obtained in
this way.

The band over which operation is obtained by crystal substitution is
greatly increased if the load is suitably tuned and inductively coupled
to the plate coil. The resulting bandwidth is comparable with that
of the transformer-coupled circuit because the advantage of one
transformer is compensated by the higher impedance level which it
must have. Also, crystal compensation may be achieved by shunting
a coil across the crystal or by providing magnetic coupling between the
plate and cathode coils.

A numerical example, based on the 6J4 triode, serves to illustrate
these points. The normal value of 4 = 55 is preserved, but the plate
resistance is increased from the nominal value of 5000 to 11,000 ohms
by class C operation. A crystal resistance of 50 ohms at 50 Mc is
fairly typical. Choosing a turns ratio N = 9, we have B = 1660 and
Ry = 222 ohms; also, D = 5.4 and G = 5.9. The ratio of output to
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crystal power is thus 20.6. Assuming that the effective value of
crystal current is 5 ma, the output and erystal power are, respectively,
26 and 1.25 mw.

9.5 The cathode-coupled oscillator

The cathode-coupled circuit of Fig. 9.5 is popular because of its
economy of parts, ease of adjustment, and excellent performance.
One tube, T, serves as a cathode follower to drive the crystal from
a low impedance without the use of a physical transformer. The other
tube, T's, serves as a grounded-grid amplifier. The tuned circuit in
the plate lead of T2 serves to select the general frequeney of operation
if the crystal is capable of oscillating in several different modes; with
this single limitation the crystal has almost complete control over the
frequency. Limiting usually occurs by rectification at the grid of the
cathode follower.

A considerable power output at the operating frequency or at one of
its lower harmonics may be taken from the tuned circuit in the plate of
T:. The shielding effect of the suppressor and screen grids is such
that the tuning and impedance level of this circuit have little effect
upon the oscillation; and it is therefore possible to choose these ele-
ments for maximum output.

A triode may be substituted for pentode T with little or no loss of
performance because the control grid is grounded. And a triode is
entirely satisfactory as a cathode follower provided the load circuit is
omitted. In fact, a triode may, with some care, be used for the
cathode follower even when the load circuit is used, provided the latter
is tuned to a harmonic of the operating frequency and does not have
too high an impedance. Triodes are favored principally because of
the compactness achieved by the use of a dual tube. .

Details to be considered in the design of this oscillator are indicated
in Fig. 9.5b. The entire system will operate at zero phase shift and
hence at the natural frequency of the series arm of the crystal, provided

1/wo* = L,Co = LyCxa = LyaCpe (9.22)

and provided the capacitances of the cathode follower are related on
the basis of a resistance-capacitance voltage divider. The internal
impedance of T is nearly equal to 1/g,1, and the load impedance is
substantially equal to R; + 1/gms. Therefore, there will be no phase
whift, provided

gm1(B1 + 1/gm2) = Cr1/Cyrr. (9.23)
Limiting still occurs in the grid circuit of Ty, and suitable values of
resistance and capacitance are indicated. The cathode bias of both
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tubes has been removed by the presence of the compensating coils,
so that it is appropriate to bias T's by means of a grid leak and con-
denser as indicated. Under these conditions the same alternating
current flows in both tubes. Denoting this current by I, we find that
the grid voltage of T'; is given by

V1 = IR,s. (9.24)

By the cathode follower principle of eq. 9.23, the cathode voltage of
T1 18

Vor(By + 1/gms)
Ry + 1/gm1 + 1/gme

The principal advantage of the cathode-coupled oscillator is its
simplicity; the principal disadvantage is that two tubes are required to
obtain the performance given by one tube in other circuits. Moreover,
the cathode impedance of available tubes is upwards of 100 ohms;
therefore the circuit does not perform well with low-resistance crystals.
In most situations a one-tube oscillator followed by a buffer amplifier
will exceed the power output and frequency stability of a cathode-
coupled oscillator.

Viw = (9.25)

9.6 Series-mode circuits for high-impedance crystals

Circuits given by Heegner!** and suitable for use with high-impedance
crystals are shown in Fig. 9.6. They differ principally in the manner in
which the required phase relationship is obtained. In both circuits
the sum of R, and R, should be made as small as practical in the inter-
est of frequency stability. Both circuits will oscillate at the frequency
of the tuned circuit if the crystal is short-circuited or replaced with a
corresponding resistance. Also, both will operate successfully if the
tuned circuit is omitted, provided the loop gain is not excessive and
the crystal has a small value of shunt capacitance. However, there is
a marked tendency to produce relaxation oscillations, for the circuits
correspond respectively to the van der Pol and the multivibrator.
The modified form of Fig. 9.6a shown in Fig. 9.7 is useful up to fre-
quencies in the neighborhood of 150 Mec. It is described in some detail
because it illustrates clearly an important principle, applicable with
some modification to most high-frequency oscillators. We first
assume that the crystal is replaced by a fixed capacitance equal to its
shunt capacitance, and that C, represents the total effective capaci-
tance from screen to suppressor. We further assume that Cy and Cj
represent total capacitances to ground and that the three circuits are
tuned to the erystal frequency and have the same value of . Subject
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in ﬂ'“FTIII}I!IF T

( (b)

F1a. 9.6. Series-mode crystal oscillators: (g) transitron form and (b) feedback
form.
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F1a. 9.7. Compensated transitron series-mode oscillator: (¢) schematic and (b)
Nyquist plot.

to these assumptions, the coupling and suppressor circuits act as a
compensated voltage divider having no phase shift and a constant
voltage ratio.

The total impedance presented to the screen grid is a simple multiple
of the impedance of each circuit, and the Nyquist plot for the system
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is a true circle as shown by the solid line of Fig. 9.7b. It is readily
shown that the diameter of this circle is given by

|uBlo = gmR2Rs/(Ro + R2 + Rs). (9.26)

To avoid uncontrolled oscillations, the resistance values are chosen so
that the diameter is somewhat less than one.

If the crystal is now restored to the system, the behavior will be
unchanged except at frequencies near the resonant frequency of the
series arm. At the resonant frequency, however, R, is shunted by the
substantially lower resistance E; of .the crystal arm, and the Nyquist
plot is modified by the subsidiary circle shown dotted in Fig. 9.7b.
Oscillation will occur at or very near the resonant frequency of the
crystal because the modified Nyquist plot encircles the critical point.

Reexamination of the preceding material shows that the operation
will not be adversely affected if the three antiresonant circuits differ
somewhat in @. In particular, the tuning of either the screen or
suppressor circuit may be very broad compared to that of the others
with no effect upon the shape of the Nyquist plot. By a relatively
simple differentiation it may be shown that the Nyquist plot, in the
absence of R;, will cross the real axis at only one frequency provided

R2R3 C2 Cz 03 C3
Co < R, \&, + R. 4+ R, + Rz) (9.27)
That is, spurious oscillations will not occur if eq. 9.27 is satisfied and
if eq. 9.26 is less than unity.

As an illustration let us design an oscillator for a frequency of 159
Me, using an overtone crystal having a holder capacitance of 5 uuf
and a series resistance of 1000 ohms. The most suitable available tube
is the 6AS6, which has a suppressor-to-screen transconductance of
1600 micromhos. Assuming that the irreducible circuit capacitances
are Co = C3 = 10 upuf and that C is increased to 10 uuf by the screen-
to-suppressor capacitance, we find that eq. 9.27 is satisfied if R, = R;
and Ry < 2.73R,.

Providing a 3-db margin against undesired oscillation, we have from
eq. 9.26, R, = R3 = 2090 ohms and B¢ = 5700 ohms. At the crystal
frequency, however, K and R; are effectively in parallel, and the loop
transmission determined from eq. 9.25 is 1.39, a value which offers
reasonable margin. The required inductances are 0.1 ph each.

9.7 The Pierce circuit

The crystal oscillators previously described have in common the
property that the crystal is employed as a series-resonant element hav-
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ing a relatively low impedance. Such oscillators are finding increasing
use because they operate over a very wide range of frequencies and
because they possess excellent frequency stability, which is due, at
least in part, to the fact that the crystal is little affected by increments
in shunt capacitance. The great majority of crystal oscillators, how-
ever, employ the crystal in effective antiresonance with an external
capacitance called the load capacitance. This is referred to as opera-
tion in the parallel mode. The following paragraphs describe several
important parallel-mode oscillators.

Figure 9.8 shows a circuit, now generally referred to as the Pierce
crystal oscillator, which is characterized by extreme simplicity and
economy of parts. It has the desirable properties that it will operate
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F1g. 9.8. The Pierce circuit: (a) schematic and (b) idealization for analysis.

under the control of crystals having widely different frequencies, and
that no output is produced if the crystal is absent or defective. These
features are particularly important in military apparatus, where
operating frequencies must be changed quickly and with a minimum of
adjustments.

In a typical Pierce oscillator C; has a negligible reactance and is
provided to isolate the crystal from the plate voltage; the grid leak
resistance R, is of the order of 100,000 ohms; and C, and C,, are of the
order of 50 uuf each. The use of a low-resistance coil in parallel with
the load resistor is appropriate when a considerable power output is
required. When a very small amplitude of oscillation is tolerable or
desirable the choke may be omitted; and best frequency stability is
obtained by retaining the coil and removing the load resistor.

Analysis is facilitated by noting that the circuit reduces to the
familiar Colpitts configuration if the crystal and C; are replaced by a
coil; therefore, the equations developed in Chapter 8 are applicable.
Oscillation occurs at the frequency at which the crystal is antiresonant
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with C, and C,, in series; and the tank or resonator impedance is simply
the Performance Index (PI) of the crystal in conjunction with this
capacitance.

If C, and C, are equally stable, the frequency stability is greatest
when €, = C,. However, C, is usually the less stable, and should
therefore be padded to several times Cp,. This increase of the excita-
tion ratio leads to an increased amplitude and power output which may
cause excessive heating of the crystal. The reader who desires
additional information about this circuit is referred to the work of
Boella,? Fair,* Koga,'”® Terry,?8 Wheeler,?* and Wright. 36

9.8 Frequency stability of the Pierce circuit

The frequency stability of the Pierce circuit with respect to increments
of plate or grid capacitance may be determined by an extension of the
analysis developed in Chapter 8 in connection with the Clapp circuit.
The analysis assumes that the direct plate-to-grid capacitance is
negligible, that the plate resistance is very high, that no useful power
output is taken, and that losses in the grid circuit are negligible; these
assumptions are well approximated by a pentode in an appropriate
circuit.

The previous chapter shows that '3 does not affect the frequency
stability (of the Clapp circuit), provided the induetance is suitably
chosen; however, (3 does provide a very useful means of impedance
transformation. In the present case, when a quartz crystal is sub-
stituted for a physical coil, C; serves a similar function, but its impor-
tance is inereased by the fact that a given crystal must face its specified
load capacitance C, in order to operate at itsrated frequency. Because
the equivalent inductance of the crystal is thus fixed, C'; provides the
only convenient means of adjusting the impedance level for best
operation.

We see that Figs. 8.11 and 9.8 are equivalent provided the imped-
ance of the crystal at its operating frequency is represented by R, in
series with X, = wlL,. Following the method formerly used, let us
investigate the frequency deviation produced by an arbitrary incre-
ment in C, (or C,), finally introducing the transconductance require-
ments to determine the optimum relationship between C,, C,, and Cj.

The frequency increment is calculated on the basis of the reactive
elements only. The work is facilitated by obtaining an expression for
the effective capacitance facing the crystal terminals and combining
this with an appropriate expression for the frequency change produced
by an increment in this load capacitance. From Fig. 9.80 we see
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that the load capacitance faced by the crystal is given by
1/C, =1/Cy + 1/Cp, + 1/Cs. (9.28)
The increment in C; produced by an increment in C, may be written
1/(Cs + 5C2) = 1/(Cy + 8C) 4+ 1/Cp + 1/Cs. (9.29)

Taking advantage of the fact that the increments are small, we have by
division

8C,/Cy = (8C,/Cy) + (C/Cy). (9.30)
Repeating the substitutions of eq. 8.33,
Cy, = hCp, = EkC;, (9.31)
we have the useful relation
Cy=Co(1 +h+ k). (9.32)

Therefore, we have
8C, = 8Cy/(1 + h + k)2 (9.33)

Again referring to Fig. 9.8, we see that oscillation will occur at the
frequency represented by

w'L1 = 1/C1 + 1/(Cy + C,). (9.34)
The frequency increment produced by a small change in C, becomes
L1 1 G+ Co+Cr 4 8C,

2 2 = =
w?(1 + bw/w)?Ly c. + Co+ Cr + 6C, Ci(Co+ Cs + 5Cy)

(9.35)

Using eq. 9.34 and neglecting second-order terms because the incre-
ment is small, we have

o —C16C, ‘
w 2(00 + C:c)(Cl + CO + Cx)

Introducing eq. 9.33 to eliminate §C,, we obtain the important result

o ~C15C, .
o 201+ h+E)Co+ CH(C1 + Co+ Ca)

We see that a small value of C; and large values of h, k, and C, are
desirable in the interest of frequency stability. The extent to which
these variables may be controlled is now determined by introducing
the conductance terms.

To obtain a relationship between the effective series resistance R,
and the internal resistance R; of the crystal, we equate the admittances.

(9.36)

(9.37)
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1 1

= = jwCo + ; —

R+ X, 7" T Ry ¥ juLy + 1/juCs

Introducing the inherent selectivity and capacitance ratio of the
crystal

(9.38)

Q = le/Rl and r = Co/Cl, (939)
we have
R, — jX. . wC1/Q + jwCi(1 — w?L\C))
RI+x: Ot o —dney e O

Taking the real parts, and neglecting R, and 1/Q? in comparison to
the associated terms, we have

R, wCy )
X2 QU — »’LiCh)?
With use of eq. 9.33 to eliminate the equivalent reactance, we have

R — (Cx + 101)2.
. Q(-'-’Clcta:2

Combination of eqs. 8.39, 8.40, and 8.41 with eq. 9.42 yields as the
conditions for oscillation

,  Re?C? o s L+ A+ E)?
e

Elimination of R, between egs. 9.42 and 9.43 yields with eq. 9.36 the
frequency stability

s _ 0, (Cot Cd)
w 2Qhgn’ (C1+ Co + C2)

In a typiecal crystal, C; is very small compared to Cy + C.; hence the
last term may be taken as unity, and the expression is identical with
eq. 8.44 developed for the Clapp and Colpitts circuits. Therefore,
we are led to suspect that the relationship is quite basic and applies to
a variety of situations.

It is interesting to note that the capacitance ratios r, h, and % all
disappear in the final result, which is therefore applicable to the con-
ventional Pierce circuit in which €3 has negligible reactance.

(9.41)

(9.42)

(9.43)

(9.44)

9.9 Power output and crystal dissipation in the Pierce oscillator

A practical oscillator is often required to deliver an appreciable power
output; however, the frequency stability is degraded if the load sub-
stantially affects the conditions of oscillation or if the crystal is driven
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too hard. It is therefore appropriate to investigate the equations
which govern these relationships.

The effective plate-to-grid conductance provided by the crystal,
which may be obtained from eqgs. 8.31 and 9.43, is
1+ h+ k)2

1+ m?

Therefore, we may represent the power loss in the crystal by

P, = VA1 + B)¥Gp = V,*Rw*C.2(1 + h + k)%, (9.46)

Gm = R.?C,2- (9.45)

where V, is the rms value of the alternating grid voltage.

A useful power output is obtained by adding an effective plate-to-
ground conductance G, and increasing the effective transconductance
in conformity with eq. 8.31 to maintain oscillation. The useful
power output is evidently

Py = W2V, %G,. (9.47)
The important ratio of power output to crystal power is thus given by

Po RG,

P. RwXCE1 +h + k)

(9.48)

It is increased by increase of the excitation ratio » and by decrease of
the capacitance ratio k, the load capacitance C,, the crystal resistance
R., and the frequency. However, the product w?R, is nearly inde-
pendent of frequency in typical erystals; and C, is seldom under the
control of the circuit designer. Because the value of G, which may
be used is seriously limited by available transconductance, the power
ratio is limited in practical circuits to values in the neighborhood of ten.
Additional insight into the operation of the Pierce oscillator is
obtained by introducing the power gain and @ degradation factors.
The tube driving power, neglected in the preceding discussion, is

given by
P; = V,*Q,, (9.49)

and the power gain is as before
G =1+ Py/Ps+ P./P,. (9.50)

That the effective @ of the crystal is degraded by plate and grid con-
ductances is easily seen by rendering the tube inactive; the extent of
this degradation is

D =1+ Py/P, + Py/P.. (9.51)
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Therefore, even if P, is small, a considerable ratio of output to crystal
power is obtainable only if the effective @ of the crystal is greatly
degraded.

9.10 1llustrative design of Pierce oscillator