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Abstract

Time plays an important role in our modern lives. Especially having
accurate time, which in turn depends on having clocks being synchro-
nized to each other.

This thesis is split into three distinct parts.
The first part deals with the mathematical description of noise that

is required to model clocks and electronics accurately. In particular
we will address the problem that the generally used tools from signal
theory fail for noise signals which are neither of finite energy nor
periodic in nature. For this we will introduce a new function space
based on the P p-seminorm that is an extension of the Lp-norm for
functions of potentially infinite energy but limited power. Using this
new semi-norm we will modify the Fourier transform to work on
signals from this P p-space. And last but not least, we will introduce,
based on the above, a new mathematical model of noise that captures
all the properties associated with 1/fα-noise.

In the second part, we will look at how noise propagates in a few
classes of electronics, especially how the non-linear behavior of elec-
tronics leads to an amplification of noise and how it could be miti-
gated.

Lastly, in the third part we will look at one approach of fault-
tolerant clock synchronization. After explaining its working principle
and showing an implementation in an FPGA we will focus on meta-
stability, the problems it can cause and how to handle them on two
different circuit levels.





Zusammenfassung

Zeit spielt eine wichtige Rolle in unserem Leben. Insbesondere die
Verfügbarkeit einer genauen Zeit. Welches wiederum davon abhängt,
dass man Uhren hat die auf einander synchronisiert laufen.

Diese Arbeit ist in drei Teile aufgeteilt:
Im ersten Teil betrachten wir die mathematische Beschreibung von

Rauschen um elektronische Systeme und Uhren korrekt beschreiben zu
können. Im Besonderen betrachten wir die Probleme die die generell
benutzten Methoden der Signalverarbeitung beim Umgang mit Rausch-
signalen haben, die weder energiebegrenzt noch periodisch sind. Dafür
erweitern wir den Funktionenraum der Lp-Norm auf leistungslimiterte
Funktionene und führen die P p-Halbnorm ein und modifizieren die
Fouriertransformation zur Verwendung auf diesen Raum. Und letztlich
führen wir ein neues mathematisches Model zur Beschreibung von
Rauschen ein, welches alle üblicherweise angenommenen Eigenschaften
gleichzeitig erfüllt.

Im zweiten Teil analysieren wir wie sich einige Klassen von elektro-
nischen Schaltungem im Bezug auf Rauschen verhalten. Insbesondere
im Bezug auf das nicht-lineare Verhalten der elektronischen Elemente,
welches zu einer Verstärkung des Rauschens führt.

Im dritten Teil betrachten wir eine Möglichkeit um fehlertolerante
Synchronization von Uhren zu erreichen. Nach einem Überblick über
den verwendeten Algorithmus und wie dieser einem FPGA implemen-
tiert werden kann, schauen wir uns den Einfluss von Metastabilität an
und wie dieser eingedämmt werden kann.
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CHAPTER 1

Notation and Preliminaries

This chapter contains the basic definitions of some of the symbols used
and introduces some of the used theorems. These are either all common
definitions. Most of the definitions and theorems in this chapter are
taken verbatim from textbooks, without change, with the exception of
using a consistent notation and some slight simplification of language,
here and there. As it is not feasible to reproduce all the definitions that
are required to cover the topics at hand, we refer to the referenced
books for further details and explanations. As proving the theorems
mentioned here goes beyond the scope of this dissertation, we refer to
the sources these theorems are taken from, for their respective proofs.

This chapter starts with more basic definitions and theorems than it
would be strictly necessary for the following discussion. The aim here is
to provide a proper basis in order to avoid confusion or inaccuracies
due to simplifications often found in engineering texts.

1.1 Analysis and Measure Theory

In this thesis, unless noted otherwise, the triple (A,A, µ) denotes a
space A with a sigma algebra A and a σ-finite, non-negative measure
µ on A. We call this triple a measure space. Due to space limitations
we will only focus on the key building blocks of σ-algebra and measure
theory. For a proper and complete introduction we would like to refer
to [Bog07] and [Hal50].

On Rn and its subspaces, we will use the Lebesgue measure if not
noted otherwise.

Integration and Convergence

Definition 1.1 (Metric Space). [Sim15, p. 3] A metric d on a space E is
a map d : E ˆ E Ñ Rě0 that obeys

(1) @x, y P E, d(x, y) = d(y, x)

This chapter does not constitute original work and the author
does not lay any claim to anything discussed here.
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(2) @x, y, z P E, d(x, z) ď d(x, y) + d(y, z)

(3) @x, y P E, d(x, y) = 0ô x = y

A metric space is a set E, equipped with a metric.

Definition 1.2 (Cauchy Sequence). [Sim15, p. 5] Given a metric space
E, a sequence txkukPN of points xk P E is called Cauchy if and only if

@ε, DN : n,m ą N ñ d(xn, xm) ă ε (1.1)

Definition 1.3 (Complete Metric Space). [Sim15, p. 5] A metric space E
is called complete if and only if every Cauchy sequence in E converges
to some x8 P E.

Definition 1.4 (Banach Space). [Sim15, p. 113] A norm on a vector
space E is a function ‖¨‖ : E Ñ Rě0 with x, y P E and λ P R that
obeys

(1) ‖x‖ = 0ô x = 0

(2) ‖λx‖ = |λ|‖x‖

(3) ‖x+ y‖ ď‖x‖ + ‖y‖

If Item (1) is dropped, ‖¨‖ is called a seminorm.
A space E equipped with a norm is called a normed linear space.

In any normed linear space, the function d(x, y) = ‖x´ y‖ defines a
metric.
A Banach space is a normed linear space which is complete in the

metric induced by the norm.

Theorem 1.5 (Limit Rules). [Rud76, Theorem 4.4., p. 85] Suppose E is
a subset of a metric space, p is a limit point of E and f , g are functions
on E with values in a Banach space, Given

F := lim
xÑp

f(x)

G := lim
xÑp

g(x)
(1.2)

Then

lim
xÑp

(f + g)(x) = F +G

lim
xÑp

(fg)(x) = FG

lim
xÑp

(
f

g

)
(x) =

F

G
G ‰0

(1.3)

Definition 1.6 (Algebra). [Bog07, Vol. 1, Definition 1.2.1., p. 3] An
algebra of sets A is a class of subsets of some fixed set A (called the
space) such that
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(1) A and the empty setH belong to A

(2) if E,F P A then E X F P A, E Y F P A, EzF P A

Definition 1.7 (σ-Algebra). [Bog07, Vol. 1, Definition 1.2.2., p. 4]
An algebra of sets A is called a σ-algebra if for any sequence of sets

tAkukPN, Ak P A one has
8
Ť

k=1

Ak P A

Definition 1.8 (σ-Finite). [Bog07, Vol. 1, Definition 1.6.1., p. 24] Let
A be a σ-algebra in a space A and let µ be a set function on A with
values in [0,+8]. If µ satisfies the condition µ(H) = 0 and is countably

additive in the sense that µ
(

8
Ť

k=1

Ak

)
=

ř8

k=1 µ(Ak) for all pairwise

disjoint sets Ak P A, where infinite values are admissible as well, then µ

is called a measure with values in [0,+8]. We call µ a σ-finite measure

if A =
8
Ť

k=1

Ak where Ak P A, µ(Ak) ă 8.

Definition 1.9 (Lebesgue Measure). On Rn we (informally) define the
Lebesgue measure |A| of a subset A Ď Rn as the volume of A.

See [Bog07, Vol. 1, Definition 1.711., p. 26] and [Hal50, §15, p. 62]
for a rigorous definition.

Definition 1.10 (Measurable Function). [Bog07, Vol. 1, Definition
2.1.1., p. 105] A function f : AÑ R is called measurable with respect
to A (or A-measurable) if tx : f(x) ă cu P A for every c P R.

Definition 1.11 (µ-Measurable Function). [Bog07, Vol. 1, Definition
2.1.10., p. 108] A function f : A Ñ R is called µ-measurable if it is
measurable with respect to the σ-algebra Aµ of all µ-measurable sets 1 1. Informally, a

µ-measurable set
Ak is a set for
which the measure
µ(Ak) is defined. Or
equivalently, if Ak

is an element of A.
See [Bog07, Vol. 1,
Definition 1.5.1., p.
17] for a rigorous
definition.

of A.

Definition 1.12 (Simple Functions). [Bog07, Vol. 1, §2.1., p. 106] A
simple function is a A-measurable function f : A Ñ R that assumes
only finitely many values, i.e., has the form

f(x) =
n
ÿ

k=1

ck1Ak
(x)

with ck P R and Ak P A.

Definition 1.13 (Integral of Simple Functions). [Bog07, Vol. 1, §2.3.,
p. 115] For any simple function f : AÑ R that assumes finitely many
values ck P R on disjoint sets Ak Ď A, k P N, the Lebesgue integral of f
with respect to µ is defined by the equality

ż

A

f(x)µ(dx) :=
n
ÿ

k=1

ckµ(Ak).
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Definition 1.14 (Fundamental in Mean). [Bog07, Vol. 1, Definition
2.3.1., p. 116] A sequence tfku of simple functions is called fundamen-
tal in the mean or mean fundamental if for every ε ą 0 there exists a
number k such that

ż

A

|fi(x)´ fj(x)|µ(dx) ă ε for all i, j ě k.

Definition 1.15 (Lebesgue Integral). [Bog07, Vol. 1, Definition 2.4.1., p.
118] Let a function f be defined and finite µ-almost everywhere (a.e.)
(i.e., f may be undefined or infinite on a set of measure zero). The
function f is called Lebesgue integrable with respect to the measure
µ (or µ-integrable) if there exists a sequence of simple functions tfku
such that fk(x) Ñ f(x) a.e. and the sequence tfku is fundamental in
the mean. The finite value

lim
kÑ8

ż

A

fk(x)µ(dx),

is called the Lebesgue integral of the function f and is denoted by
ż

A

fk(x)µ(dx) or by
ż

A

f dµ.

We note here that it is possible to extend the Lebesgue integral,
using the same construction, known as the Bochner integral [Boc33], to
functions f : A Ñ B, with B being a Banach space (see also [Mik78,
§3, p. 15]). We will use the Lebesgue integral for functions with their
codomain in R and the Bochner integral for all others.

Definition 1.16 (Locally Integrable Functions). [DK10, Definition
20.37., p. 343] A function f is said to be locally integrable if the prod-
uct (f1Ak

) is integrable for all Ak P A whose closure is compact.

Theorem 1.17 (Translation Invariance). [Mik78, Theorem 3.3., p.
7] Given a measure space (A,A, µ), with A closed under addition, a
measure µ such that µ(B) = µ(B + a), where B + a := tx+ a : x P Bu

and B + a P A for all B P A and a P A. If a function f is Lebesgue
integrable and fa(x) = f(x´ a) then fa is also Lebesgue integrable and

ż

A

fa(x)µ(dx) =
ż

A

f(x)µ(dx) (1.4)

In other words, the integral is translation invariant.

Theorem 1.18 (Absolute Continuity of the Lebesgue Integral). [Bog07,
Vol. 1, Theorem 2.5.7., p. 124] Let f be a µ-integrable function. Then
for every ε ą 0 there exists a δ ą 0 such that for every D P A,
µ(D) ă δ

ż

D

|f(x)|µ(dx) ă ε (1.5)
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Proposition 1.19. [Bog07, Vol. 1, Proposition 2.6.2., p. 125] and
[Bog07, Vol. 1, Remark 2.6.3., p. 127]

(1) If a function f is integrable with respect to a countably additive
measure µ (c.f. Definition 1.10) with values in [0,+8], then the
measure µ is σ-finite on the set tx : f(x) ‰ 0u.

(2) Let µ be a σ-finite measure on a space A that is the union of an
increasing sequence of µ-measurable subsets Ak of finite mea-
sures. Then the function f is integrable with respect to µ precisely
when the restrictions of f on to the sets Ak are integrable and

sup
k

ż

Ak

|f |µ(dx) ă 8 (1.6)

In this case one has, with A0 :=H

ż

A

fµ(dx) = lim
kÑ8

ż

Ak

fµ(dx) =
8
ÿ

k=1

ż

AkzAk´1

fµ(dx) (1.7)

Theorem 1.20 (Egoroff’s Theorem). [Bog07, Vol. 1, Theorem 2.2.1.,
p. 110] A sequence of µ-measurable functions tfku, such that µ-almost
everywhere there is a finite limit f(x) := limkÑ8fk(x). Then for every
ε ą 0 there exists a set Aε P A such that µ(AzAε) ă ε and functions
tfku converge to f uniformly on Aε.

Theorem 1.21 (Dominated Convergence). [Bog07, Vol. 1, Theorem
2.8.1., p. 130] and [Bog07, Vol. 1, Corollary 2.8.6., p. 132] Suppose
that a sequence of µ-integrable functions tfku converge almost every-
where to a function f . If there exists a µ-integrable function Φ such
that

|fk(x)| ď Φ(x) a.e. for every k,

then the function f is integrable and
ż

A

f(x)µ(dx) = lim
kÑ8

ż

A

fk(x)µ(dx) (1.8)

Dominated convergence also holds for Bochner integrals [Mik78,
Theorem 9.6, p. 35].

Theorem 1.22 (Tannery’s Theorem). [Hof02, p. 199] If s(l) =
ř8

k=1 fk(l),
l P N is a finite sum (or a convergent series) for each l, gk := limlÑ8 fk(l),
|fk(l)| ďMk, and

ř8

k=1 Mk ă 8 then

lim
lÑ8

s(l) =
8
ÿ

k=1

gk (1.9)
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Theorem 1.23 (Moore-Osgood Theorem). [Rud76, Theorem 7.11., p.
149] Suppose a sequence of functions tfku on a set A in a metric space,
converging uniformly to a function f . Let x be a limit point of A and
suppose that

Fk := lim
tÑx

fk(t) (1.10)

Then the sequence tFku converges and

lim
tÑx

f(t) = lim
kÑ8

Fk (1.11)

Product Spaces and Fubini’s Theorem

Definition 1.24 (Products of Measure Spaces). [Bog07, Vol. 1, §3.3., p.
180] Let (A,A, µ) and (B,B, ν) be two spaces with finite non-negative
measures. On the space A ˆ B we consider sets of the form Ak ˆ Bk

where Ak P A and Bk P B are called measurable rectangles. Let

µˆ ν(Ak ˆBk) := µ(Ak)ν(Bk)

be the product of the measures. And let A b B denote the σ-algebra
generated by all measurable rectangles; this σ-algebra is called the
product of the σ-algebra A and B.

Theorem 1.25. [Bog07, Vol. 1, §3.3.1., p. 180] The set function µˆ ν

is countably additive on the algebra generated by all measurable rectan-
gles and uniquely extents to a countably additive measure, denoted by
µb ν, on the Lebesgue completion of this algebra denoted by AbB.

Theorem 1.26 (Fubini’s Theorem). [Bog07, Vol. 1, Theorem 3.4.1., p.
183] Let a set X Ă Aˆ B be measurable with respect to the measure
µb ν, i.e., belong to (Ab B)µbν . Then, for µ-a.e. a P A, the set Xa is
ν-measurable and the function a ÞÑ ν(Xa) is µ-measurable; similarly
for ν-a.e. b P B, the set Xb is µ-measurable and the function b ÞÑ µ(Xb)

is ν-measurable. In addition, one has

µb ν(X) =

ż

A

ν(Xa)µ(da) =
ż

B

ν(Xb)µ(db) (1.12)

We would like to emphasize here that Eq. (1.12) of Theorem 1.26
allows the exchange of order of integration in iterated integrals i.e.,
ş

X

ş

Y
f(x, y)dy dx =

ş

Y

ş

X
f(x, y)dxdy under the condition that

the function f is measurable on X ˆ Y with respect to the measure
dx b dy. In particular it allows the exchange of order of expectation
and integration

ş

E [X(t, ω)]dt = E
[ş
X(t, ω)dt

]
which is often put

under the linearity of expectation umbrella. Fubini’s theorem also holds
for Bochner integrals [Mik78, Theorem 2, p. 93]).
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Definition 1.27 (Approximate Identity). [Str03, §3.4., p. 40] Given a
function f : Rn Ñ Rm, locally integrable and a sequence of functions
tφεuεPRą0

, φε : Rn Ñ R, infinitely differentiable and the following
properties

(1)
ş

Rn φε(x)dx = 1, @ε ą 0

(2) φε(x) ě 0, @x P Rn, ε ą 0

(3) limεÑ0 φε(x) = 0, @x ‰ 0, uniformly in |x| ě y, for any y ą 0

then the function f ÞÑ f ˚ φε is called an approximate identity.

Lemma 1.28. [DK10, Lemma 1.6., p. 12] and [DK10, Lemma 11.6., p.
118] For any function f and φε as in Definition 1.27 and |(f ˚ φε)(x)| ă
8 a.e. for all ε ą 0, then

lim
εÑ0

f ˚ φε = f a.e. (1.13)

Lp-norm, Lp-spaces and Hölder’s Inequality

Definition 1.29 (Lp-norm). [Bog07, Vol. 1, §2.11., p. 140] On a
measure space (A,A, µ), a set B P A, a µ-measurable function, and
1 ď p ă 8, we define the Lp-norm as

‖f‖Lp(B) :=

(
ż

B

|f(x)|
p
µ(dx)

) 1
p

(1.14)

If the Lp-norm is over the whole space A we write for short

‖f‖Lp := ‖f‖Lp(A) (1.15)

Definition 1.30 (Lp-space). [Bog07, Vol. 1, §2.11., p. 139] We define
Lp as the set of all equivalence classes of functions for which the Lp-
norm is finite. In particular, we define functions f and g equivalent, if
the difference norm of ‖f ´ g‖Lp = 0.

Theorem 1.31 (Hölder’s Inequality). [Bog07, Vol. 1, Theorem 2.11.1.,
p. 140] Suppose that 1 ă p ă 8, q = p/(p ´ 1), f P Lp, and g P Lq.
Then fg P L1 and

‖fg‖L1 ď ‖f‖Lp ‖g‖Lq
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1.2 Hyperreal Numbers and Nonstandard Analysis

We will present an abbreviated construction of the hyperreal numbers,
which is mostly taken from [Gol98]. More rigorous and detailed intro-
ductions can be found in [ACH97] and [DR89]. A concise, yet quite
complete exposition can be found in [LW15].

Definition 1.32 (Filters). [Gol98, §2.3., p. 18] Let I be a non-empty set.
The power set of I is the set

P(I) := tA : A Ď Iu (1.16)

of all subsets of I. A filter on I is the non-empty collection F Ď P(I) of
subsets of I satisfying the following axioms:

• A,B P F ñ AXB P F

• A P F, A Ď B Ď I ñ B P F

A filter F containsH if and only if F = P(I). We say that F is a proper
filter ifH R F.

An ultrafilter is a proper filter that satisfies that for any A Ď I, either
A P F or IzA P F.

Fi := tA Ď I : i P Au is an ultrafilter, called the principal ultrafilter
generated by i.

Definition 1.33 (Set of All Sequences of Real Numbers). [Gol98, §3.1.,
p. 24] Let RN be the set of all sequences of real numbers of the form
r = trkukPN. Further, we denote constant sequences as:

r := tr, r, r, . . . ukPN r P R (1.17)

Definition 1.34 (Equivalence Modulo an Ultrafilter). [Gol98, §3.2., p.
24] Let F be a fixed non-principal ultrafilter on the set N. Given the
two sequences r = trkukPN and s = tskukPN, we define the relation ”
on RN as

r ” sô tk P N : rk = sku P F (1.18)

When this relation holds, we say the two sequences agree on a large set,
or agree almost everywhere modulo F.

We denote the set tk P N : rk = sku by vr = sw.
Similarly, we define

vr ă sw := tk P N : rk ă sku

vr ą sw := tk P N : rk ą sku

vr ď sw := tk P N : rk ď sku

vr ě sw := tk P N : rk ě sku

(1.19)
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We denote the equivalence class of a sequence r P RN under ” by

[r] := ts P RN : r ” su (1.20)

Definition 1.35 (Set of Hyperreal Numbers). [Gol98, §3.6., p. 25]
Given a fixed non-principal ultrafilter F on the set N, we define the set
of hyperreal numbers as the quotient set of RN by ”:

˚R := t[r] : r P RNu (1.21)

Given r, s P RN, we define:

[r] + [s] := [trk + skukPN]

[r] ¨ [s] := [trk ¨ skukPN]
(1.22)

and
[r] ă [s]ô vr ă sw P F (1.23)

We denote hyperreal numbers and hyperreal valued functions with a
prescript-˚, e.g., ˚r P ˚R, ˚f : AÑ ˚R.

Theorem 1.36 (Structure of Hyperreal Numbers). [Gol98, Theorem
3.6.1., p. 25] The structure (˚R,+, ¨,ă) is an ordered field with zero
element [0], unity element [1], and the corresponding additive and
multiplicative inverses.

Theorem 1.37. [Gol98, Theorem 3.7.1., p. 27] Given r P R the map
r ÞÑ [r] is an order preserving field isomorphism from R into a subset
of ˚R.

Definition 1.38. For any operation f between a real number r P R and
a hyperreal number ˚b P ˚R we use the above map, to first map the real
number into the space of hyperreal numbers:

r f ˚b := [r]f ˚b (1.24)

Definition 1.39 (Infinitesimals and Infinite Numbers). [Gol98, §3.8., p.
27] We define the sequence

hε :=

"

1

k

*

kPN

(1.25)

Then [0] ă [hε], but for any r P Rą0 we have [hε] ă [r]. We call [hε] an
infinitesimal.

Similarly, we define the sequence

hω := tkukPN (1.26)

Then for any r P Rą0 we have [0] ă [hω]. We call [hω] an infinite
number.
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Theorem 1.40 (Standard Part). [Gol98, Theorem 5.6.1., p. 53] For
every non-infinite hyperreal number ˚b there exists exactly one real
number r for which the difference ([r] ´ ˚b) is infinitesimal. We call
this number r the standard part or shadow of ˚b. We denote this as
r = st

(
˚b
)
.

Theorem 1.41 (Arithmetic Operations and the Standard Part). [Gol98,
Theorem 5.6.2., p. 53] Given two hyperreal ˚r, ˚s P ˚R, both non-
infinite, then

st (˚r ˘ ˚s) = st (˚r)˘ st (˚s)

st (˚r ˚s) = st (˚r) st (˚s)

st (˚r/ ˚s) = st (˚r) / st (˚s)

st (|˚r|) = |st (˚r)|
˚r ď ˚sñ st (˚r) ď st (˚s)

(1.27)

Note that the above theorem cannot be generalized to infinitely
repeated operations. E.g., given a sequence of infinitesimal hyperreal
numbers ˚rk, the infinite sum

ř8

k
˚rk could become non-infinitesimal.

Or in other words
ř8

k st (˚rk) = 0œ st
(
ř8

k
˚rk
)
= 0.

The Lebesgue integral can be extended to hyperreal valued functions
and measures using the Loeb measure. For details see [Gol98, §16., p.
203], [LW15, §6., p. 179], and [ACH97, p. 91].

In this work we will restrict ourselves to the simpler case of hyper-
real valued functions on measure spaces with real valued measures.
Thus we can treat integrals over hyperreal valued functions as Bochner
integrals.

1.3 Fourier Analysis

Definition 1.42 (Fourier Transform). [Gra14, Definition 2.2.8., p. 108
and §2.2.4., p. 113] Given a function f : Rn Ñ Rm, f P L1 Y L2. We
define the Fourier transform as

F tfu (ξ) :=

ż

Rn

f(x)e´2πjx¨ξ dx

For this discussion we restrict ourselves to f being in L1 Y L2. The
Fourier transform is more generally defined on tempered distributions,
whose introduction would require quite a bit more discussion, while
offering only marginal benefit for the later chapters. We refer the reader
who is so inclined to [Gra14, §2.3., p. 119 and §2.4., p. 133] for an
introduction to the topic.
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Definition 1.43 (Inverse Fourier Transform). [Gra14, Definition 2.2.13.,
p. 111] Given a function f : Rn Ñ Rm, f P L1 Y L2 we define the
inverse Fourier transform as

F´1 tfu (x) :=

ż

Rn

f(ξ)e2πjx¨ξ dξ

In a slight abuse of notation, in case f is a function of multiple
variables or when we want to be explicit about which variable the
Fourier transform is performed over, we will use F tf(x)u to denote
that the Fourier of a function f(x, y, . . . ) is performed over the variable
x with all other variables held constant.

Definition 1.44 (Self-Similarity Function). [Lap09, Definition 11.2.1., p.
186] We define the self-similarity function Rff : AÑ C of a function
f : AÑ C as

Rff (τ) =

ż

A

f(t+ τ)f(t)dt

This function is more commonly referred as auto-correlation func-
tion although the auto-correlation function of a continuous-time
stochastic process is only then equivalent to the self-similarity function,
if the stochastic process is real valued and ergodic2. Following [Lap09] 2. Simplified, ergodic

means that, for a
random process, the
moments of time
samples converge to
the same values as
the moments of the
ensemble samples.
For the equality
mentioned here, only
ergodicity in mean
is required, i.e., that
the time average
converges to the
same value as the
ensemble average.

and in order to avoid confusion with the auto-correlation function of
stochastic processes, we use the term self-similarity function instead. It
follows immediately from Theorem 1.31 that the self-similarity func-
tion converges for all functions f P L2. It can be also shown that the
self-similarity function is finite a.e. for functions in L1 (c.f. [Lap09,
§11.4., p. 198]).

Theorem 1.45 (Fourier Transform of the Self-Similarity Function).
[Lap09, §11.4., p. 198] The Fourier transform of the self-similarity
function Rff is equal to the energy spectral density (ESD) of f :

F tRffu (ξ) = |F tfu (ξ)|
2

1.4 Probability Theory

Definition 1.46 (Probability Space and Probability Measure). [Øks03,
Definition 2.1.1., p. 7] We call the measure space (Ω,F ,P) a probabil-
ity space if its measure P fulfils the following conditions:

(1) P is a non-negative, countably additive measure

(2) P(∅) = 0 and P(Ω) = 1

We call P a probability measure.
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Definition 1.47 (Random Variable and Random Function). [Çın11,
§2.1., p. 51] Given a probability space (Ω,F ,P) and a measure space
(A,A, µ), a mapping X : ΩÑ A is called a random variable provided it
is measurable with respect to F and A, that is tω : X(ω) P Aku P F for
all Ak P A.

If X is a mapping from a product space X : T ˆΩÑ A for some set
(or space) T , then X is called a random function. This is also known
as a stochastic process denoted as tXtutPT or X(t, ω) (c.f. [Øks03,
Definition 2.1.4., p. 10]).

Definition 1.48 (Probability of an Event). [Çın11, §2.1., p. 51] Given a
probability space (Ω,F ,P), a random variable X : ΩÑ A and an event
E Ď A, we denote the probability of the event E occurring as

P [X P E] := P(tω : ω P Ω, X(ω) P Eu)

We denote by

P [X P E|X0 P E0] :=
P(tω : ω P Ω, X(ω) P E,X0(ω) P E0u)

P(tω : ω P Ω, X0(ω) P E0u)

the conditional probability of event E under the condition of the ran-
dom variable X : ΩÑ A being equal to X0 P E0 with P [X0 P E0] ą 0

for this discussion. In a slight abuse of notation, we denote with
P(¨|X0 P E0) the probability measure of a set W Ď Ω and the set
W0 = tω : ω P Ω, X0(ω) P E0u as P(W |X0 P E0) = P(W |W0) :=

P(W XW0)/P(W0).

Definition 1.49 (Expectation). [Øks03, §2.1., p. 9] and [Øks03, Ap-
pendix B, p. 319] For a random variable X : Ω Ñ R, we call the
integral

E [X] :=

ż

Ω

X(ω)P(dω)

the expectation or the mean of X. We denote by

E [X|X0 P E0] :=

ż

Ω

X(ω)P(dω|X0 P E0)

the conditional expectation of X subject to an event X0 P E0.

Definition 1.50 (Variance). [Çın11, §2.2., p. 60] For a random variable
X : ΩÑ R, we call

V [X] := E
[
(X ´ E [X])

2
]
= E

[
X2
]
´ (E [X])

2

the variance of X.
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Definition 1.51 (Normal Distribution). We denote by N
(
µ, σ2

)
a

random variable X : Ω Ñ R with the probability distribution
P [X = x] = 1/(σ

?
2π)e(´1/2)((x´µ)/σ)2 . We call X normal distributed

or Gauss distributed with mean µ and variance σ2.

Definition 1.52 (Uniform Distribution). We denote by U (A) a
random variable X : Ω Ñ Rn with the probability distribution
P [X = x] = t1/|A| if x P A, 0 otherwiseu over a measurable set
A Ă Rn. We call X uniformly distributed over A.

Theorem 1.53 (Kolmogorov’s Extension Theorem). [Øks03, Theorem
2.1.5., p. 11] Given a subset T Ď R, a finite-dimensional stochastic
process

X : T ˆ ΩÑ Rn

(t, ω) ÞÑ X(t, ω)

the distributions of the process X are the measures µt1,...,tk defined on
Rnk, k P N, with measurable sets Fk Ď R

n at times t1, . . . , tk P T by

µt1,...,tk(F1 ˆ ¨ ¨ ¨ ˆ Fk) := P [X(t1, ¨) P F1, . . . , X(tk, ¨) P Fk]

For all t1, . . . , tk P T , k P N let νt1,...,tk be probability measures on
Rnk, and measurable sets Fk Ď R

n, such that

νtσ(1),...,tσ(k)
(F1 ˆ ¨ ¨ ¨ ˆ Fk) = νt1,...,tk(Fσ´1(1) ˆ ¨ ¨ ¨ ˆ Fσ´1(k))

for all permutations σ on t1, 2, . . . , ku and

νt1,...,tk(F1ˆ¨ ¨ ¨ˆFk) = νt1,...,tk,tk+1,...,tk+m
(F1ˆ¨ ¨ ¨ˆFkˆR

nˆ¨ ¨ ¨ˆRn)

for all m P N, where the set on the right hand side has a total of k +m

factors.
Then there exists a probability space (Ω,F ,P) and a stochastic

process X as defined above such that

νt1,...,tk(F1 ˆ ¨ ¨ ¨ ˆ Fk) = P [Xt1 P F1, . . . , Xtk P Fk]

for all ti P T , k P N and all measurable sets Fk.

A more general version and its proof can be found in [Bog07, Vol.
2, §7.7., p. 95]. For the discussion here, this simpler version, which is
restricted to stochastic processes with values in Rn is sufficient.



14 notation and preliminaries

1.5 Fractional Calculus

Definition 1.54 (Holmgren-Riemann-Liouville Integral). [Pod99,
§2.3.2., p. 65]. We define the left-sided Holmgren-Riemann-Liouville
fractional order integral of a function f : RÑ Rn from a to t of order
p P Rą0 as

τ
aIpt f(τ) =

1

Γ(p)

ż t

a

(t´ τ)p´1f(τ)dτ

We differ here slightly from the common definition by introducing
the integration variable τ as a pre-superscript, which is usually the
same as the end of the integration limit t, i.e., aIpt f(t), in order to be
able to distinguish the integration variable in repeated fractional inte-
gration, e.g., τaIpt

τ 1

aIpt f(τ)g(τ 1). We also note that we do not define it as
differ-integral as we limit ourselves to fractional integration only. The
introduction of fractional differentiation leads to various complications.
A discussion of this can be found in [Cam18].

Theorem 1.55 (Fourier Transform of Fractional Integrals). [Pod99,
§2.9.3., p. 111]. Given a fractional integral g(t) = τ

´8Ipt f(τ), the
Fourier transform of the fractional integral is

F tgu (ξ) =
1

(2πjξ)p
F tfu (ξ)

1.6 Special Functions

Definition 1.56 (Incomplete Beta Function). [WJ +10, Formula 8.17.1,
p. 183]. For 0 ă x ă 1 and a, b ą 0 we define the incomplete beta
function as

B (a, b;x) =

ż x

0

ta´1(1´ t)b´1 dt (1.28)

There exists an analytic continuation of B (a, b;x) for x P C.

Definition 1.57 (Hypergeometric Function). [WJ +10, Formula 15.2.1,
p. 384]. For x P C, and a, b, c P R we define the (Gauss) hypergeomet-
ric function as

F (a, b; c;x) =
8
ÿ

n=0

anbn

cnn!
xn (1.29)

For real x, F (a, b; c;x) is only defined for ´8 ă x ă 1, unless one of
the four quantities a, b, (c´ a), or (c´ b) is a strictly negative integer,
then F (a, b; c;x) may be reduced to a polynomial.

Lemma 1.58. [WJ +10, Formula 8.17.7, p. 183]. The hypergeometric
function and the incomplete beta function are related by the following
formula

F (a, b; b+ 1;x) =
b

xb
B (b, 1´ a;x) (1.30)
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For more details on the incomplete beta function and the hyperge-
ometric function see [WJ +10, §8.17., p. 183], [OMS09, §58, p. 603],
[WJ +10, §15., p. 383], [OMS09, §60, p. 627], and [Bat53, Vol. 1, §2,
p. 56].





PART I

Noise and its Mathematical Description





CHAPTER 2

White and 1/fα-Noise in Nature and
Technology

Noise has been and still is the single most important limit in everything
involving measurements. Thus it is not surprising that noise has been
very well studied over the past one and a half centuries.

Based on its power spectral density we categorize noise into two
broad groups: white noise and 1/fα-noise. White noise processes are
usually processes with events that happen independently in large num-
bers and whose effect becomes only apparent as an average, which,
by the central limit theorem, lets the distribution of those apparent
averages approach a Gaussian probability distribution. The indepen-
dence of each single event leads to the overall visible average having
no memory and thus no time correlation. Which in turn means that its
power spectral density is independent of the frequency, which we call
white.

White noise has been historically the more important of the two, as
many measurements are done fast1. Thus it comes with no surprise that 1. Fast here means in

relation to the corner
frequency, below
which 1/fα-noise
has a higher power
spectral density than
white noise.

white noise is well covered in literature and every engineering discipline
has its ways how to deal with it. But as technology evolved, the white
noise level decreased and measurement times became longer and longer,
thus 1/fα-noise became more and more important. So much so that
certain types of measurements today are limited by 1/fα-noise and not
by white noise anymore.

1/fα-Noise goes by a few names, such as power law noise, for its
power spectral density (PSD) decaying with a power of the frequency.
Or flicker noise, by its most common member 1/f -noise. There is a
certain mystique that surrounds 1/fα-noise, partially because it still
defies our understanding and partially because it is so ubiquitous. This
widespread occurrence seems to suggest that a generic mathematical
and physical explanation might exist, however, the only generally
accepted mathematical description is fractional Brownian motion (i.e.,
the half integral of white noise). But even for fractional Brownian
motion, no physical process is known to explain its occurrence or gives
an adequate explanation for 1/fα-noise.
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The first description of 1/f -noise is attributed to Johnson [Joh25] in
his analysis of data of an experiment to test Schottky’s theory of shot
noise (”Schrot-Effekt”) a few years earlier [Sch18]. Schottky gave a
first attempt to describe this noise mathematically in [Sch26] in terms
of a train of pulses from exponential relaxation processes. A train of
such pulses would produce a power spectrum proportional to 1

λ2+f2

with some constant λ, which is constant near f = 0 and goes toward
1/f2 for large frequencies f , with a narrow transition region where the
power spectrum resembles the 1/f -noise found by Johnson. Bernamont
later pointed out in [Ber37] that to extend Schottky’s description to
fully describe 1/f -noise was a superposition of such relaxation pro-
cesses with a uniform distribution of λ. If λ was uniformly distributed
between λ1 and λ2 then the power spectrum would be proportional to
1/f in a range λ1 ! f ! λ2.

To the best of our knowledge Lévy was the first to introduce frac-
tional integration using the Riemann-Liouville integral in his work in
the 1930s and 1940s (c.f. [Lév65]). This approach was picked up by
several others. Of these we want to pick out Barnes and Allan [BA66],
who were the first to use it as a tool for simulating 1/f -noise, and Man-
delbrot and van Ness [MN68] whose work is the basis for a majority
of the research done on fractional Brownian motion today.

Unfortunately, there is a slight disconnect here. While the traditional
1/fα-noise definition uses the power spectrum, the fractional integra-
tion definition creates a function in the time domain that is of infinite
energy, i.e., not in L1 Y L2 and neither a tempered distribution. Thus
neither its Fourier transform nor its self-similarity function2 are defined.2. Usually called

auto-correlation
function in this con-
text. But we would
like to point out that
the auto-correlation
function is only
then equal to the
self-similarity func-
tion, if the stochastic
function is ergodic,
which is not the case
for 1/fα-noise.

While normalization over the integration time has been used in the past
to define the power spectral density, either by direct Fourier transform
or by using the self-similarity function, to the best of our knowledge,
the function space on which it converges has never been shown. Nei-
ther is there any inverse transform been reported that would give a time
domain representation of a function defined by its power spectrum.

In the following chapters we will attempt to remedy this situation
by introducing a new semi-norm that normalizes over the integration
period (or more generally area). Using this, we will introduce a variant
of the Fourier transform with normalization and its inverse transform
and prove that the equivalent of the Fourier inverse theorem holds
for this modified Fourier transform as well. We will then continue
and introduce a mathematical description of white and 1/fα-noise for
which the modified Fourier transform is defined.



CHAPTER 3

The P p-seminorm and its Integral
Transforms

3.1 The Problem with Power-Limited Functions

In signal systems it is common to have functions that do not decay for
t Ñ ˘8, i.e., have infinite energy, but have bounded power. Or more
formally speaking, functions f(t) : RÑ C for which the limit integral

lim
TÑ8

1

T

T/2
ż

´T/2

|f(t)|2 dt (3.1)

is finite.
While these functions of the class of power limited functions are

quite common, they are quite often treated as if they were energy
limited functions (i.e., functions in L2), leading to errors in the mathe-
matical discussion. It is quite important to note that for power limited
functions, which are not in L2, two of the most commonly used tools in
signal analysis, the Fourier transform and the self-similarity function,
do not converge and are not defined. Some text get around this by
explicitly stating that the functions are time limited (i.e., have compact
support), thus forcing them to have limited energy (by virtue of only
existing for a limited time) and thus making them L2. Other text limit
themseleves to periodic functions only, for which the Fourier transform
leads to a series of weighted Dirac distributions1, which are still infinite, 1. Dirac distri-

butions behave
similar to approxi-
mate identities (c.f.
Definition 1.27 ()).

but allow a way of integration that gives a sensible inverse transform.
But one should be careful here, as many textbooks then tacitly extend
this analysis to general functions, which is mathematically incorrect.

Unfortunately, these approaches make the proper treatment of the
important class of power-limited functions of infinite length impossible.
But by slight modification of the self-similarity function and Fourier
transform it is possible to handle power-limited functions and extend

This chapter is work done solely by the author and has not been
published otherwise yet.
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our well known tools to this class as well. To this end, we will start
by an extension of the Lp-norm and then show how to modify well
known integral transforms such that they converge for functions from
the space induced by this extended norm.

3.2 The P p-seminorm and its Associated Function Space

We generalize Eq. (3.1) to a semi-norm borrowing from the Lp-norm as
follows:

Definition 3.1 (P p-seminorm). Given a measure space (A,A, µ) with
a σ-finite measure µ, an increasing sequence of sets tAkukPN, Ak P A

such that Ak Ď Ak+1 and µ(Ak) ą 0 for all k, limkÑ8 Ak = A, and a
measurable function f : AÑ Rn, p P]0,8[, we define the P p-seminorm
as

‖f‖Pp := lim
kÑ8

 1

µ(Ak)

ż

Ak

|f(x)|p µ(dx)

 1
p

(3.2)

We say that the P p-seminorm of a function f exists, if Eq. (3.2) con-
verges to a finite value.

Similar to the Lp-norm the P p-seminorm induces a function space,
with the set of functions in P p being a superset of the set of functions
in Lp. It is interesting to note that for a function f P P p the expression
f(x)/(µ(Ak))

1/p mimics a function in Lp in the limit k Ñ82. Unfortu-2. Please note that
f(x)/(µ(Ak))

1/p

does not necessarily
converge to zero for
all x

nately this expression only makes sense when f is evaluated within Ak,
hence a general mapping from P p to Lp is not possible.

Lemma 3.2. Given a function f P P p and a sequence of sets tAkukPN

as in Definition 3.1, there exists a subsequence tAjujPN
of tAku such

that the sequence of functions

fj(x) :=

(
1

µ(Aj)

) 1
p

f(x) (3.3)

are in Lp(Aj) for all j.

Proof. It is possible to choose the sequence tAju such that

1

µ(Aj)

ż

Aj

|f(x)|p µ(dx) (3.4)

exists and is finite for all j. As µ(Aj) is in R and strictly positive, we
can pull it into the integral and into the absolute value:
ż

Aj

∣∣∣∣∣
(

1

µ(Aj)

) 1
p

f(x)

∣∣∣∣∣
p

µ(dx) =
ż

Aj

|fj(x)|p µ(dx) =
(
‖fj‖Lp(Aj)

)p
ă 8

(3.5)
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We note that for all j the sequence of functions tfkukěj converges
uniformly on Aj almost everywhere (a.e.).

Next we would like to define a type of Fourier transform on func-
tions in P p. But before we can define the P p-Fourier transform and
show that the basic properties of the regular Fourier transform hold
for it, we need two additional theorems. The first one is the P p equiva-
lent of Theorem 1.21 () and a second one that allows the exchange of
integration and limit when multiplying a function with a convergent
sequence of functions.

Theorem 3.3 (P p-Convergence). Given a function f P P p and a
sequence of sets tAkukPN as in Definition 3.1. Let tfku be the sequence
of functions

fk(x) :=

$

&

%

(
1

µ(Ak)

) 1
p

f(x) for x P Ak

0 otherwise
(3.6)

and 3 3. ˚f8 is the hyper-
real equivalent of
f(x) = limkÑ8 fk(x)
in Theorem 1.21 ().

˚f8 : AÑ ˚Rn

x ÞÑ [tfk(x)ukPN]
(3.7)

Then ˚f8 is in Lp (i.e.,
∥∥˚f8

∥∥
Lp is defined and finite) and

ż

A

(
˚f8(x)

)p
µ(dx) = lim

kÑ8

ż

A

(fk(x))
p
µ(dx) (3.8)

Proof. Without loss of generality, we can assume that sequence tAku

has been chosen such that the functions fk are in Lp for all k.
˚f8 P Lp follows directly from Lemma 3.2 and Lp being a complete

metric space. Thus
(

˚f8

)p
is measurable and integrable. We also note

that for all k P N ∣∣˚f8(x)
∣∣ ď |fk(x)| for all x P Ak∣∣˚f8(x)
∣∣ ě |fk(x)| for all x R Ak

(3.9)

Further, following the proof of Theorem 1.21 () in [Bog07, Vol. 1,
Theorem 2.8.1., p. 130]: By Theorem 1.18 (), for every ε ą 0 and every
k P N there exists a δ ą 0 such that for every D P A, µ(D) ă δ

ż

D

|fk(x)|p µ(dx) ă
ε

8
and

ż

D

∣∣˚f8(x)
∣∣p µ(dx) ă ε

8
(3.10)

Let B be any element of A such that 0 ă µ(B) ă 8, then by Theo-
rem 1.20 () there is a set Aδ P A such that Aδ Ď B, µ(BzAδ) ă δ,
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and the functions tfku converge uniformly to ˚f8 on Aδ. Hence there
exists a K P N such that for all k ą K

∣∣(fk(x))p ´ (˚f8(x)
)p∣∣ ď ε

2µ(B) + 1
x P Aδ (3.11)

Therefore, for all k ą K we have∣∣∣∣∣∣
ż

B

(fk(x))
p
µ(dx)´

ż

B

(
˚f8(x)

)p
µ(dx)

∣∣∣∣∣∣
ď

ż

B

∣∣(fk(x))p ´ (˚f8(x)
)p∣∣µ(dx)

ď

ż

BzAδ

∣∣(fk(x))p ´ (˚f8(x)
)p∣∣µ(dx)

+

ż

Aδ

∣∣(fk(x))p ´ (˚f8(x)
)p∣∣µ(dx)

(3.12)

Using Eq. (3.9) on the first integral and Eq. (3.11) on the second inte-
gral this simplifies to

ď 2

ż

(BXAk)zAδ

|fk(x)|p µ(dx)

+ 2

ż

BzAkzAδ

∣∣˚f8(x)
∣∣p µ(dx) + ε

2µ(B) + 1
µ(Aδ)

ď
ε

4
+

ε

4
+

ε

2

= ε

(3.13)

I.e., for any subset B Ă A with 0 ă µ(B) ă 8 it holds that

ż

B

(
˚f8(x)

)p
µ(dx) = lim

kÑ8

ż

B

(fk(x))
p
µ(dx) (3.14)

Because the measure µ is σ-finite, there exists a set of sets Bl, l P N,
Bl P A such that

0 ă µ(Bl) ă 8 for all l P N

Bl XBm =H for all l ‰ m

8
ÿ

l=1

µ(Bl) = µ(A)

(3.15)
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Using Proposition 1.19 and Theorem 1.22 () it follows
ż

A

(
˚f8(x)

)p
µ(dx)

=
8
ÿ

l=1

ż

Bl

(
˚f8(x)

)p
µ(dx)

=
8
ÿ

l=1

lim
kÑ8

ż

Bl

(fk(x))
p
µ(dx)

= lim
kÑ8

8
ÿ

l=1

ż

Bl

(fk(x))
p
µ(dx)

= lim
kÑ8

ż

A

(fk(x))
p
µ(dx)

(3.16)

Theorem 3.4. Given a function f : A Ñ Rn, an increasing se-
quence of sets tAkukPN, Ak Ď Ak+1, limkÑ8 Ak = A, and a se-
quence of functions tgk(x)ukPN, gk : AÑ R, converging uniformly to
g8(x) := limkÑ8 gk(x), and limkÑ8 |gk(x)´ g8(x)|µ(Ak) = 0 (i.e.,
gk converging faster than Ak grows), if limkÑ8 1/µ(Ak)

ş

Ak
f(x)gk(x)dx

exists and is finite, then

lim
kÑ8

1

µ(Ak)

ż

Ak

f(x)gk(x)dx = lim
kÑ8

1

µ(Ak)

ż

Ak

f(x)g8(x)dx (3.17)

Proof. Extending the functions f , g8(x) and the sequence of functions
tgk(x)ukPN to the hyperreal numbers:

˚f(x) :=

["
1Ak

(x)

µ(Ak)
f(x)

*

kPN

]
˚g(x) := [tgk(x)ukPN]

˚g8(x) :=
[
g8(x)

] (3.18)

Using Theorem 3.3 it follows

lim
kÑ8

1

µ(Ak)

ż

A

f(x)gk(x)dx = st

ż

A

˚f(x) ˚g(x)dx


lim
kÑ8

1

µ(Ak)

ż

A

f(x)g8(x)dx = st

ż

A

˚f(x) ˚g8(x)dx

 (3.19)

Using that the difference ˚g(x)´ ˚g8(x) is infinitesimal because gk
converges uniformly to g8 and that the integral 1/µ(Ak)

ş

Ak
f(x)gk(x)dx
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can only be finite if µ(tx : f(x) R Rnu X tx : gk(x) ‰ 0u) = 0.

st
(

˚f(x) ˚g(x)´ ˚f(x) ˚g8(x)
)

st
(

˚f(x) (˚g(x)´ ˚g8(x))
)

= 0 a.e.

(3.20)

Using limkÑ8 |gk(x)´ g8(x)|µ(Ak) = 0 we can show

st

ż

A

˚f(x) ˚g(x)dx

´ st

ż

A

˚f(x) ˚g8(x)dx


= st

ż

A

˚f(x) ˚g(x)dx´
ż

A

˚f(x) ˚g8(x)dx


= st

ż

A

˚f(x) ˚g(x)´ ˚f(x) ˚g8(x)dx


= st

ż

A

˚f(x) (˚g(x)´ ˚g8(x))dx


= 0

(3.21)

Thus it follows

lim
kÑ8

1

µ(Ak)

ż

A

f(x)gk(x)dx

= st

ż

A

˚f(x) ˚g(x)dx


= st

ż

A

˚f(x) ˚g8(x)dx


= lim

kÑ8

1

µ(Ak)

ż

A

f(x)g8(x)dx

(3.22)

3.3 P p-seminorm Integral Transforms

Even though it is not generally possible to map functions in P p to func-
tions in Lp, it is possible to modify integral transforms for functions
in Lp such that they work for functions in P p. The two transforms we
will focus on are the self-similarity function and the Fourier transform:

Definition 3.5 (P p-Self-Similarity Function). Given a metric space A
closed under addition, a complete measure space (A,A, µ), a sequence
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of sets tAkukPN, with Ak P A such that Ak Ď Ak+1 and µ(Ak) ą 0

for all k, limkÑ8 Ak = A, a function f : A Ñ C, f P P p, and using a
point τ P A1 we define the P p-self-similarity function as the sequence
of functions

RPp,ff,k(τ) :=

 1

µ(Ak)

ż

Ak

(
f(x+ τ)f(x)

) p
2

µ(dx)

 2
p

(3.23)

and we call
RPp,ff,8(τ) := lim

kÑ8
RPp,ff,k(τ) (3.24)

the limit of the P p-self-similarity function of f .

Please note, we square the result of the integration in order to make
the P p-self-similarity function match the common self-similarity func-
tion (c.f. Definition 1.44).

We would also like to point out that the P 2-self-similarity function
is equal to the auto-covariance function (c.f. [Lap09, Definition 25.4.4.,
p. 517]) KXX(τ) = E

[
X(t, ω)X(t+ τ, ω)

]
for wide-sense stationary

signals4. 4. Wide-sense
stationary signals
require that only
the first moment or
mean is stationary
and that the second
moment or variance
is finite at all times.
See [Lap09, Defini-
tion 25.4.2., p. 517]
for details.

From here on, we will use B(r, x) Ď Cn, the n-dimensional ball of
radius r around a point x instead of Ak, as it leads to slightly simpler
notation. It is possible to replace B(r, x) by any increasing sequence
tAku, Ak Ď Ak+1, Ak Ď C

n with k P N and limkÑ8 Ak = Cn.
We will also dispense with the introduction of the P p-Fourier trans-

form over functions in the P p-equivalent of Schwartz space and di-
rectly head for functions in P p. See [Gra14, §2.2.4., p. 113] for a
justification of this.

Definition 3.6 (P p-Fourier Transform). Given a function f : Cn Ñ Cm,
f P P p, p P [1, 2], we define the P p-Fourier transform as the sequence of
functions with an increasing parameter r and a fixed parameter y

FB(r,y) tfu (ξ) :=
1

|B(r, y)|

ż

B(r,y)

f(x)e´2πjx¨ξ dx (3.25)

We use the shorthand

Fr tfu (ξ) := FB(r,0) tfu (ξ) (3.26)

when using an integration region of radius r centered around the origin,
and we call

F8 tfu (ξ) := lim
rÑ8

Fr tfu (ξ) (3.27)

the limit of the P p-Fourier transform of f .
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Definition 3.7 (Inverse P p-Fourier Transform). Given a function
f : Cn Ñ Cm, f P P p, p P [1, 2], and its P p-Fourier transform
FB(r,y)(ξ) = FB(r,y) tfu (ξ) we define the inverse P p-Fourier transform
as the sequence of functions with an increasing parameter r and a fixed
parameter y

F´1
B(r,y)

 

FB(r,y)

(

(x) := |B(r, y)|
ż

B(r,y)

FB(r,y)(ξ)e2πjx¨ξ dξ (3.28)

Similarly, we use the shorthand

F´1
r tFru (ξ) := FB(r,0)

 

FB(r,0)

(

(ξ) (3.29)

and we call
F´1

8 tF8u (ξ) := lim
rÑ8

F´1
r tFru (ξ) (3.30)

the limit of the inverse P p-Fourier transform of FB(r,y).

It is worth noting, that similar to the regular Fourier transform of
functions in Lp, p P [1, 2], it is possible to extend the P p-Fourier trans-
form to distributions. We will not pursue this here to not complicate
the discussion unnecessarily.

Similarly to the regular Fourier transform, we will, in a slight abuse
of notation, write Fr tf(x)u whenever we want to be explicit over
which variable of f the P p-Fourier transform is taken.

Lemma 3.8. The P p-Fourier transform converges for all functions
f P P p, p P [1, 2]

Proof. Using Lemma 3.2 it can be seen that for a choice of a sequence
of trku the P p-Fourier transform of a function f leads to the sequence
of (regular) Fourier transforms of a sequence of functions

fr(x) :=

$

&

%

f(x)/ |B(rk, 0)| for x P B(rk, 0)

0 otherwise
(3.31)

with fr P Lp. As the Lp-norm of the sequence tfru converges to the
P p-seminorm of f the sequence of Fourier transforms of the sequence
tfru must converge.

Next, in order to be able to use the P p-Fourier transform in the
same way as the regular Fourier transform is being used, we need to
show that the most commonly used features of the regular Fourier
transform have P p-Fourier transforms equivalents.

We start with some basic properties (c.f. [Gra14, Proposition 2.2.11.,
p. 109]) and establish that they do hold true:
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Proposition 3.9. Given f, g P P p, p P [1, 2], b P C, and t ą 0. If the
following transforms exist, then

‖F8 tfu)‖L8 ď ‖f‖P 1 (3.32)

Fr tf + gu = Fr tfu+ Fr tgu (3.33)

Fr tbfu = bFr tfu (3.34)

Fr tf(´x)u (ξ) = Fr tf(x)u (´ξ) (3.35)

Fr

 

f
(

(ξ) = Fr tfu (´ξ) (3.36)

FB(r,0) tf(x´ y)u (ξ) = e´2πjy¨ξFB(r,´y) tf(x)u (ξ) (3.37)

Fr

 

e2πjx¨yf(x)
(

(ξ) = Fr tf(x)u (ξ ´ y) (3.38)

Fr tf(tx)u (ξ) = Ftr tf(x)u (t
´1ξ) (3.39)

Proof. Equation (3.32) follows directly from the definition of the
P p-Fourier transform, the proof of Lemma 3.8, and the equivalent
property of the regular Fourier transform ‖F tfu)‖L8 ď ‖f‖L1 .

Equation (3.33) through Eq. (3.39) follow from the definition with a
few simple transformations:

Fr tf + gu =
1

|B(r, 0)|

ż

B(r,0)

(f(x) + g(x)) e´2πjx¨ξ dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨ξ dx

+
1

|B(r, 0)|

ż

B(r,0)

g(x)e´2πjx¨ξ dx

= Fr tfu+ Fr tgu

(3.40)

Fr tbfu =
1

|B(r, 0)|

ż

B(r,0)

bf(x)e´2πjx¨ξ dx

=
b

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨ξ dx

= bFr tfu

(3.41)

Fr tf(´x)u (ξ) =
1

|B(r, 0)|

ż

B(r,0)

f(´x)e´2πjx¨ξ dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πj(´x)¨ξ dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨(´ξ) dx

= Fr tf(x)u (´ξ)

(3.42)
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Fr

 

f
(

(ξ) =
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨ξ dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨ξ dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨(´ξ) dx

= Fr tfu (´ξ)

(3.43)

Fr tf(x´ y)u (ξ) =
1

|B(r, 0)|

ż

B(r,0)

f(x´ y)e´2πjx¨ξ dx

=
1

|B(r,´y)|

ż

B(r,´y)

f(x)e´2πj(x+y)¨ξ dx

=
e´2πjy¨ξ

|B(r,´y)|

ż

B(r,´y)

f(x)e´2πjx¨ξ dx

= e´2πjy¨ξFB(r,´y) tf(x)u (ξ)

(3.44)

Fr

 

e2πjx¨yf(x)
(

(ξ) =
1

|B(r, 0)|

ż

B(r,0)

e2πjx¨yf(x)e´2πjx¨ξ dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjx¨(ξ´y) dx

= Fr tf(x)u (ξ ´ y)

(3.45)

Fr tf(tx)u (ξ) =
1

|B(r, 0)|

ż

B(r,0)

f(tx)e´2πjx¨ξ dx

=
t´n

t´n |B(tr, 0)|

ż

B(tr,0)

f(x1)e´2πjx1
¨(t´1ξ) dx1

= Ftr tf(x)u (t
´1ξ)

(3.46)

Theorem 3.10 (P p-Fourier Transform Convolution Theorem). Given
f, g P P p, p P [1, 2]. If the following transform exist, then

F8

$

’

&

’

%

lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

f(x´ y)g(y)dy

,

/

.

/

-

= F8 tf(x)uF8 tg(x)u

(3.47)
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Proof.

lim
r1Ñ8

Fr1

$

’

&

’

%

lim
r2Ñ8

1

|B(r2, 0)|

ż

B(r2,0)

f(x´ y)g(y)dy

,

/

.

/

-

= lim
r1Ñ8

1

|B(r1, 0)|

ż

B(r1,0)

lim
r2Ñ8

1

|B(r2, 0)|

ż

B(r2,0)

f(x´ y)g(y)dy e´2πjx¨ξ dx

= lim
r1Ñ8

1

|B(r1, 0)|

ż

B(r1,0)

lim
r2Ñ8

1

|B(r2, 0)|

ż

B(r2,0)

f(x´ y)e´2πj(x´y)¨ξg(y)e´2πjy¨ξ dy dx

(3.48)

Using Theorem 3.3, Theorem 1.23 () and Theorem 1.26 () we can
rearrange the above:

= lim
r2Ñ8

1

|B(r2, 0)|

ż

B(r2,0)

g(y)e´2πjy¨ξ

lim
r1Ñ8

1

|B(r1, 0)|

ż

B(r1,0)

f(x´ y)e´2πj(x´y)¨ξ dx dy

= lim
r2Ñ8

1

|B(r2, 0)|

ż

B(r2,0)

g(y)e´2πjy¨ξ

lim
r1Ñ8

1

|B(r1, 0)|

ż

B(r1,´y)

f(x)e´2πjx¨ξ dx dy

(3.49)

By translation invariance of the Lebesgue integral (Theorem 1.17) the
inner integral is, in the limit, constant with respect to y, and thus can be
factored out:

= lim
r2Ñ8

1

|B(r2, 0)|

ż

B(r2,0)

g(y)e´2πjy¨ξ dy

lim
r1Ñ8

1

|B(r1, 0)|

ż

B(r1,0)

f(x)e´2πjx¨ξ dx

=F8 tf(x)uF8 tg(x)u

(3.50)
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Lemma 3.11. Given f ,g in P p, p P [1, 2]

1

|B(r, 0)|

ż

B(r,0)

f(x)Fr tgu (x)dx =
1

|B(r, 0)|

ż

B(r,0)

Fr tfu (x)g(x)dx

(3.51)

Proof.

1

|B(r, 0)|

ż

B(r,0)

f(x)Fr tgu (x)dx

=
1

|B(r, 0)|

ż

B(r,0)

f(x)
1

|B(r, 0)|

ż

B(r,0)

g(y)e´2πjy¨x dy dx

=
1

|B(r, 0)|

ż

B(r,0)

1

|B(r, 0)|

ż

B(r,0)

f(x)g(y)e´2πjy¨x dy dx

(3.52)

Using Theorem 1.26 () we can rearrange to

1

|B(r, 0)|

ż

B(r,0)

1

|B(r, 0)|

ż

B(r,0)

f(x)g(y)e´2πjy¨x dxdy

=
1

|B(r, 0)|

ż

B(r,0)

g(y)
1

|B(r, 0)|

ż

B(r,0)

f(x)e´2πjy¨x dy dx

=
1

|B(r, 0)|

ż

B(r,0)

Fr tfu (y)g(y)dy

(3.53)

Theorem 3.12 (P p-Fourier Transform Inversion Theorem). Given a
function f : Cn Ñ Cm, f P P p, p P [1, 2]

lim
rÑ8

F´1
B(r,0)

 

FB(r,0) tfu
(

= f a.e. (3.54)

Proof. This proof is based on [Gra14, Theorem 2.2.14., p. 112].
Using the same ansatz we define:

gr(ξ) = |B(r, 0)| e2πjξ¨te´π|εξ|2 (3.55)

The P p-Fourier transform of gr(ξ) is thus:

Fr tgr(ξ)u (x) =
1

|B(r, 0)|

ż

B(r,0)

|B(r, 0)| e2πjξ¨te´π|εξ|2e´2πjξ¨x dξ

=

ż

B(r,0)

e2πjξ¨te´π|εξ|2e´2πjξ¨x dξ

(3.56)
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From which follows that (c.f. [Gra14, Example 2.2.9., p. 108])

F8 tg8(ξ)u (x) =
1

εn
e´π|(x´t)/ε|2 (3.57)

We now use gr in Lemma 3.11, which gives for the left side

lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

f(x)Fr tgr(ξ)u (x)dx

= lim
rÑ8

ż

Cn

(
1B(r,0)(x)

|B(r, 0)|
f(x)Fr tgr(ξ)u (x)

)
dx

(3.58)

Using the hyperreal valued helper functions

˚f(x) =

["
1B(r,0)(x)

|B(r, 0)|
f(x)

*

rPN

]
˚G(x) = [tFr tgr(ξ)u (x)urPN]

˚G8(x) =
[!

F8 tg8(ξ)u (x)
)] (3.59)

We note that Fr tgr(ξ)u (x) converges exponentially fast in r to F8 tg8(ξ)u (x),
while |B(r, 0)| only grows as rn, thus we can apply Theorem 3.4

lim
rÑ8

ż

Cn

(
1B(r,0)(x)

|B(r, 0)|
f(x)Fr tgr(ξ)u (x)

)
dx

= st

ż

Cn

˚f(x) ˚G(x)dx


= st

ż

Cn

˚f(x) ˚G8(x)dx


= lim

rÑ8

ż

Cn

(
1B(r,0)(x)

|B(r, 0)|
f(x)F8 tg8(ξ)u (x)

)
dx

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

f(x)F8 tg8(ξ)u (x)dx

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

f(x)
1

εn
e´π|(x´t)/ε|2 dx

(3.60)

And for the right side

lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

Fr tf(x)u (ξ)gr(ξ)dξ

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

Fr tf(x)u (ξ) |B(r, 0)| e2πjξ¨te´π|εξ|2 dξ

= lim
rÑ8

ż

B(r,0)

Fr tf(x)u (ξ)e2πjξ¨te´π|εξ|2 dξ

(3.61)



34 the P p-seminorm and its integral transforms

Putting both sides together and letting εÑ 0 for both sides

lim
εÑ0

lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

f(x)
1

εn
e´π|(x´t)/ε|2 dx

= lim
εÑ0

lim
rÑ8

ż

B(r,0)

Fr tf(x)u (ξ)e2πjξ¨te´π|εξ|2 dξ
(3.62)

Using Theorem 1.23 () and Theorem 1.21 ()

lim
rÑ8

1

|B(r, 0)|
lim
εÑ0

ż

B(r,0)

f(x)
1

εn
e´π|(x´t)/ε|2 dx

= lim
rÑ8

ż

B(r,0)

Fr tf(x)u (ξ)e2πjξ¨t
(

lim
εÑ0

e´π|εξ|2
)

dξ
(3.63)

On the left side, the integral is an approximate identity (c.f. Definition 1.27
and Lemma 1.28). Thus the following equation holds a.e.

lim
εÑ0

ż

B(r,0)

f(x)
1

εn
e´π|(x´t)/ε|2 dx =

$

&

%

f(t) t P B(r, 0)

0 otherwise
(3.64)

On the right side we have limεÑ0 e´π|εξ|2 = 1. Now multiplying both
sides with |B(r, 0)| we get

lim
rÑ8

1B(r,0)(t)f(t) = lim
rÑ8

|B(r, 0)|
ż

B(r,0)

Fr tf(x)u (ξ)e2πjξ¨t dξ

f(t) = lim
rÑ8

F´1
B(r,0)

 

FB(r,0) tfu
(

(t)

(3.65)

With this we have proven that the most commonly used properties
of the Fourier transform apply to the P p-Fourier transform as well, and
often are almost the same.

Last but not least, we will provide a definition of the PSD that ex-
tends the commonly used definition to functions in P p. The common
definition of the PSD is based on the auto-covariance function5, but5. There is a second,

commonly used
definition based on
the self-similarity
function (c.f. Def-
inition 1.44), but
this is then either an
energy density func-
tion in disguise or
there is an implicit
re-normalization
step.

only works for wide-sense stationary functions (c.f. [Lap09, §13.6.,
p. 213 and §25.7., p. 522]). For wide-sense stationary functions our
definition is equivalent to the commonly used one, through the equality
of the auto-correlation function and the P 2-self-similarity function.

Definition 3.13 (Power Spectral Density). Given a function f : Cn Ñ

Cn, f P P p, p P [1, 2] we define the P p-Fourier transform |F8 tfu|2 (ξ)
to be the PSD of the function f .
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Theorem 3.14 (Fourier Transform of the P 2-Self-Similarity Function).
The Fourier transform of the P 2-self-similarity function of a function
f : CÑ C, f P P 2 is equal to the PSD of f :

lim
rÑ8

Fr

 

RP 2,ff,r(τ)
(

(ξ) = |F8 tf(x)u (ξ)|2 a.e. (3.66)

Proof.

lim
rÑ8

Fr

 

RP 2,ff,r(τ)
(

(ξ)

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

1

|B(r, 0)|

ż

B(r,0)

f(x+ τ)f(x)dx e´2πjτ ¨ξ dτ

(3.67)

We replace f(x + τ) by F´1
r tFr tf(x+ τ)uu and use Theorem 1.26 ()

to rearrange

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

1

|B(r, 0)|

ż

B(r,0)

|B(r, 0)|

ż

B(r,0)

Fr tfu (ζ)e2πjτ ¨ζe2πjx¨ζ dζ f(x)dx e´2πjτ ¨ξ dτ

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

|B(r, 0)|
ż

B(r,0)

Fr tfu (ζ)

1

|B(r, 0)|

ż

B(r,0)

f(x)e2πjx¨ζ dx e2πjτ ¨ζ dζ e´2πjτ ¨ξ dτ

= lim
rÑ8

1

|B(r, 0)|

ż

B(r,0)

|B(r, 0)|
ż

B(r,0)

Fr tfu (ζ)Fr tfu (ζ)e2πjτ ¨ζ dζ e´2πjτ ¨ξ dτ

= lim
rÑ8

|B(r, 0)|
ż

B(r,0)

1

|B(r, 0)|

ż

B(r,0)

|Fr tfu (ζ)|2 e´2πjτ ¨ζ dζ e2πjτ ¨ξ dτ

= lim
rÑ8

F´1
r

!

Fr

!

|Fr tfu (ζ)|2
)

(τ)
)

(ξ)

= |F8 tfu (ξ)|2

(3.68)





CHAPTER 4

White Noise

White noise is the most commonly used noise type, due its simplicity in
description and being a good fit for most application. Yet, the two most
common definitions, often used implicitly, are not without problems.

Definition 4.1. White noise is noise in which the frequency and power
spectrum is constant and independent of frequency [Man02, pp 10-
11]. (For completeness, phase of the Fourier transform of the signal is
independent and identically distributed (iid) U ([0, 2π[))

or equivalently

Definition 4.2. White noise is a stationary, continuous-time process, for
which every point is iid N

(
0, σ2

)
.

The equivalence of these two definitions can be seen using Defini-
tion 1.44 () and its Fourier transform (Theorem 1.45): Starting from
Definition 4.2, if the self-similarity function of a continuous-time pro-
cess approaches zero everywhere but at τ = 0, i.e., approaches a Dirac
distribution, then its Fourier transform will be constant. Conversely, if
the Fourier transform of the self-similarity function is constant, then
the self-similarity function must be the Dirac distribution.

While infinite bandwidth does not immediately cause any problems
(besides being unphysical due to infinite power), its equivalence to
the function being discontinuous in R is quite troublesome. By this,
the function belongs into the class of functions that are not Lebesgue
integrable, which prevents the use of many mathematical tools that
are generally assumed to work. Foremost is Fubini’s theorem, which
is the basis behind linearity of expectation and behind the equivalence
of energy spectral density (ESD) and the Fourier transform of the self-
similarity function.

In the following, a slightly more restrictive definition of white noise
will be proposed, which circumvents the problems associated with
discontinuity, while still being almost as general.

This chapter is work done solely by the author and has not been
published otherwise yet.
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4.1 Mathematical Description

We will henceforth operate on a probability space (Ω,F ,P), with
Ω being a set, F being a σ-algebra over Ω and P being a probability
measure over (Ω,F). For the sake of brevity, this will not be explicitly
mentioned from here on. We further will use ω P Ω to denote a specific
outcome.

Definition 4.3 (White Noise). We call a function X0 a continuous-time
white noise process if it has the following properties

(1) X0 : Rˆ ΩÑ R

(t, ω) ÞÑ X0(t, ω)

(2) @t ą 0 X0(t, ¨) „ N
(
µ, σ2

)
(3) @ω X0(¨, ω) is continuous a.e.

(4) DεBW s.t. @t1, t2 P Rě0 with |t2 ´ t1| ą εBW,X0(t1, ¨) and
X0(t2, ¨) are independent.

(5) @ω X0(¨, ω) P t´8,+8u at most on a set of Lebesgue measure
zero.

(6) @t ă 0, @ω X0(t, ω) = 0

In the following X0 will always denote a white noise process as
defined above.

We show that the following propositions hold for continuous-time
white noise processes:

Proposition 4.4. A random process X0 as defined above exists.

Proof. Both conditions of Theorem 1.53 () are fulfiled by Defini-
tion 4.3.

Such a function can be easily constructed. Given a set A =
8
Ť

k=0

Ak of

non-overlapping ranges Ak Ă Rě0 such that A = Rě0 and 0 ă |Ak| ď
εBW, a simple function f(t, ω) =

ř8

k=0 ak(ω)1Ak
(t) with ak(ω) P R

being a random variable with a probability distribution such that
f(t, ¨) „ N

(
µ, σ2

)
@t and independent for each k, then f(t, ω) fulfills

the above properties for X0.
If a smooth function is required, this can be achieved using a suit-

able mollifier function m(t) P C8 with compact suppport |supp(m)| ď
εBW and

ş

R
m(t)dt = 1, then the convolution

fm(t, ω) =

ż

R

m(τ ´ t)f(t, ω)dτ (4.1)
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is a smooth function fulfilling the properties of X0.

Proposition 4.5. X0(¨, ω) is measurable.

Proof. X0(¨, ω) can be ˘8 only on a set of Lebesgue measure zero.
Likewise Item (3) in Definition 4.3 demands that the set of points
where X0(¨, ω) is discontinuous has a Lebesgue measure zero.

Proposition 4.6. X0(¨, ω) P P
p for p P [1,8[

Proof. Reminding ourselves that the P p-seminorm is

‖X0(¨, ω)‖Pp = lim
TÑ8

(
1

T

ż T/2

´T/2

|X0(t, ω)|p dt

) 1
p

(4.2)

From Item (5) of Definition 4.3 follows immediately that |X0(¨, ω)| ă
8 a.e., thus |X0(¨, w)|p ă 8 a.e.. Similarly, due to Item (2) of Defini-
tion 4.3, the Lebesgue measure |¨| of the set of values of X0(t, ω), t P

[´T/2, T/2] being larger than a value c P Rě0 is can be calculated,
namely:

lim
TÑ8

|tt : |t| ă T/2, |X0(t, ω)| ą cu| = lim
TÑ8

T

(
1 + erf

(
c´ µ

σ
?
2

))
(4.3)

Or equivalently, using the probability distribution

lim
TÑ8

|tt : |t| ă T/2, |X0(t, ω)| = cu| = lim
TÑ8

T
2

σ
?
π
e

´ 1
2

(
c´µ
σ

)2

(4.4)

Using this, we can calculate the P p-seminorm:

‖X0(¨, ω)‖Pp = lim
TÑ8

(
1

T

ż

Rě0

cp d |tt : |t| ă T/2, |X0(t, ω)| = cu|
) 1

p

= lim
TÑ8

(
2

σ
?
π

ż

Rě0

cpe
´ 1

2

(
c´µ
σ

)2

dc
) 1

p

ă8

(4.5)

Lemma 4.7. The PSD of X0(¨, ω) exists and is almost white (flat) for
ξ ! 1/εBW.

Proof. It follows directly from Proposition 4.6 and Lemma 3.8 that the
P p-Fourier transform of X0(¨, ω) exists.

Given the P 2-self-similarity function RP 2,X0X0,r(τ) of X0, its PSD is
(Theorem 3.14)

|F8 tfu|2 (ξ) = lim
rÑ8

Fr

 

RP 2,X0X0,r

(

(ξ) (4.6)
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The P 2-self-similarity function RP 2,X0X0,8(τ) will be zero for
|τ | ą εBW as X0(t1) and X0(t2) are independent for |t1 ´ t2| ą εBW

(Item (4) of Definition 4.3). For |τ | ă εBW the value of RP 2,X0X0,r

is not restricted by the definition, but its absolute value is bounded
from above by RP 2,X0X0,8(0) = ‖X0‖2P 2 . I.e., RP 2,X0X0,8 can be
approximated by a pulse of width of εBW.

Given a rectangular pulse

rεBW(τ) :=

$

&

%

1 if τ ă εBW

0 otherwise
(4.7)

its Fourier transform is

F trεBWu =
εBW

2
sinc

(
εBWξ

2

)
(4.8)

Hence, if RP 2,X0X0,8 is approximated by a rectangular pulse of
width εBW, then for every ε ą 0 there exists an δ such that for all ξ ă δ∣∣∣∣ d

dξ
lim
rÑ8

Fr

 

RP 2,X0X0,r

(

(ξ)

∣∣∣∣ ă ε (4.9)



CHAPTER 5

1/fα-Noise

1/fα-Noise noise or, as it is often more commonly known, flicker
noise1, power-law noise, or fractional Brownian motion (fBm), is 1. Flicker noise is

usually only used to
denote 1/f -noise,
i.e., for α equals 1,
but depending on the
text in question it
can encompass all of
1/fα-noise.

characterized by its PSD being proportional to 1/fα. By giving its
frequency characteristic, through Theorem 1.45 () and Theorem 3.14 ()
the (P 2-)self-similarity function and thus its time correlation is defined.
One important property to note here is, because 1/fα-noise has some
time correlation it is not stationary (not even wide-sense stationary)
and thus not ergodic.

Although it is often not further specified, it is usually implied that
the ensemble distribution is normally distributed, owing to the fact that
the underlying source of 1/fα-noise is assumed to be the average of a
large number of stochastic processes. Although we do not know with
certainty what the source of 1/fα-noise is, this assumption seems to
hold up well enough for practical purposes2. 2. In case this

assumption does
not hold, a mod-
ification to use a
more general Levy-
process instead of a
Wiener-process can
be made

Looking at 1/fα-noise from the fBm perspective, the most common
mathematical description is by Van Ness and Mandelbrot [MN68],
which is based on the Holmgren-Riemann-Liouville integral [Hol65;
Rie47; Lio32]

B0
H(t, ω) =

1

Γ(H + 1
2 )

ż t

0

(t´ s)
H´ 1

2 dB(s, ω) (5.1)

with B(s, ω) being the ordinary Brownian motion and H the Hurst
number with α = 2H + 1. One slight problem with the analysis in
[MN68] is that it is restricted to 0 ă H ă 1 or equivalently 1 ă α ă 3.
This leaves out the, for physics and engineering, very important case of
α = 1.

5.1 Mathematical Description

Going back to Eq. (5.1) we follow Barnes and Allan [BA66] but with
a slightly different mathematical notation. As noted in the previous

This chapter is work done solely by the author and has not been
published otherwise yet.
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chapter, white noise, as it is usually defined, is not Lebesgue integrable.
Hence the derivation in [BA66] does not work as intended. Instead we
will be using the white noise X0 as given by 4.3.

Definition 5.1 (1/fα-Noise). Given a continuous-time white noise
process X0(t, ω) as defined in Definition 4.3, in particular with specific
µ, σ, and εBW, we call a function Xα(t, ω), t P Rě0 defined as the
fractional integral

Xα(t, ω) :=
τ

0Iα/2t X0(τ, ω) (5.2)

a continuous-time 1/fα-noise process.

We note that this function is similar to the definition in [BA66] but
circumvents the problem of integrating over a function that is not
integrable. It is also similar to the definition in [MN68] without the
contribution of noise for t ă 0. See [SL95] for a discussion of the
consequences of this difference in starting point.

Lemma 5.2. The expected value of Xα(t, ω) and the conditional ex-
pected value, given Xα(t0, ω) at time t0 are

E [Xα(t, ω)] =
τ

0Iα/2t µ

E [Xα(t, ω)|Xα(t0, ω)] =
τ

t0
Iα/2t µ+Xα(t0, ω)

(5.3)

with
τ

t0
Iα/2t µ =

2µ (t´ t0)
α/2

αΓ(α/2)
(5.4)

Proof.

E [Xα(t, ω)|Xα(t0, ω)] = E
[ τ

t0
Iα/2t X0(τ, ω) +Xα(t0, ω)

]
=

τ

t0
Iα/2t E [X0(τ, ω)] +Xα(t0, ω)

=
τ

t0
Iα/2t µ+Xα(t0, ω)

(5.5)

Using the definition of the fractional integral (c.f. Definition 1.54 ()):

τ

t0
Iα/2t µ =

1

Γ(α/2)

ż t

t0

(t´ τ)
α/2´1µdτ

=
1

Γ(α/2)

2

α
(t´ t0)

α/2
µ

(5.6)

The unconditional case follows from setting t0 = 0 and Xα(t0, ω) = 0.

We note that this means that Xα is not stationary, not even in the
wide sense, and thus not ergodic.
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Lemma 5.3. Given a, x, y, z P R
ż

(y ´ x)
a
(z ´ x)

a+1 dx =

(y ´ x)
a+1

(y ´ z)
a+1

(
z ´ x

x´ z

)a
1

a+ 1
F
(
´a´ 1, a+ 1; a+ 2;

y ´ x

y ´ z

)
(5.7)

Proof. Using Lemma 1.58 we get

(y ´ x)
a+1

(y ´ z)
a+1

(
z ´ x

x´ z

)a

1

a+ 1
F
(
´a´ 1, a+ 1; a+ 2;

y ´ x

y ´ z

)
= (y ´ x)

a+1
(y ´ z)

a+1

(
z ´ x

x´ z

)a

1

a+ 1
(a+ 1)

(
y ´ z

y ´ x

)a+1 ż y´x
y´z

0

ta (1´ t)
a+1 dt

Substituting u = y ´ t(y ´ z) and further simplifying

= (y ´ z)
a+2

(
z ´ x

x´ z

)a(
1

z ´ y

)a+2 ż x

0

(y ´ u)
a
(z ´ u)

a+1 du

=

ż x

0

(y ´ u)
a
(z ´ u)

a+1 du

(5.8)

Lemma 5.4. The conditional variance of Xα(t, ω) given its value
Xα(t0, ω) at a time t0 is bounded from above by

V [Xα(t, ω)|Xα(t0, ω)]

ď
4
(
σ2 + µ2

)
α2Γ2(α/2)

(
(t´ t0)

α/2
(
(t´ t0)

α/2 ´ (t´ t0 ´ εBW)
α/2
)

+ (´1)
α/2´1

(
(t´ t0)

α/2
ε
α/2
BWF

(
´
α

2
´ 2,

α

2
;
α

2
+ 1;

t´ t0
εBW

)
´ (t´ t0 ´ εBW)

α/2
ε
α/2
BWF

(
´
α

2
´ 2,

α

2
;
α

2
+ 1;

t´ t0 ´ εBW

´εBW

)
´ εαBWF

(
´
α

2
´ 2,

α

2
;
α

2
+ 1; 1

)))

´

( τ

t0
Iα/2t µ

)2
(5.9)

Proof.

V [Xα(t, ω)|Xα(t0, ω)]

= E
[
(Xα(t, ω))

2
|Xα(t0, ω)

]
´ (E [Xα(t, ω)|Xα(t0, ω)])

2
(5.10)
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with

(E [Xα(t, ω)|Xα(t0, ω)])
2
=
( τ

t0
Iα/2t µ+Xα(t0, ω)

)2
(5.11)

and, using Theorem 1.26 ()

E
[
(Xα(t, ω))

2
|Xα(t0, ω)

]
= E

[
τ

t0
Iα/2t X0(τ, ω)

τ 1

t0
Iα/2t X0(τ

1, ω)

]
+ 2Xα(t0, ω)E

[ τ

t0
Iα/2t X0(τ, ω)

]
+ (Xα(t0, ω))

2

=
τ

t0
Iα/2t

τ 1

t0
Iα/2t E

[
X0(τ, ω)X0(τ

1, ω)
]

+ 2Xα(t0, ω)
τ

t0
Iα/2t µ+ (Xα(t0, ω))

2

(5.12)

In general,
τ

t0
Iα/2t

τ 1

t0
Iα/2t E [X0(τ, ω)X0(τ

1, ω)] cannot be further simpli-
fied, as the expectation E [X0(τ, ω)X0(τ

1, ω)] depends on the auto-
correlation of X0(τ, ω). But we do know E [X0(τ, ω)X0(τ

1, ω)] = 0

for |τ ´ τ 1| ą εBW due to Item (4) in Definition 4.3. We also know
E [X0(τ, ω)X0(τ

1, ω)] ď E
[
(X0(τ, ω))

2
]
for all τ, τ 1. Thus we can get a

bound from above:

τ

t0
Iα/2t

τ 1

t0
Iα/2t E

[
X0(τ, ω)X0(τ

1, ω)
]

ď
τ

t0
Iα/2t

τ 1

t0
Iα/2t 1t|τ´τ 1|ăεBWuE

[
(X0(τ, ω))

2
]

=
τ

t0
Iα/2t

τ 1

t0
Iα/2t 1t|τ´τ 1|ăεBWu

(
σ2 + µ2

) (5.13)

Where in the last step, we used the well known equation for the vari-
ance of any random variable Y : V [Y ] = E

[
Y 2
]
´ (E [Y ])

2
ðñ

E
[
Y 2
]
= V [Y ] + (E [Y ])

2.

This leaves
τ

t0
Iα/2t

τ 1

t0
Iα/2t 1t|τ´τ 1|ăεBWu as the last bit to solve:

τ

t0
Iα/2t

τ 1

t0
Iα/2t 1t|τ´τ 1|ăεBWu

=
1

Γ2(α/2)

ż t

t0

(t´ τ)
α/2´1

ż t

t0

(
t´ τ 1

)α/2´1
1t|τ´τ 1|ăεBWu dτ 1 dτ

=
1

Γ2(α/2)

ż t

t0

(t´ τ)
α/2´1

ż mintt,τ+εBWu

maxtt0,τ´εBWu

(
t´ τ 1

)α/2´1 dτ 1 dτ

=
1

Γ2(α/2)

(
ż t0+εBW

t0

(t´ τ)
α/2´1

ż τ+εBW

t0

(
t´ τ 1

)α/2´1 dτ 1 dτ

+

ż t´εBW

t0+εBW

(t´ τ)
α/2´1

ż τ+εBW

τ´εBW

(
t´ τ 1

)α/2´1 dτ 1 dτ

+

ż t

t´εBW

(t´ τ)
α/2´1

ż t

τ´εBW

(
t´ τ 1

)α/2´1 dτ 1 dτ

)

(5.14)
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Using the well known relation
şb

a
(t´τ)α dτ = 2/α

(
(t´ a)α+1 ´ (t´ b)α+1

)
and using Lemma 5.3 we can further simplify

=
2

αΓ2(α/2)

(
ż t0+εBW

t0

(t´ τ)
α/2´1

(
(t´ t0)

α/2
´ (t´ τ ´ εBW)

α/2
)

dτ

+

ż t´εBW

t0+εBW

(t´ τ)
α/2´1

(
(t´ τ + εBW)

α/2
´ (t´ τ ´ εBW)

α/2
)

dτ

+

ż t

t´εBW

(t´ τ)
α/2´1

(t´ τ + εBW)
α/2 dτ

)

=
2

αΓ2(α/2)

(
(t´ t0)

α/2
ż t0+εBW

t0

(t´ τ)
α/2´1 dτ

+

ż t

t0+εBW

(t´ τ)
α/2´1

(t´ τ + εBW)
α/2 dτ

´

ż t´εBW

t0

(t´ τ)
α/2´1

(t´ τ ´ εBW)
α/2 dτ

)

=
2

αΓ2(α/2)

(
(t´ t0)

α/2 2

α

(
(t´ t0)
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Lemma 5.5. For (t´ t0) " εBW the variance V [Xα(t, ω)|Xα(t0, ω)] can
be approximately bounded from above by

V [Xα(t, ω)|Xα(t0, ω)]

À
2
(
σ2 + µ2

)
αΓ2(α/2)

((
αεBW
α/2´ 1

´
2αεBW
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α´1

+

(
α (α´ 1) ε2BW

α´ 2
+ αε2BW

)
(t´ t0)

α´2

)

´

( τ

t0
Iα/2t µ

)2
(5.16)

Proof. Starting from Eq. (5.15) and remembering that (x + ε)a =

xa+axa´1ε+O(xa´2ε2) and (x+ε)a´(x´ε)a = 2axa´1ε+O(xa´3ε3)
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we can approximate:
ż t0+εBW
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For the case of α = 2 the variance can be directly calculated and
leads to

V [X2(t, ω)|X2(t0, ω)] ď

(
σ2 + µ2

)
εBW

2
(2(t´ t0)´ εBW)´((t´ t0)µ)

2

(5.19)

Lemma 5.6. If the PSD of Xα(¨, ω) exists, it is proportional to 1/ξα, i.e.,
it is a 1/fα-noise process.



mathematical description 47

Proof. The PSD of X0(¨, ω) is almost white (c.f. Lemma 4.7). Using
Theorem 1.55 () we get

|F8 tXαu|2 (ξ) =
∣∣∣F8

!

0Iα/28 X0

)
∣∣∣2 (ξ)

=
1

(2πjξ)α
|F8 tX0u|2 (ξ)

(5.20)





PART II

Noise Propagation in Electronics





CHAPTER 6

The Importance of Time in Modern
Metrology

Time, and its inverse frequency, is the SI base unit that we can measure
with the highest accuracy and precision. Achieving a precision of
a few parts in 10´17 is common with optical atomic clocks and an
uncertainty below 10´18 has been demonstrated1. (see e.g., [Bre+19; 1. Currently, the

achieved accuracy
is limited to 10´16

by the second being
defined using the
hyperfine splitting
of the ground state
of the Caesium-133
atom and this being
a microwave tran-
sition. Efforts to
redefine the second
using an optical tran-
sition are underway,
though.

Hob+20]) While the next most-precisely measurable unit is the Volt2

2. Though the Volt
is not an SI base
unit, it is usually
favored above the
Ampere due to ease
of realization. Today,
the Ampere is most
commonly realized
using a voltage stan-
dard (a Josephson
voltage standard)
and a resistance
standard (quantum
Hall effect standard).
Which makes the
Ampere a derived
unit in practice.

with a precision of 10´11 [Rüf+18].
The accuracy and ease with which a frequency standard can be built

and can be transferred from radio frequencies almost continuously
up to the ultra-violet range [Pet+09] has, over time, lead to more and
more SI base units to depend on the definition of the second. E.g., the
meter was redefined using the speed of light in vacuum as a constant
and in combination with the length of the second in 1983 [BIP83].
Today, realizations of the meter are either based on time-of-flight
measurements of light or counting of wavelength (i.e., interference
patterns) of laser beams with a very accurate frequency. With the
2019 revision of the SI base unit system, all but one of the SI units
depend directly or indirectly on the definition of the second [BIP18]
(see Fig. 6.1).

Figure 6.1: SI units relation graph after the 2019 redefinition of the SI
base units. From [Pis16].
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With this in mind, it is no surprise that methods to measure time
and frequency continue to be an important topic. Though the used
methods did not fundamentally change over the past decades, they
got refined quite a bit. Besides sampling based methods (e.g., [SJ16])
frequency measurement is performed by counting cycles of the input
and measuring precisely the time difference between the start of the
first cycle and the end of the last cycle [Joh14; Rub12; HP97]. Or in
other words, measuring frequency can be performed by measuring
the time of events occurring and thus, in most cases, time interval
measurement is the fundamental operation in time and frequency
measurements.

Kalisz gives a nice overview of the methods used for interval mea-
surement in [Kal03]. Of these methods, two are especially noteworthy
for being the most commonly implemented methods these days: The
time-to-amplitude conversion method and the tapped delay line method
(often called time to digital converter (TDC) for it leading directly to a
digital time value without an intermediate analog representation step).
The time-to-analog conversion method has been the workhorse of preci-
sion time interval measurements from the 1970s until the early 2010s
and are still the most common method to do measurements with a
precision of a few ps. When only 10s of ps or less precision/resolution
is needed TDC have overtaken the time-to-amplitude converters due to
their compact construction and cheap, mass-market manufacturing.

6.1 The Current State of Art in Low-Noise Amplifier
Design

Common to all measurement methods mentioned above is to label a
specific point in time with an electric pulse. This is done by means of a
rising or falling edge with a steep slope.

Unfortunately, most experiments do not have an output signal with
a steep slope. It is quite often that only a sinusoid with low frequency
or a slow ramp is provided. Thus the amplification of this slope, and
doing so with as little noise as possible, is paramount for precise mea-
surement.

Noise in amplifiers has been studied quite extensively in the past.
Probably the most cited work in this area is by Motchenbacher and
Conelly [MC93], where most of the book is devoted on how to design
low noise amplifiers including modeling of noise sources and how dif-
ferent stages affect the noise. Ambrózy does delve quite a bit into the
mathematical details of noise in his book [Amb82], focusing on prob-
ability distributions, their spectra and how they change when passing
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through linear circuits. The book by Vasilescu [Vas05], while having
some chapters on circuit design, focuses more on the physical sources
of noise. More practice oriented books like the book by Tietze, Schenk,
and Gamm [TSG19] have a section on low-noise design in most chap-
ters, but while the basic theory and how to apply it in an actual circuit
design is covered, more advanced models are not mentioned. The often
used book by Horowitz and Hill [HH15, Chapter 8] mostly focuses on
the practical aspects of low-noise electronics design.

One aspect of all the above mentioned works is that they only deal
with linear circuits. But in our case, if the whole signal would be am-
plified linearly, the result would be a signal with an amplitude that
could not be supported by the following measurement circuit. Adding
an element that limits the amplitude adds non-linearity to the circuit,
which makes analysis more difficult, especially analysis of the noise per-
formance. This problem was first noted by Dick, Kuhnle, and Sydnor in
[DKS90] with the proposed solution of splitting the amplification into
multiple stages. Later Collins gave an approximation in [Col96] that
allowed to calculate an approximately optimal choice for the gain of
each stage, but without giving any bound how accurate the approxima-
tion was. A model that split the noise into an input related and circuit
delay related was proposed by Calosso and Rubiola in [CR14], but
could not fully explain the phase noise spectrum seen in experiments.

To the best of our knowledge, noise performance of non-linear am-
plifiers has only been studied in the context of oscillators. Notably in
[HL98] by Hajimiri and Lee have presented an analysis upon which
we will build upon in the following chapters. They model the noise
sensitivity as a periodic function, depending on the input signal of
the amplifier, thus capturing the non-linearity of the amplifier itself.
We would like to mention here that the work by Hajimiri and Lee,
although intended for oscillators, is flawed in its mathematical model-
ing for oscillators as it does not properly account for the memory of
the resonator when it comes to phase noise and thus only works for
circuits without memory or resonators. For a detailed discussion see
[DR97]. In [DMR00] Demir, Mehrotra, and Roychowdhury follow
a similar, but more intricate approach, properly accounting for the
memory of the resonator using Floquet theory (c.f. [Dem00]).

In the following chapters we will first refine the model introduced by
Calosso and Rubiola and give a mathematical / physical explanation
for the observed scaling in frequency. Then we will use the same tech-
nique to refine Collins’ model, which leads to an exact solution for the
choice of optimal gain per stage.





CHAPTER 7

Noise Propagation in Electronics

In order to measure the time an event happened precisely it is useful
to have an as strong signal as possible, relative to the noise floor, to
maximize the signal to noise ratio. Unfortunately, there is a practical
limit on how strong a signal can be handled in an electronic system.
The major limiting factor being the maximum amplitude (or power)
of the signal, either driving the electronics into saturation, with all
kinds of side effects, or carrying so much power that the losses lead to
excessive heating. As only the zero-crossing of the signal is relevant for
time measurement, it is common to amplify the signal to increase the
slope at the zero-crossing, while deliberately limiting the amplitude,
effectively turning a sinusoid signal into a square-wave signal, in such
a way that the circuit shows as little non-ideal behavior as possible.
Unfortunately, limiting the amplitude makes the circuit non-linear,
which in itself is a non-ideal behavior.

In the following sections we will explore how this non-linearity and
other non-ideal behavior of real circuits affect measurement precision.
While the bulk of the analysis is done for comparators, the analysis
technique can be applied to all non-linear circuits, starting from “lin-
ear” amplifiers, over limiting amplifiers and mixers, to attenuators and
more.

7.1 Circuit Model

A sine-to-square converter can be modeled by a comparator, i.e., an
amplifier that saturates to ˘1. To make the model more realistic, but
still keep it simple, we assume here, that the converter consists of
an ideal, noiseless and zero-delay comparator with a hysteresis ˘H
followed by a single noiseless amplifier with a delay tamp (see Fig. 8.1).
We base our circuit model on two assumptions:

This chapter is work done solely by the author and based on an
article published as [Kin18].
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+

´
tamp
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Vofs
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VDD,n

´
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Figure 7.1: The circuit model of a sine-to-square converter is simplified
to a noiseless comparator input stage with some hysteresis ˘H and
all input related noise being lumped together into the offset voltage
Vofs. Noise due to power supply variation VDD,n is modeled using an
amplification stage with a delay of tamp that only depends on the supply
voltage.

(1) That all noise that is directly or indirectly related to the input sig-
nal like phase noise of the input, variations of the offset voltage,
phase noise of the sine-to-square converter,…, can be folded into
a single input referred noise source.

(2) That all delay variations within the circuit, due to temperature,
voltage,…, can be folded into a single, delay related noise source
and that his noise source is independent of the input related
noise.

Thus we use this split in our model to separate noise contributions
due to different processes.

Additionally we make the following assumptions as used later in the
text:

(3) The (integrated) magnitude of phase noise is small enough that
the traditionally used small angle approximation holds.

(4) The delay variations due to noise or variations of circuit param-
eters are small enough relative to the period of the input signal
that the small angle approximation holds.

(5) Independence of noise sources with different physical origin.

The input signal

Vi(t) = (V0 + Vi,AM(t)) sin(2πν0t+ ϕi(t)) (7.1)



noise sources 57

with the two noise parts, the input amplitude noise Vi,AM(t) and the
input phase noise ϕi(t) enters the comparator, which has a hysteresis
of ˘H(t) and an input offset voltage of Vofs(t). The output of the
comparator gets further amplified and delayed by time ∆tamp(t) by the
following amplifier. We further assume that fluctuations and noise on
the power supply VDD,n do not affect the comparator (e.g., it being an
ideally symmetrical differential pair) and model the effect of VDD,n as
variations in the amplifier delay tamp.

As we are only interested in the phase noise contribution of the
amplifier, we will ignore the input phase noise ϕi(t) for the further
analysis. The amplitude noise Vi,AM(t) is included to determine its
effect on the output phase noise, due to AM-PM conversion through
the hysteresis of the comparator.

Multi-stage converters can easily be modeled by series connection
of the elementary stage in Fig. 8.1. In longer chains or with sufficiently
large input amplitude, there will be a slew-rate saturation. This can be
used to simplify all following stages to single amplifier stages, without
the comparator, and fold the input noise into the variation of the
amplifier delay tamp and by setting the amplifier gain to 1. If filters are
used between stages, like in the case of Collins style sine-to-square
converters [Col96] care has to be taken to account for the change in
noise properties in each stage.

7.2 Noise Sources

Assuming the hysteresis H of the comparator is symmetric around
the zero point with offset voltage Vofs, i.e., Vofs ˘ H, and both are
small enough such that the small angle sine approximation can be used
around the zero-crossing point (see Fig. 7.2), then the propagation
delay through the comparator is

tdelay(t) « tofs(t) + tH(t) + tamp(t) (7.2)

=
Vofs(t) +H(t)

2πν0(V0 + Vi,AM(t))
+ tamp(t). (7.3)

As we are interested in the variation of the delay, we will be focusing at
∆tdelay. Assuming delay variations are small relative to the signal period
one can split the contributions:

∆tdelay(t) « ∆tofs(t) + ∆tH(t) + ∆tAM(t) + ∆tamp(t) (7.4)
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Vofs

H

H

Input signal

t

Output signal

t

tofs tH tamp

Figure 7.2: The zero crossing of the input signal gets delayed by the
offset voltage Vofs and the hysteresis ˘H and the delay tamp through the
amplifier stage. The offset voltage and hysteresis related delays tofs and
tH depend not only on the values of Vofs and H respectively, but also on
the slew-rate of the input signal. The amplifier delay tamp only depends
on the supply voltage VDD.

with the first order Taylor approximations:

∆tofs(t) «
B∆tdelay
BVofs

∆Vofs(t) =
1

2πν0V0
∆Vofs(t) (7.5)

∆tH(t) «
B∆tdelay
BH

∆H(t) =
1

2πν0V0
∆H(t) (7.6)

∆tAM(t) «
B∆tdelay
BVi,AM

∆Vi,AM(t) «
H

2πν0V 2
0

∆Vi,AM(t) (7.7)

As all these noise sources have physically different origins, we can as-
sume that they are independent. It should be noted, though, that there
might be independent factors that lead to correlation between these
noise sources. E.g., large variations in supply voltage or temperature
can lead to correlated shifts in offset voltage Vofs and hysteresis H. But
in most cases, especially in stabilized measurement instruments, these
variations should be small and thus independence should be a valid first
order approximation.
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Although, there are many factors that affect delay trough the circuit,
for the sake of brevity, we will ignore them all in this discussion but
VDD. In case these other factors need to be properly modeled, a simple
substitution of VDD or VDD,n is sufficient. As the exact relationship of
VDD and the delay is not known, we approximate it by

∆tamp(t) =
B∆tamp

BVDD
VDD,n(t) +O(V 2

DD,n)

= cVDD,n(t) +O(V 2
DD,n)

« cVDD,n(t),

(7.8)

with the circuit dependent parameter c. This, of course, removes time
dependent delay variations due to e.g., aging or temperature, which can
be significant at long time scales. But these contributions are easy to
add later in the analysis and are left out, at the moment, for simplicity.

7.3 Noise Translation and Scaling

The phase noise is defined by

Sϕ(ξ) = ϕ2
rms(ξ) (7.9)

with the phase fluctuation ϕ measured over a bandwidth of 1Hz
[Fer+09]. As the phase relates to time with ϕ = 2πν0t we can write

Sϕ(ξ) = (2πν0)
2
@

∆t2
D

ξ
(7.10)

with xxyξ denoting the average of the absolute value of the Fourier
coefficient in a 1/2Hz neighborhood of the frequency ξ of the signal
x(t):

xxyξ =

ż ξ+1/2

ξ´1/2

ˇ

ˇ

ˇ

ˇ

ż 8

´8

x(t)e´2πjζt dt
ˇ

ˇ

ˇ

ˇ

dζ (7.11)

For reasons of being concise, we ignore here the mathematical details
of integrating over time series of random signals, which might poten-
tially be non-continuous and assume all random signals are of finite
bandwidth and thus integrable. We also assume all integrals go over
finite time (measurement) intervals in order for them to be defined in
case of 1/fα-noise which otherwise would lead to infinite signal power.
Alternatively, wherever the Fourier transform is used, it could be substi-
tuted for the P p-Fourier transform (c.f. Definition 3.6), leading to the
same result for infinite energy, finite power signals. Please refer to Part I
for details.
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As all discussed noise sources are assumed to be independent, we
can write

Sϕ(ξ) = (2πν0)
2
A

∆t2delay

E

ξ

=
1

V 2
0

@

∆V 2
ofs

D

ξ
+

1

V 2
0

@

∆H2
D

ξ

+
H2

V 4
0

@

∆V 2
i,AM

D

ξ
+ (2πν0)

2c2
@

V 2
DD,n

D

ξ

(7.12)

Different frequency scaling for different noise sources becomes already
evident. The input related noise processes do not scale with ν0 while
the delay related noise does scale with ν20 . These are the ϕ-type and
x-type noises, respectively, as discussed in [CR14].

Impulse Sensitivity Function

In [Ega90] Egan noted that white phase noise gets aliased due to sam-
pling. Formally, this can be described by using the impulse sensitivity
function (ISF) as introduced by Hajimiri and Lee in [HL98]. We slightly
modify it to adapt it for the more general setting of sine-to-square
converters1:1. Most publications

use Γ(t) for the
ISF, but to avoid
confusion with the
Γ-function we will
use Ξ(t) here

∆ϕ(t) =

ż t

´8

Ξ(τ)n(τ)dτ (7.13)

with Ξ(t) being the ISF and n(t) being the effecting noise. Please note
that Ξ(t) is implicitly also a function of the circuit and its parameters,
which also include the input signal. In other words, if the shape or
amplitude of the input signal changes, this will potentially result in
a change of the shape of Ξ(t). For simplicity, we assume that these
changes are small and can be neglected. The ISF for a sine-to-square
converter can be approximated by a comb of alternating positive and
negative rectangular pulses:

Ξ(t) =
8
ÿ

k=´8

Π

(
t

τw
´ kT0

)
´

8
ÿ

k=´8

Π

(
t

τw
´ kT0 ´ τd

)
(7.14)

with Π(¨) being the rectangular pulse function:

Π(t) =

$

’

’

&

’

’

%

1, |t| ă 1
2

1
2 , |t| = 1

2

0, |t| ą 1
2

(7.15)

using a period of T0 = 1/ν0 and a pulse width of τw. τd denotes the
phase shift between the positive and the negative pulses and is related
to the duty cycle of the output signal and depends, in our circuit model,
on the input signal amplitude V0 and the offset voltage Vofs. In a first
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order approximation, for a 50% duty cycle τd = T0/2. In order to
keep the formulas simple at this point, we assume that the positive
and negative pulse, which relate to the positive and negative zero
crossing respectively, are of the same magnitude and width, which is
not necessarily the case. In case they are not, this will manifest itself in
even order harmonics and thus can be easily modelled in the frequency
domain, as explained later.

It should be noted, that τw depends on the output slew-rate of the
converter, thus is proportional to T0. Conversely, for slew-rate limited
converters, τw becomes independent of T0 (in first order). The Fourier
series of the function Ξ(t) can be expressed as

Ξ(t) =
τw
T0

8
ÿ

k=´8

sinc (πkν0τw) e´πjkν0τw e´2πjkν0t

+
τw
T0

8
ÿ

k=´8

sinc (πkν0τw) e´πjkν0τw e´2πjkν0t e´2πjkν0τd

(7.16)

with sinc(x) = sin(x)
x . The Fourier series directly explains two phenom-

ena reported in [CR14]: The 1/ν0 scaling of white noise and the 1/ν20
and 1/ν0 scaling of flicker noise. We will explore and explain this in the
following sections.

Scaling of White Noise

Under the assumption that τd = T0/2 the Fourier transform of Ξ(t)
in Eq. (7.16) becomes a Dirac comb like structure with Dirac pulses
at odd multiples of ν0 due to its periodic nature and because of the
signal symmetry the even harmonics cancel out. These Dirac pulses
δ(ξ ´ (2k + 1)ν0) have approximately constant amplitude ak up to
the frequency 1/τd from which on they decay with 1/f or 20dB/dec.
The multiplication with noise in Eq. (7.13) results in a mixing process
(c.f. [Lap09, §7., pp. 101]) that converts all noise in distance ν0 to one
of the Dirac pulses akδ(f ´ (2k + 1)ν0) down into the signal passband
around ν0 with an amplitude that is proportional to the amplitude of
the Dirac pulse. Because the noise in each down-converted frequency
region is uncorrelated, the total down converted noise becomes a
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geometric sum

Sϕ,white,total9

8
ÿ
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a2k (7.17)
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1

k
(7.19)

= a21

(
2

τdν0
+

8
ÿ

k=1

1

k

)
(7.20)

The harmonic series in Eq. (7.20) grows slowly and can be approx-
imated by Hn =

řn
k=1

1
k = lnn + γ + O(1/n), with γ being the

Euler-Mascheroni constant (c.f. [Knu97, §1.2.7, pp. 75 ff.]). Even
though H8 = 8 and thus Sϕ,white,total = 8, the sum is limited in real-
ity. One reason is that the ISF edges have a finite steepness, which adds
a second sinc term to Ξ(t) and thus a second corner frequency after
which it decays with 40dB/dec or 1/ξ2. Another is the limited band-
width of the circuit, which acts similarly by adding a cut-off frequency,
after which the noise (and signal) decay with an additional 20dB/dec.
The sum H

(r)
8 =

ř8

k=1
1
kr , r ą 1 is bounded by a small constant (e.g.,

H
(2)
8 = π2/6) [Knu97, §1.2.7., pp. 76], thus we can express the total

white phase noise as:

Sϕ,white,total9 a21

(
2

τdν0
+

cBW
ν0

)
(7.21)

9 a21
c1
BW

ν0
(7.22)

with cBW and c1
BW = 2cBW/τd being (noise) bandwidth dependent

constants of the circuit2. We conclude that the total white noise of the2. To be precise,
cBW is the sum
over all harmonics,
normalized by the
amplitude of the
fundamental.

sine-to-square converter gets an additional scaling with a factor of 1/ν0
due to aliasing induced by the periodicity of the ISF. Thus we end up
with:

Sϕ,white(ξ)9
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The proportionality factor of Eq. (7.23) depends on the equivalent
noise bandwidth, respectively the weighted sum of harmonics contribut-
ing to aliasing, and on the ratio τw/T0 from Ξ(t).

In case τd ‰ T0/2, then Ξ(t) will also have even harmonics. For
white noise, the even harmonics will act the same way as the odd
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harmonics and add to the proportionality factor of Eq. (7.23). For
most systems, one can safely assume that the duty cycle will be close to
50% and thus the even harmonics will be small. Hence it is possible to
ignore the effects of even harmonics in a first order approximation.

Scaling of Flicker Noise

Flicker noise is, initially, only present around DC, thus the harmonics
up-convert the flicker noise due to the multiplication of the ISF with
the noise in Eq. (7.13), which acts as a convolution in the frequency do-
main. But only the first harmonic up-converts the DC flicker noise into
the signal band. Hence, the flicker component derives from Eq. (7.12)
directly as:
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Scaling in a Multi-Stage Sine-to-Square Converter

If multiple gain stages3 are used in a sine-to-square converter, then each 3. It is important to
point out that most
common RF ampli-
fier structures, even
if they have only a
single amplifying
transistor, employ
additional transis-
tors for bias point
stabilization and
as current sources.
These additional
transistors can act
like multiple stages
within the amplifier

stage acts upon the noise and thus the harmonics of the ISF of each
stage alias noise into the signal band. Even if all stages are the same,
each stage will have a different Ξ(t) as τw will change with the slew
rate of the input signal of each stage. Thus a simple multiplication of
Sϕ with the number of stages will, in general, not lead to an accurate
result. Nevertheless one can derive scaling rules quite easily:

For white noise, the harmonics of the additional stages each convert
noise up, which is then down converted into the signal band by the
following stage. As the equivalent noise bandwidth of each stage indi-
vidually is fixed, the scaling rules in Section 7.3 remain unchanged and
thus Eq. (7.23) is still valid with only a larger proportionality factor.

For flicker noise, the up-conversion and the following down conver-
sion of consecutive stages change the behavior slightly. If the duty cycle
is exactly 50%, then only odd harmonics will exist, and hence none
of the present harmonics will see any flicker noise in a distance of ν0.
Thus only the first harmonic of each stage will up-convert flicker noise
into the signal band and, as with white noise, Eq. (7.24) is still valid
with a slightly larger proportionality factor. But, due to the presence
of Vofs, the duty cycle will deviate from 50% and give rise to even har-
monics. Please note, it is not only the DC component of Vofs that leads
to even harmonics, but also its higher frequency noise components
that modulate the output signal and with it the ISF. Hence the scaling
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of flicker noise will change its properties depending on the frequency
spectrum of Vofs.

Because now there are harmonics at a spacing of ν0, the previously
up-converted flicker noise is seen by a harmonic at a distance of ν0 and
is thus converted down again into the signal band. Unlike the aliasing
of white noise, the aliased flicker noise ultimately has the same origin,
thus all down converted flicker noise components are correlated. Thus
for Sϕ, this leads to a scaling proportional to (2πν0)

2.
From Eq. (7.14) we see that the power of the even harmonics re-

lates to the power of the odd harmonics with |1 + exp (j2πν0τd)| =
|sin (2πν0τd)|. Assuming τd « T0/2 we can replace τd by it’s deviation
(noise value) from T0/2:

τd,n = τd ´ T0/2

=
1

2πν0V0
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(7.25)
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To evaluate the effects of Eq. (7.26) on the noise spectrum, we have to
take into account, that τd,n represents a jitter value due to Vofs. As such,
it is subject to the same aliasing and thus scaling laws as Sϕ. If the
amplification of the first converter stage is large, we can safely assume
that τd,n is dominated by the first stage. If we also assume that the noise
equivalent bandwidth is large and thus (the jitter) τd,n is dominated
by white noise. We then can ignore the contribution and scaling due
to flicker noise. Due to aliasing of white noise, we get an additional
scaling term of 1/(2πν0), as we have already seen with Eq. (7.21).
Thus the power of the even harmonics will scale approximately with
1/(2πν0V0) xVofsyξ.

The scaling due to aliasing will act differently on different types of
noise. While all input related noise sources will see the full effect of
aliasing, the VDD related noise component will not. As the VDD related
noise acts as a delay in each stage of the multi stage converter, it will
only see part of the flicker noise aliasing, depending on which stage the
source of the noise was. Thus VDD related noise will see an additional
scaling factor between 1 and 2πν0 depending on the exact structure of
the sine-to-square converter and which stages contribute how much to
the output noise.
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input related noise delay related noise
white flicker white flicker

pure noise const. const. ν2 ν2

single state 1/ν const. ν ν2

multi-stage 1/ν ν ν να

Table 7.1: Summary of the frequency scaling of the different noise
types for the pure noise, after a single stage amplifier and after a multi-
stage amplifier. The frequency scaling for delay (VDD) related flicker
noise after a multi-stage amplifier is να with α P [2, 3].

Putting the arguments above together, we can conclude that Sϕ,flicker

of a multistage sine-to-square converter gets an additional (2πν0)2 term
due to aliasing of correlated noise and an 1/(2πν0) term due to the
power scaling of the even harmonics:
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with α, the frequency scaling factor of the VDD related noise, being
between 2 and 3.

7.4 Conclusion

We have derived formulas for the scaling of noise in sine-to-square
converters, for white and flicker noise, for input and delay related noise,
and for single and multi-stage circuits and the combinations thereof.
These scaling factors explain the noise scaling as seen in [CR14] and
other experiments accurately, including the prior unexplained drop in
flicker noise at lower frequencies. A summary of the frequency scaling
factors for the different noises can be found in Table 7.1.

We would like to note that in case exact numbers for the noise
contributions are needed, these can be easily calculated using the deriva-
tion here by accounting for the factors in the few steps where we used
proportional values.

We also would like to highlight the importance to reduce even order
harmonics in the signal and with that in the ISF to a minimum in multi-
stage circuits to keep the up- and down-conversion of 1/fα-noise as
low as possible.





CHAPTER 8

Noise Propagation in Hard Limiters

In this chapter we will apply the scaling laws and methodology devel-
oped in the previous chapter to an important circuit in time metrology:
the hard limiter.

As mentioned previously, to accurately measure the timing of events,
the input signal has to have an as high slew rate as possible. Espe-
cially with techniques such as the dual mixer time difference (DMTD)
[AD75] where the input signal is a sinusoid with very low frequency
(in the order of 1Hz), increasing the slew rate with as little added noise
as possible is important. The simplest way to build a zero-crossing
detector is by use of limiting amplifiers, i.e. by transforming the (most
often sinusoidal) signal into a square wave signal. Collins described in
[Col96] how to design the slope-gain in multi-stage limiting amplifiers
such that the jitter due to the amplification and squaring-up is minimal.
Even though, DMTD is not the only application for zero-crossing de-
tectors, their noise properties have received very little attention over the
years since Collins’ paper.

We will follow Collins’ work to some extend, but instead of approxi-
mating a sinusoidal signal by a trapezoid, as he has done, which fails at
low gain values, we will use the methodology of the previous chapter to
derive an exact solution.

8.1 Circuit Model

The circuit model used in this chapter is a slightly adapted version of
what Collins used in [Col96]. A single stage consists of a noiseless am-
plifier, where all its noise is lumped together into a single noise source
at its input v2n . For brevity of notation, we also include the signal’s
noise in v2n and assume an otherwise noiseless signal at each stage.
Please note, that we assume here that the amplifier has no offset voltage
and the noise voltage v2n has zero mean. This slightly artificial assump-
tion is justified by the need to precisely control the duty cycle to 50%

This chapter is work done solely by the author and based on an
article published as [Kin19].
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+

´

˚v2n

Vin
Vout

Figure 8.1: The circuit model, adapted from [Col96] of a single stage
zero-crossing detector is simplified to a noiseless amplifier input stage,
with all input referred noise being lumped together into the noise
voltage v2n . After the amplifier there is a (noise-less) limiter and a first
order filter.

and, by extension, the offset voltage in order to eliminate amplifying
flicker noise due to the otherwise present even order harmonics, as we
have shown in the previous chapter. For sake of brevity, it is further
assumed the circuit does not contain any variable time delay term (e.g.
due to power supply noise). The effects of any such delay noise can be
analyzed in a similar manner as the input referred noise effects.

The switch in Collins circuit model has been replaced by the more
natural clamping diodes. One can still assume these diodes to be noise
free in a very good approximation of the real circuit performance. On
one hand, only the clamping diodes of the last stage will contribute
to the output noise. On the other hand, the noise contribution of the
diodes can be neglected compared to the input referred noise that has
been amplified through even a single amplifier stage, even if said input
noise would be as low as the noise of a single diode.

The filter is here modeled by a (noiseless) RC-filter as a stand in of
any, more general low pass filter that could be used.

8.2 Circuit Analysis

The assumption that there is no offset voltage and thus no even har-
monic components in the signal and impulse sensitivity function (ISF)
together with the assumption that there is no variable (noise dependent)
delay result in the flicker noise being dominated by the input referred
noise (c.f. [CR14] and Section 7.3). I.e. the output flicker noise is dom-
inated by the flicker noise of the first stage (c.f. Friis formula [Fri44])
and the up-conversion of the flicker noise is due to the fundamental
of the ISF at each stage. This leaves us the analysis of the white noise
propagation through the circuit.
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Following Collins, we want to optimize the variance of the jitter
J2 = N2

out/ρ
2
out with N2

out being the output noise power density and ρout

being the output slew rate.

Slew Rate

The output slew rate is obviously the slew rate of the output signal
Vout(t) at the zero crossing. Assuming a purely sinusoidal input signal
of frequency ν0 with amplitude 1, total gain Gn =

śn
i=1 gi, with gi

being the individual stage gains1 and clamping back to 1 again, the out- 1. While we use here
a similar notation as
Collins did, please
be aware that gi and
Gn have a subtle but
important difference.
While Collins uses
the slope gain of
his circuits, we use
here the gain of the
amplifier.

put signal becomes Vout(t) = min tmax tGn cos(2πν0t),´1u , 1u. This
is a periodic function with the Fourier series coefficients (frequency ν0

normalized to 1) being

pVout[k] =
1

π

((
2

k
´

2k

k2 ´ 1

)
sin(kτ) + 2Gn

k2 ´ 1
sin(τ) cos(kτ)

)
(8.1)

with τ = arccos(1/Gn) being half of the rise/fall time of the output
signal. The slew rate can then easily be calculated as

ρout =
8
ÿ

k=1

kpVout[k] (8.2)

Following Collins we can approximate Vout by a trapezoidal func-
tion for large Gn, which leads to pVout[k] decaying with 1/k up to the
frequency 1/(πτ) and with 1/k2 from then onward. It is important to
note that for small Gn this approximation does not hold and the exact
Fourier coefficients have to be used.

Noise

The input referred white noise is being sampled by the ISF, down-
converting broadband noise from higher frequencies down to the
signal band. Assuming the ISF is solely due to the non-linearity of the
clamping circuit (i.e. the amplifier is perfectly linear), the input noise
becomes amplified by the stage gain gi and then (additional) noise
power is down-converted from higher frequencies. As the exact calcu-
lation of the ISF is not possible without knowing the exact circuit we
approximate the ISF by a pulse train of rectangular pulses with width
τw. This results in the ISF’s Fourier coefficients pΞ[k] being constant up
to a frequency of 1/(πτw) after which they decay with 1/k. To ensure
convergence, we further assume there is an upper frequency νmax of af-
ter which the ISF decays faster than 1/k. This is a safe assumption for
real circuits, as invariably all components will have a finite, non-zero
switching time, thus limiting the steepness of the ISF and guaranteeing
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Figure 8.2: Comparison of the Fourier transform of the output signal
pVout and the Fourier transform of the ISF pΞ. While pVout first decays
with 1/f up to the frequency of 1/(πτ) and then decays with 1/f2, the
ISF is constant up to the frequency of 1/(πτw) and decays with 1/f
afterwards. Generally, τ ą τw can be assumed.

finite and non-zero rise and fall times. Thus the output noise power
becomes:

N2
out = v2ngi

8
ÿ

k=1

pΞ[k] (8.3)

For most practical circuits τw will be smaller than τ , i.e. the corner
frequency for the ISF will be larger than the corner frequency for the
output signal.

Jitter and the Effect of the Filter

Comparing the Fourier transforms of both the output signal Vout and
the ISF reveals that the frequency range between 2πν0 and 1/(πτ) con-
tributes the most to increasing the slew rate ρ. At frequencies higher
than 1/(πτ), the contribution of each harmonic is still not negligible2,2.

ř8
k=1 k ¨ 1/k2 =

ř8
k=1 1/k = 8 but the decay of the harmonics with 1/k2 and thus the contribution to

the slew rate with 1/k quickly becomes much lower than the contribu-
tion of the ISF harmonics, which remain constant up to the frequency
of 1/(πτw). From this can be easily concluded, that an optimal filter
should cut off the output signal harmonics and ISF at 1/(πτ) for opti-
mal jitter J2. This is the frequency domain equivalent to Collins’ result
that the optimum half-level crossing time k is equal to 1. Thus, the
same result for optimal distribution of gain between stages, namely
gn´1 =

?
2gn holds true for this frequency domain analysis as well. It

also becomes evident that a higher order filter will immediately give
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benefits in terms of jitter performance, as it will reduce down-sampling
of broadband noise much more than it will reduce the slew rate of the
output signal.

There are two things to note, though. First, this last, graphical
analysis used the trapezoid signal approximation for Vout. While this
holds true for circuits where the cumulative, total gain Gn is large,
it does not for longer chains. E.g. Collins calculated for a 6 stage
chain with a total gain of 106 the gains for the first three stages to
be 2.3, 2.7, and 3.7 respectively. This results in a total gain at each
stage of 2.3, 6.2, and 23.0 respectively. These gains are low enough
that Collins’ trapezoid approximation produces significant errors,
i.e., the noise contribution at low gains is overestimated. To reach an
optimal solution, the noise contributions of the low gain stages should
be calculated by summing up the spectral lines of the ISF Ξ instead.

Second, it becomes evident, that for optimal performance the har-
monic components of the ISF have to be limited. Using the circuit
model from above, where the ISF is generated due to the non-linearity
of the clamping circuit, it can be easily achieved by placing the filter
before the clamping circuit instead of after, thus limiting the harmonic
contents of the signal reaching the clamping circuit, which in turn
reduces the harmonics of the ISF generated. Obviously, if there is no
explicit clamping circuit, but the clamping is part of the amplifier itself
(e.g. by using a differential pair driven into saturation), then the filter
has to become a part of the amplifier in order to be able to modify the
ISF.

As mentioned earlier, in a practical design the offset voltage of each
amplifier stage should be closely controlled. While once a high Gn has
been reached, all remaining stages will have the same duty cycle and
thus can be controlled using an earlier stage, the first few stages have
to be individually controlled in order to limit even order harmonics
generation and thus flicker noise amplification in these stages.

8.3 Conclusion

We have derived an optimal formula for the gains of a multi-stage hard
limiter, similar to Collins’ result. But instead of using a trapezoidal
approximation that produces large errors at the important first stages
with their low gain, we get exact results using the spectral analysis of
the ISF. At the same time we can calculate the effects of using higher
order filters on the noise, which is not possible with Collins’ method.





PART III

Faults and Fault-tolerance in Clocking
Applications





CHAPTER 9

Clock Synchronization and Reliability

After having looked at noise in clocks and how it propagates through
electronic systems, we will now have a look at clock synchronization.
Specifically, at clock synchronization in electronic systems when high
reliability is required.

With electronic systems, and chips in particular, ever getting larger,
faults become more and more a problem [Rad+13], especially as a
single fault can potentially knock out the whole system. The industry
best practice is to separate the subsystems as much as possible, thus
preventing faults in one subsystem propagating into another. Unfor-
tunately, the clocking system is still a single point of failure as it relies
on a single, central source as reference [Xan09, §2, p. 9]. But if each
subsystem would be run using its own, independent clock, then there
will be no known phase or frequency relation between the subsystems,
which in turn would require some form of synchronization to allow
fault free communication [Kin08, §2., p. 13] [Mar81]. Hence some
form of clock synchronization is required, but care must be taken, for
this clock synchronization scheme not to become a new single point of
failure.

In the following chapters we will look at one approach how to
achieve fault-tolerant clock synchronization in a system with multiple
independent nodes. We will then look into faults caused by metastabili-
ty sensitive parts of the clock synchronization implementation and how
to mitigate its effects in an efficient way.





CHAPTER 10

Fault-tolerant Clock Synchronization

10.1 Introduction

Reliably clocking complex very large scale integration (VLSI) cir-
cuits is a highly challenging problem. The traditional approach of
using a global clock tree brings a variety of scalability issues: In high-
performance designs, minimizing the clock skew, i.e., the time differ-
ence between the earliest and latest clock transition arrivals at the clock
tree leafs, requires advanced buffer insertion, snaking wires, and wire
sizing techniques [Fri01; LLC10; Sha+10]. These techniques typically
rely on high precision delay models or symmetry assumptions [SC12]
of the involved components. In addition, monolithic clock trees make
the system dependent on a single clock source and its system-wide
distribution. This introduces a single point of failure, entailing that
any dependable architecture clocked in this way requires an extremely
robust clock tree design; naturally, this aggravates scalability issues
even further.

In light of these obstacles, globally asynchronous locally synchro-
nous (GALS) systems [Cha84] offer a paradigm shift away from cen-
tralized clocking. Instead, the system is partitioned into multiple clock
domains, each featuring its own clock generation and distribution
mechanism. Depending on the relation between the clock domains,
such systems are called mesochronous (same frequency, bounded phase
relation), plesiochronous (same nominal frequency), or heterochronous
(else) [TGL07].

While clock generation and distribution for plesiochronous and
heterochronous systems are easily realizable by independent sources
and distribution layers, these solutions introduce an entire batch of new
problems:

This part is the result of close collaboration with Florian Hue-
mer and Christoph Lenzen. It is based on an article published
as [KHL16]. The author’s focus was on PCB design, VHDL
implementation, and measurement of the system.



78 fault-tolerant clock synchronization

• Asynchronous communication across clock domains requires the
use of synchronizers for each data path, increasing delays and
buffer sizes, and thus decreasing the overall throughput.

• Slight differences in clock speeds may result in different rates
of data production and processing, potentially causing buffer
overflows.

• Introducing communication (handshaking, etc.) to resolve this is-
sue increases design complexity at the application level and shifts
the difficulty of providing strong real-time response guarantees to
the application designer.

This advocates re-introducing timing guarantees between the different
clock domains, i.e., using mesochronous GALS systems, allowing
for higher inter-domain communication throughput and slimmer
communication circuits [TGL07; SG03], as well as metastability-free
communication [PHS09]. However, while such systems may not suffer
from throughput penalties and do not rely on a clock tree as the top-
level synchronization mechanism, this top-level synchronization is
critical to its operation: unless the inter-domain clocking mechanism
itself is fault-tolerant, again a single point of failure has been created.

10.2 Using Fault-Tolerant Algorithms for Clock
Synchronization

One way to solve the issue of single point of failures in clocking sys-
tems is to use multiple, independent clock sources and then synchronize
these with distributed clock algorithms in a fault-tolerant way.

A canonical approach to distributed clock synchronization is to let
nodes agree on an approximate common notion of time periodically,
and readjusting their local clocks to the value upon which they agreed.
Early work on reaching approximate agreement in distributed sys-
tems [Dol+86] lead to fault-tolerant clock synchronization algorithms
based on this method, see e.g. [Sch87] for an overview.

In this work, we make use of the algorithm by Welch and Lynch [WL88],
for the following reasons:

(1) Its skew is proportional to the delay uncertainty rather than the
maximum delay as, e.g., the algorithm proposed in [ST87].

(2) In contrast to more involved algorithms that require multi-round
communication for a single resynchronization [Sch87], it is well
suited for an on-chip VLSI implementation.
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We modify the algorithm by Lynch and Welch [WL88] to broadcast
simple 0-1-0 clock pulses, as opposed to nodes communicating round
numbers. In large parts, this modification is inconsequential. However,
the algorithm in [WL88] makes use of the round numbers to achieve
a powerful recovery property: any node can resynchronize after a
transient fault, provided that out of the n nodes never more than f :=

t(n´ 1)/3u are faulty or out of sync.

System Model

The system consists of a set V of n nodes that are fully connected by
(1-bit) broadcast channels. Each node v P V is a fault-containment
region in the sense defined by Kopetz [Kop03]: a single (physical) fault,
such as a gate malfunction, does not directly affect correctness of the
components outside the fault-containment region that contains the
faulty component. Node v comprises a local physical clock Hv (e.g.
a ring oscillator), the circuitry implementing the algorithm’s logic for
v, and its outgoing links. Note that this means that communication
does not use a shared bus, which would be a single point of failure.
Any potential application logic clocked by v will be part of its fault
containment region as well. Thus, any transient or permanent faults of
components (in the fault-containment region) of v affect other nodes
only indirectly via communication. A faulty node (i.e., one whose
containment region contains faulty components) can behave arbitrarily;
in particular, it may send a clock pulse to a subset of the nodes only.
We assume that at most f = t(n´ 1)/3u nodes are faulty, and refer to
the set of correct nodes as C Ď V .

Nodes in C communicate by broadcasts. If v P C broadcasts at
time tv, any other correct node w P C has received and processed the
respective pulse at some time twv P [tv + d ´ U, tv + d], where d is
the maximum delay and U is the delay uncertainty. For faulty senders
in V zC, such restrictions are irrelevant, as they may deviate from the
protocol in an arbitrary way, i.e., send pulses at arbitrary times and
independently to different receivers.

A correct node measures the time of arrival of other nodes’ pulses
relative to the time of arrival of its own pulse of the same round (cf. Al-
gorithm 1). This is done by looping the broadcast signal back and
using time-to-digital converters (TDCs) to determine the respective
time difference. (cf. Section 10.3). We assume a one-sided1 worst-case 1. By this we mean

that we specify
the length of the
interval around
the true value the
measurements may
come from.

measurement error of our TDCs when comparing signals arriving at
times t and t1 that fulfills

e(|t´ t1|) = G+ ν|t´ t1|, (10.1)
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where G is the granularity of the time to digital converter (TDC) (i.e.,
its discretization error) and ν ! 1 is the maximum relative deviation of
the frequency of the TDC’s time reference from its nominal frequency.

A node v has no access to real-time, but only to its local clock
Hv : R

+
0 Ñ R+

0 , where Hv(t) is the local clock value at real-time t.
For the purpose of a straightforward presentation of the algorithm, we
assume that

@t, t1 P R+
0 , t ą t1 : t´ t1 ď Hv(t)´Hv(t

1) ď ϑ(t´ t1), (10.2)

where ϑ ą 1 is a constant close to 1.2 For the sake of simplicity, we set2. Naturally, in
practice Hv will
be discrete and
bounded. However,
Hv is merely used
to control the local
logic of the algo-
rithm, rendering this
inconsequential to
our considerations.

ν = ϑ´ 1 in the following, i.e., the clock source of a node and its TDCs
have the same worst-case phase drift. We assume that Hv(0) P [0, F )

for all v P C, where F is determined by the precision of the booting
process. For better readability, we denote real-times with t and local
times with τ , with respective indices.

Basic Algorithm

Algorithm 1 gives the pseudocode of the algorithm. Each node v P V

starts round r P N at time tv(r´1), where tv(0) = F , and ends round r

at tv(r). To fully specify the algorithm, we need to determine τ1, τ2 and

Algorithm 1: Synchronization algorithm, code for node v

1 // Hw(0) P [0, F ) for all w P V
2 wait until time tv(0) with Hv(tv(0)) = F ;
3 foreach round r P N do
4 start listening for messages;
5 wait for τ1 local time; // all nodes are in round r
6 broadcast clock pulse to all nodes (including self);
7 wait for τ2 local time; // all messages arrived
8 foreach node w P V do
9 τvw := Hv(tvw), with reception time tvw of first message

from w (τvw := 8 if no message received from w);

10 Tv := tτvw ´ τvv | w P V u (as multiset);
11 let T k

v denote the kth smallest element of Tv;

12 δv Ð
T f+1
v + Tn´f

v

2
; // clock correction

13 wait until time tv(r) with
Hv(tv(r)) = Hv(tv(r ´ 1)) + TR ´ δv; // round ends

TR. The following conditions are sufficient for the algorithm to work
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as intended.

τ1 ě ϑF

τ2 ě ϑ(F + τ1 + d)

TR ě ϑ(τ1 + F + U) + τ2 + tcomp +G,

where tcomp is the time required to compute and apply the phase cor-
rection. It is desirable to keep the round length TR small, unless one
seeks to lower the communication frequency. Since any values satisfy-
ing these inequalities are acceptable, one may always round up to the
next integer multiple of the cycle time of the oscillators controlling the
logic, i.e., no constraints on oscillator frequencies are needed. It can be
shown that the minimal feasible choices result in a steady-state skew of
E « 4(U +G) for ϑ´ 1 ! 1. More detailed calculations show that the
algorithm can handle frequency offsets of up to ϑ ´ 1 « 1% without
dramatic impact on E.

Node Recovery

So far we assumed that nodes are initially synchronized and maintain
this property. We now address the case that n ´ f nodes are synchro-
nized, but an additional node is out-of-sync (possibly after a transient
fault) and attempts to resynchronize. The modification to the algorithm
is extremely simple: whenever a node receives fewer than n´ f signals
while listening for them in a given round, it will cut this round short.
Thus, it quickly catches up with the main field.

Complete proofs for synchronization and node recovery can be
found in [KL19].

10.3 Implementation and Experiments

We implemented the algorithm on four Cyclone IV FPGA develop-
ment boards. We designed a simple additional board to carry the clock
oscillator for the field-programmable gate array (FPGA) and the con-
nectors for the coaxial cables between the nodes. In order to allow
corrections of the pulse position with sub-clock cycle granularity, we
apply phase shifts using a voltage controlled crystal oscillator (VCXO),
which supplies the reference frequency for the phase-locked loop (PLL)
within the FPGA. The nodes are connected to each other using coaxial
cables of the same length (ca. 30 cm), one for each pair of nodes and
direction. The FPGA implements four TDCs (see below) to measure the
timing of the incoming pulses, implements the logic of the algorithm,
and controls the VCXO. An additional pulse output is available for
measurements.
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Due to limitations of the development board, pulses use 3.3V LVCMOS
signaling. The resulting reflections slightly add to the measurement un-
certainties. Furthermore, the FPGA development board only provides
two pins for ground connection. This resulted in an involuntary test
of the algorithm’s fault-tolerance properties: having many high-speed
signals over the same connector, the setup suffered from significant
ground bounce of up to 200mV between the ground potentials of the
development board and the interface board; this caused one of the
nodes to lose several clock ticks during our experiments.

Cycle Structure and Phase Control

We clock the FPGA with 130MHz derived from a 20MHz VCXO on
our interface board. As discussed above, to achieve sub-cycle length (i.e.
smaller than 7.7ns) corrections of the phase of the pulse, we control
the reference oscillator’s output frequency. We implemented this using a
16-bit, 1Msps digital to analog converter (DAC) with serial peripheral
interface (SPI) interface. This design choice imposed two important
restrictions on our implementation. First, the oscillator’s modulation
bandwidth of about 10 kHz imposes a lower bound on the round
length, as we need to allow for sufficient time for the oscillator to
respond to a changed control input. Therefore, we chose a fairly large
round length of TR = 50 µs, of which 40µs are allocated for shifting
the clock phase.

Second, the tuning range of the oscillator is roughly 10ppm limiting
the phase correction per round to « 400ps. This is smaller than the
duration of clock cycle of the FPGA (« 7.7ns), preventing a simple im-
plementation of larger phase shifts by enabling to adjust the (integral)
number of clock cycles per round. Fortunately, the convergence analy-
sis shows that the algorithm achieves the same steady-state error with
this limitation on phase corrections. However, the number of rounds
required for recovering nodes to resynchronize is much larger; with
a frequency correction of at most 10ppm, this takes up to about 105

rounds, yielding a worst-case bound on the time to recover in the order
of seconds.

Time to digital converter

We employ standard techniques in our TDC design (like in, e.g.,
[SAL06]). Our implementation is based on the tdc-core by the White
Rabbit Project [Bou19] (details are presented in [Bou13] and [Bou11]),
which we adapted with minimal changes to Cyclone IV. The TDC
uses an adder carry chain as delay line and a coarse counter for the



implementation and experiments 83

25 50 75 100 125 150 175
0

20 ps

40 ps

60 ps

80 ps

Figure 10.1: Histogram of the encoded TDL output values during
offline calibration. These values correspond to the bin sizes of the delay
line.

measurements. Additionally, there is a ring oscillator to measure and
compensate for voltage and temperature effects during operation (see
[Bou11] for details). We used the internal startup calibration system
to get an estimate on the bin size of the TDC and thus its precision
(see Fig. 10.1). The largest observed bin size is 140ps. Estimating a
calibration error of up to 20ps, this yields a single-shot precision of
G ď 160ps.

Parameter Extraction

The performance-critical parameters from the setup are:

• As discussed above, we have G ď 160ps for the TDC.

• We calibrated the differences in wire delays on the development
and interface boards using the TDCs. This results in an uncer-
tainty of U ď G + 40ps ď 200ps, where 40ps is an estimated
upper bound on the delay variations in equivalent paths between
the TDCs.

• We measured a frequency deviation between one pair of oscil-
lators of 1.5ppm. The manufacturer lists a typical frequency
deviation including initial deviation and over temperature range
of typical 3ppm, i.e., ϑ´ 1 « 3ˆ 10´6.

Inserting these values into the bound obtained from the analysis, the
estimated worst-case clock skew without faults is 2(G + U) + (ϑ ´

1)TR = 870 ps, where TR = 50 µs is the nominal duration of a round.
With faults, this becomes 4(G+ U) + 2(ϑ´ 1)TR = 1740 ps.
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Figure 10.2: Experimental setup. Left: measurement instruments.
Center: nodes with FPGA and interface boards, and a stray mouse.
Right: recording PC.

Experimental Setup and Results

We fully connected the nodes using cables of length 30 cm. The physical
diameter of the whole setup is approximately 50 cm, cf. Fig. 10.2.
Measurements are taken by a WaveCrest DTS-2075, which has a single-
shot accuracy of ˘25ps and calibrated the input port skew to achieve
better than 2ps accuracy. To rule out any spurious effects from the
instrument, we used two Stanford Research SR620 to verify these
bounds.

Skew Measurements

We measured the skew between all pairs of nodes sequentially for
at least one hour each, which corresponds to 7.2 ˆ 107 rounds. It
turned out that one of the nodes suffers from lost clock cycles due
to the aforementioned ground bouncing. In the course of an hour, 34
jumps of over 1ns were recorded. These jumps have no noticeable
effect on the other nodes. We observed a maximum clock skew of
180ps between correctly working nodes. Figure 10.4 showcases the
short-term behavior of the clock skew.

To test the behavior under worst-case faults, we modified one node
with the aim to maximize the skew of the remaining nodes. The analy-
sis indicates that the maximum impact of faults is achieved when faulty
nodes send early pulses to nodes that are already ahead and none to
those that lag behind. After implementing this behavior, we observed
an increase in the maximum skew to 270ps.
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Figure 10.3: Long-term evolution of the clock skew of three nodes
against the same reference node over a period of an hour, measured
sequentially. The thick lines depict the average clock skew over 10 s,
the light yellow colored fill with the thin lines depict the minimum and
maximum in the same interval.
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Figure 10.4: Short-term behavior of the clock skew of the ”blue” node
vs. the reference node from Figure 10.3 over an arbitrarily selected
period of 20 s.

Resynchronization

To verify that nodes resynchronize after transient fault conditions,
we modified one node to drop out using a manually actuated switch.
Triggering the switch every couple of seconds results in randomly dis-
tributed restarting times with respect to the clock phase of the correctly
synchronized nodes. In 20 measurements, we observed the expected sta-
bilization behavior. In accordance with our earlier discussion, recovery
took up to 7 s for our implementation.
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Figure 10.5: TDEV between all pairs of nodes, measured sequentially.
The colors of pairs match those from Figure 10.3.

Time and Frequency Stability

We analyzed the statistical time and frequency stability (cf. [Sul+90])
of the system in long term measurements. The time deviation (TDEV)
plots (Fig. 10.5) are measured between pairs of nodes of the synchro-
nized system. As it can be seen, the noise of the system behaves mostly
like white phase noise up to a τ of approximately 10 s.

The results significantly exceed our expectations in the range below
10 s. While the algorithm inherently suppresses effects from outliers, as
it drops the largest and smallest measurement value in each round, and
subsequently averages between the remaining two, this merely suggests
improvements of factor 3 to 5 over a free-running oscillator (TDEV of
„ 1 ˆ 10´9 s @ τ = 1 s). In contrast, uncertainties of parts in 10´12 s
are already reached above 1 s for the correctly working nodes. These
are quite astonishing stability values, especially in light of the crude
setup resulting from the employed affordably priced hardware.

As the primary application of the clock synchronization system is
to serve as a clock source for circuits, we also analyzed the absolute
frequency fluctuations against a Stanford Research FS275 rubidium
frequency standard. We show two Allan deviation (ADEV) plots, see
Figure 10.6. The first compares a free-running node to the rubidium,
i.e., the algorithm is deactivated in order to measure the raw perfor-
mance of the oscillator. The second depicts the behavior of the same
node, but now synchronized to the other nodes, via the algorithm. We
observe that the long term stability over τ ą 10 s is approximately
the same. This is expected, as the long-term behavior is dominated by
the temperature-induced frequency fluctuation of the used oscillators.



implementation and experiments 87

10−2s 10−1s 100s 101s 102s 103s 104s
10−10

10−9

10−8

10−7

Figure 10.6: ADEV between a node and a rubidium frequency stan-
dard. The top (blue) curve compares to the free-running oscillator,
with the algorithm disabled. The bottom (red) curve is the same node
with the algorithm enabled and the system fully synchronized. The
temperature effects beyond τ = 100 s differ because the traces were
recorded on subsequent days with different weather conditions and
thus different heating patterns of the building.

Below a τ of 1 s, however, the stability of the synchronized system is
higher than the one of the free running node. But as simulations with
an accurate noise model of the crystal oscillators have not shown such
an increase in stability, we attribute this to the experimental setup, most
likely to injection locking through ground bounce. I.e., the ground
currents running between the boards injection locking the oscillators
to each other, thus effectively forming a clock ensemble. The stability
increase of more than a factor of 3 below 1 ˆ 10´1 s is beyond the
expectation of

?
n = 2 of such an ensemble of though. Unfortunately

we have no explanation for this behavior. Neither were we able to
verify whether ground bounce was indeed the cause of this increase in
short-term stability.





CHAPTER 11

Metastability in Time to Digital
Converters

11.1 Introduction

In the clock synchronization system introduced in the previous chapter,
there is one component that exhibits faults often and by design: the
time to digital converter. Because the TDC gets pulses from multiple
source, some of which could be faulty in arbitrary ways and thus those
pulses arriving at arbitrary times, it is impossible to avoid metastable
upsets completely [Mar81]. Even more so, by the very construction
principle of a TDC where latches are used to measure the arrival time
of pulses, it is very likely that one of the latches will become metasta-
ble.

In the following chapter, we will look into how to design a TDC
such that these metastable upsets can be resolved quickly and with
minimal overhead.

Start

Td

D Q

E

D Q

E

D Q

E

D Q

E

D Q

E

Stop

Figure 11.1: Tapped delay-line TDC. Latches are initially enabled and
output 0. The delayed starting signal iteratively sets latches to 1 until
the stopping signal disables them.

This part is the result of close collaboration with Matthias
Függer, Christoph Lenzen, and Thomas Polzer. It is based on an
article published as [Füg+17]. The author’s focus was on circuit
simulation.
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Fine and Coarse TDC

To keep complexity low and to extend the dynamic range, often a
fine-TDC/coarse-TDC approach is employed. There exist many vari-
ants of this approach and similar strategies have been invented many
times independently. To the best of our knowledge, the earliest example
of the fine-TDC/coarse-TDC approach is [Nut68].

The Problem of Metastable Upsets

In his seminal work [Mar81], Marino formally proved that any circuit
with a bistable output can become metastable, i.e. that its output
might transition to a stable 0 or 1, an arbitrarily long time after the
input stimulus has been applied. In the case of TDCs, the latch input
might transition exactly when being captured, violating setup/hold
constraints, resulting in metastability.

However, in a TDC of the general structure depicted in Fig. 11.1, it
is straightforward to restrict the number of metastable output bits to
at most one as follows. Assume that the TDC has n ě 1 latches and
each delay element has latency Td ą 0. Let T be the time the latches are
given before their outputs are further processed by a readout circuit or
copied to memory. For a fixed execution of a Start transition travers-
ing the ring TDC, each latch has a critical window of time: if the Stop
signal arrives at a time t from this window, a metastable upset of the
latch may not resolve by time t+ T ; if t lies outside of this window, it
is guaranteed that the latch is stable at time t+ T . Larger T results in
smaller window sizes [Kin08], but longer readout time and thus lower
sample rates. Thus, there is a general trade-off between fast readout
(high sample rate) and high reliability (low upset probability). Note
that routing delay uncertainties/variations can be accounted for in the
critical window sizes and positions.

Note that, for given window sizes and bounds on the unbalanced
arrival of the stopping signal, one can choose the delay-element latency
Td large enough for the critical windows to be non-overlapping. In this
case, the (thermometer encoded) TDC readout is guaranteed to contain
at most one metastable bit: it is of the form 11..100..0 or 11..1M00..0,
i.e. a consecutive series of 1’s followed by a consecutive series of 0’s
with at most one metastable bit/latch M in between. No matter how
M resolves, the final measurement value is off by at most one from
the actual readout; we say the TDC guarantees precision of 1 (in units
of stage delays). By Marino’s result this is optimal: there is no TDC
implementation which guarantees only stable output bits.
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We stress that reducing Td further, such that potentially more than
one bit may become metastable, may lead to better average precision,
but does not improve worst-case precision. In other words, the critical
window size is a lower bound on the single-shot precision of the TDC.
In this work, we are aiming for optimal single-shot precision, which is
relevant to applications that provide or rely on guaranteed precision
bounds, e.g., within control loops in mission critical hardware. As in
most settings the above lower bound can be matched by delay-line
TDCs, extending our techniques to Vernier line TDCs is outside the
scope of this work.

Dealing with Metastability

As we have seen, metastable upsets cannot be avoided deterministically.
Worse, when increasing the accuracy of the TDC, we increase the risk
for metastability, as the relative size of the critical windows becomes
larger. At the latest when reaching the limit on TDC precision implied
by Marino’s results, the effects of metastability on the circuit cannot be
neglected anymore. Thus, the threat of metastability must be addressed
by the circuit design. This can be done in the following ways.

Resolving in TDC: The TDC readout can be given sufficient time for
the metastable bit to stabilize with sufficiently high probability.
While this solution is the simplest, it prevents the TDC from
taking a new measurement during this time, reducing its sample
rate.

Resolving in Memory: The TDC readout can be written to memory;
this may result in metastability of a written bit, which then is
resolved by (chains of) synchronizers [Kin08] or, again, simply
waiting for sufficiently long time. Note that the TDC can “keep
running,” in this setting, as the “stopping” signal here is used to
capture the current TDC state in memory only. This enables the
TDC to be reused for additional measurements while time-stamps
resolve metastability in memory.

Resolving during/after Computation: Friedrichs et al. propose a new
approach [FFL18]: they introduce the concept of metastability-
containing circuits. Instead of waiting for the metastable bits to
stabilize, such circuits guarantee a bounded degree of uncertainty
in outputs, given that the input comprises a bounded amount
of metastable bits. For example, one can immediately begin
computing the maximum of potentially metastable measurement
values of precision 1, yet ensure output of precision 1 [BLM17;



92 metastability in time to digital converters

LM16]. This permits to simultaneously use the time to resolve
metastability for computations, as well as using an adaptive
amount of time for resolving metastability after computations
(depending on the time until the output needs to be sampled for
further processing).

No Resolution: If all operations are metastability-containing, resolving
metastability is not necessary at all. For example, this is the case
when the result of the computation is used for analog control; the
authors of [BLM17; FFL18; LM16] discuss clock synchronization
as an application where this is feasible and of interest.

We emphasize that existing TDC designs have severe limitations when
it comes to the last two options:

• Delay-line TDCs without coarse counters ensure that only a sin-
gle bit is metastable (under the same constraints as our designs).
However, such designs are practical for a very limited dynamic
range due to the inefficient encoding and require subsequent
conversion to Gray code for (efficient) follow-up computations.

• Most current counter-based designs directly protect their (binary)
counters from metastable upsets by synchronizers, incurring a
delay of several clock cycles (i.e., typically nanoseconds) before
the measurement becomes available. This also necessitates to stop
the TDC oscillator, disallowing multiple measurements pertaining
to the same starting signal.

• An exception is the design by Mota et al. [Mot+00]. It employs
two coarse counters (driven by rising and falling clock edges, re-
spectively), one of which is guaranteed to not be metastable upon
sampling the TDC state with the stop signal (i.e., latching the
corresponding registers). This enables waiting for stabilization
in memory. However, reading the memory word representing
the TDC value correctly requires to determine which counter’s
sampled value to use, which in turn requires prior stabilization of
the thermometer encoding of the sampled fine-TDC value. Apart
from stopping the entire TDC, this requires an additional dead
time of at least 1 ns to reach a moderate mean time between fail-
ures (MTBF) of 8.8 years per thermometer bit (cf. Section 11.3).

Therefore, the techniques presented here are a big step towards an
efficient implementation of the clock synchronization scheme proposed
by Friedrichs et al. [FFL18].
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Memory Efficiency

Achieving precision 1 and the possibility to resolve metastability out-
side the TDC (and thus taking multiple measurements concurrently)
are prime design goals. Unfortunately, as mentioned above, they come
at the cost of a very large memory footprint for tapped delay-line
TDCs: The time resolution of the TDC is given by the delay element
latency Td, and its measurement range is nTd. Resolving metastability
in memory does not alleviate this problem, as the memory consumption
for storing a single measurement means that we could just add another
delay-line TDC at essentially the same cost!

Note that naively packing the thermometer code measurement
values into binary coded values before metastability is resolved may
result in arbitrarily bad precision (i.e., has arbitrarily large errors). For
an example illustrating the problem, assume that 1111111M (with M
denoting the metastable bit) is written to a FIFO with thermometer
encoded stages. After metastability resolution, we end up with either
11111110 or 11111111—decimal 7 or 8. The binary representation
of these numbers are 0111 and 1000, respectively. Note that these
strings differ in all bits. As shown in [FFL18], any circuit computing
the binary representation of unary inputs may thus return MMMM
when given input 1111111M. This is to be seen as a discrete version of
Marino’s impossibility result [Mar81]. The string may thus resolve to
any 4-bit string, i.e., the binary representation of any number between
0 and 15—losing all TDC precision at the encoding step! Although
the probability for such upsets can be made small (but not zero!) by
synchronizer chains, this is at the cost of increased TDC latency and
synchronizer chains for all measurement bits. Portmann and Meng
studied the same issue as it arises for flash ADCs in [PM96].

To reduce both the memory footprint and the size of the TDCs, both
for tapped delay-lines [Hen10] and Vernier lines [DSH00] solutions
have been proposed where the delay line has been folded into a ring
oscillator-like structure with an additional (binary) coarse counter to
count the number of rounds the start signal makes in the ring oscillator;
see Fig. 11.2. The stopping signal then freezes both the latches and the
counter.

However, these designs suffer from potential metastable upsets when
incrementing the counter. For the reason laid out above, even waiting
for the counter to stabilize after possible metastability does not fix
the problem: in case the counter is binary, the resulting TDC output
value has arbitrarily bad precision. Note that this analysis does not
include the timing violations due to different path lengths for different
bits within the adder structure, but just the metastable upsets within
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Figure 11.2: Generic ring TDC architecture with coarse counter C.
Latches and counter are initialized to 0. The counter increments on
rising and falling transitions.

the output register. To address this, one can employ synchronizers
more carefully [BG15; Kin08; Vee80], decreasing the probability of a
metastable upset of the counter arbitrarily. This trades time (for the
synchronizer steps) for increased reliability.

Even if this is acceptable, it requires to stop the counter for taking
a measurement, restricting the TDC to taking a single measurement
and waiting for the synchronizers to stabilize before starting a new
one. While the former restriction can be lifted by duplicating the coun-
ter logic and synchronizers for each concurrent measurement, this
basically amounts to duplicating the entire TDC for each concurrent
measurement.

11.2 Binary Cycle Counter Designs

When using a binary counter to keep track of the number of rounds/cy-
cles in the ring oscillator between arrival of Start and Stop, the ring
is used as clock signal for the counter, and the Stop signal is used as
a gate signal (connected to the enable input of the counter’s D-flip-
flops (D-FFs)). Such an implementation is used quite frequently in
synchronous designs. The problem in the case of TDCs is that the Stop
is outside of the timing closure of the counter and may occur at an
arbitrary point in time. To mitigate this problem, synchronizers can
be used to align the Stop signal with the counter clock. However, this
naive solution either dramatically reduces the precision of the TDC, as
an additional delay is added to the Stop signal that varies depending
on the phase offset between the clocking and Stop signals, or does little
to improve safety, as too little time is allocated to reliably resolve meta-
stability. More involved designs use two fine TDCs, one for the Start
and one for the Stop signal (e.g. [Nut68]) such that the counter can
be stopped synchronously to its clock, but this entails having two fine
TDCs and potentially duplicating the entire counter logic to allow for
multisampling (due to the additional delay in the Stop signal caused by
the synchronizers).
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Figure 11.3: Transient simulation of the capture register of the sim-
ulated TDC. Even very small variations of the applied input signal
increase the time until the output value reaches its final voltage level
considerably. Note that a full D-FF was used instead of a single latch.
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Figure 11.4: Stabilization time variation due to metastable upset of the
simulated TDC capture register. time between application of the input
and the clock edge vs. output stabilization time.

To demonstrate that the probability of metastable upsets cannot
be neglected, consider a state-of-the-art ring TDC with binary coun-
ter as implemented by [PC12; PC13]. Let us replace a ring latch in
Fig. 11.2 with a D-FF whose data input is driven by the respective ring-
segment and that is clocked by the Stop signal. For the above setup
assume input transitions to occur with a rate of fd = 500MHz and a
Stop transition occurring every 20ns (an input rate of fc ě 50MHz is
typical for high-speed clock synchronization systems). For the mean
time between metastable upsets in the synchronous circuit, we ob-
tain [Kin08] TMTBF = eTres/τ/(fcfdTw), with the remaining parameters
being determined as follows. To characterize metastability of the ring
state flip-flop, we implemented part of the ring (6 ring inverters) as de-
scribed in [PC12; PC13], driving the data port of the D-FF, and shaped
the clock signal by 6 upfront standard inverters. Cell design of ring
inverters and D-FF, including transistor sizing were taken from [PC12],
for a 130nm technology. We then ran Spice simulations (Fig. 11.3,
Fig. 11.4) for the above circuit showing a settling time τ for the com-
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plete chain from Start and Stop to the D-FF outputs of 31.6ps and
a critical window size Tw of 8ps. Assuming that metastability has
Tres = 1 ns time to resolve before the measured value is used, we obtain
an TMTBF of 8.8 years per bin and measurement channel (i.e. assuming
a TDC with 64 bins and 8 channels the MTBF reduces to roughly 6
days). Note that the situation is even worse for the coarse counter
TMTBF, as it comprises several flip-flops and its increment logic is not
perfectly balanced. This shows that using synchronizer chains is in-
evitable for such designs, leading to large dead times of the TDC. In
the following section, we present three alternative solutions.

11.3 Metastability-Aware time to digital converters

In this section, we present our generic approach for devising ring
TDCs that do not suffer from reduced precision due to metastable
upsets. We showcase our ideas at hand of three alternative designs,
each of which allows for taking multiple measurements concurrently
(without duplicating the TDC logic) and achieves optimal single-shot
precision. Our designs differ in terms of the trade-offs between routing
constraints and memory overhead; the output of one satisfies the
input specification of the metastability-containing sorting networks
from [BLM17; LM16], without the need for further conversion or
waiting for stabilization.

For the sake of presentation, we assume throughout this section a
simultaneous arrival of the stopping signal at all relevant components,
following the tapped delay-line approach. In practice, one may choose
other options and compensate for them or switch to a Vernier line
approach; these considerations are outside the scope of this work.
Moreover, we discuss our designs in the context of a measurement
with a single start signal followed by a single stop signal, where the
measurement value is captured in the TDC.

The Ring

Consider a ring TDC architecture of length n as depicted in Fig. 11.2.
We denote the output of latch i, 0 ď i ď n ´ 2, at arrival of the Stop
signal by c(i). At this point we assume latches with zero switching time.
We will discuss this issue shortly. For the moment, assume that the
coarse counter C is a (single-bit, binary) latch. We denote its output by
c(n´ 1).

We denote by cnt the sum of the total number of stage transitions
of all stages between the starting and stopping signals. Then either the
ring oscillator made a number of full rounds and all latch outputs are
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Figure 11.5: Solution I: Implementing C by two binary counters and a
latch. Counters C0 and C1 and latch L are initialized to 0. The incre-
ment inputs of C0 and C1 are driven via a delay buffer. C0 increments
on rising, C1 on falling transitions.

the same, or its state was captured in between and the latch outputs are
of the form 00..011..1 or 11..100..0;

This abstracts away the issue that the latches cannot switch from
0 to 1 or vice versa in zero time. Disabling them during their critical
window may therefore result in metastability. However, as laid out in
Section 11.1, choosing the delay latency Td large enough to separate the
latches’ critical windows guarantees that at most one bit is metastable.
This, plus the fact that the ring stores the measurement value ther-
mometer encoded, guarantees precision of 1. In other words, if we can
assume that the critical windows of the latches are non-overlapping,
then, after any potential metastability has been resolved, cntmodn can
be resolved with precision 1.

The Coarse Counter

We now address the issue of counting the number of cycles. Doing this
in a naive way incurs a loss in precision of the TDC, as has been shown
in Section 11.3. We present three coarse counter variants which do not
suffer from this problem, i.e., ensure an optimal precision of 1.

Solution I: Redundant Binary Counters

Consider the coarse counter implementation in Fig. 11.5 (as described
in [Mot+00]). The circuit’s underlying idea is to use two redundant
binary counters C0 and C1 and the output b of latch L capturing their
common input. Initially, b = 0, C0 = 0, and C1 = 0. When the stopping
signal arrives, the binary counters and latch L are disabled. Output b
serves as a control bit: we use the value stored in C0 if b = 0 and the
value in C1 if b = 1. This ensures that the counter b is pointing to had a
full cycle of the ring oscillator to stabilize.

In order for this approach to work, we require the following con-
straints to hold: The critical windows WC0

and WC1
of counters C0

and C1, as well as the critical window WL of latch L are mutually
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Start

Td

W0 W1 . . . Wn´2WL W0 W1 . . . Wn´2WL W0

WC0
Tbuf

WC1
Tbuf

Figure 11.6: Critical windows for Solution I as the Start signal travels
through the ring oscillator. First the first stage “handles” the Start
signal during the stage delay time Td and can become metastable
during its critical window W0, then the second stage during it’s window
W1 and so on. When the Start signal traveled once around the the
ring oscillator it will increment the first counter C0 after the buffer
delay Tbuf and thus cause it to enter its critical window WC0

, while
the signal continues to progress through the ring oscillator. After the
second round, the second counter C1 is incremented and can potentially
become metastable during its critical window WC1 .

disjoint and obey the following order in time: WL, WC0 , WL, WC1 ,
WL, WC0

, and so on. Assuming the same designs for both counters
(i.e., |WC0 | = |WC1 |), this can be achieved by the following design
constraints:

(1) WL before WC0
: choose the delay latency Tbuf sufficiently large.

(2) WC0
before next WL: choose the ring size n sufficiently large for

the binary counter to complete an increment before the transition
traverses the ring.

Fig. 11.6 depicts the alignment of the critical windows with the above
constraints fulfilled.

When reading the counter, the number of completed cycles cyc
is computed as 2Cb + b. Since 2Cb + b is equal to the value of the
concatenated binary counter (Cb, b), we may view bit b as a shared
bit of the binary counters (C0, 0) and (C1, 1) that hold the value cyc
in case of b = 0 and b = 1, respectively. This allows for an efficient
method for the TDC to directly return the binary encoding of cyc.

The complete TDC is given by combining the methods of count-
ing modulo n discussed in Section 11.3 and determining cyc given in
Section 11.3. I.e., After metastability of the latches has been resolved
cnt = (2Cb + b)n + x1´b, where x1´b is the number of latches having
value 1 ´ b. Moreover, it is exactly the leading x1´b latches that have
value 1´ b.

Recall from Section 11.3 that waiting for 1ns before consulting
the latch states resulted in a moderate MTBF of 8.8 years per bit and
channel. Further note that, if the binary counters have B bits, we store
2B+ n bits for a measurement, but the maximum cnt value 2Bn´ 1 (in
principle) requires B + rlogns bits only. This is of concern when taking
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multiple measurements concurrently. The next sections discusses two
TDC variants that address this issue.

Solution II: Gray Code Counter

In this section, we present a circuit that can be used to read the TDC
in a way requiring to store optimal B + rlogns bits per measurement
only. As a starting point, observe that we know that no circuit can
avoid metastability of an output bit if, given all other inputs, the output
value depends on an input bit that may be metastable [FFL18; Mar81].
Therefore, the first key insight is that we must use an encoding guar-
anteeing that metastability of any latch must not cause metastability
of more than one output bit: otherwise, for any encoding without
redundancy, we must lose precision, as two or more bits resolving to
arbitrary values can induce a change of the encoded value larger than 1.
In other words, we must use a Gray code, for which any up-count
changes exactly one bit.

Look-ahead Gray Code Counter Consider the ring architecture from
Fig. 11.2 and replace the coarse counter by a single Gray code counter
with look-ahead that increments both on rising and falling transitions.
When the counter is triggered, it is required (i) that it internally pre-
pares an up-count within a single oscillator cycle, and (ii) that, once
ready for an increment and it is triggered, its outputs react fast, such
that their critical window is short and does not overlap with any other
critical windows of the ring latches; thus the term look-ahead. Fig. 11.7
shows the resulting alignment of critical windows. Note that such
a counter can be implemented by a Gray code counter that counts
“ahead” by one (performing each increment within an oscillator cycle)
and whose outputs are captured upon an “actual” increment. Fig. 11.8
shows such an implementation: the rising edge triggered counter is
initialized with (the look-ahead) value 1, and the rising edge triggered
register with 0. The XOR transforms falling an rising transitions on
inc into pulses, triggering (a) the register to capture the actual (pre-
computed) counter value, and (b) the counter to start the next incre-
ment. The buffer delay Tdel makes sure that (a) always happens before
(b). The counter now has a complete ring oscillator cycle to finish its
computation.

A TDC readout thus comprises the register states (in Gray code) and
the ring latches (thermometer encoded).

We next discuss how to interpret a stabilized TDC readout, e.g.,
assume it was stored in an external memory with sufficient time to
stabilize, and now is read by an application.
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Figure 11.7: Critical windows for Solution II.
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Tbuf

D Q
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Figure 11.8: Solution II: Implementation with look-ahead Gray code
counter and register. The counter C is initialized with 1. Register RC is
of same width as the counter, and initialized with 0.

We determine whether cyc is odd or even from the coarse counter
value, i.e., we compute b = cyc mod 2. From b, we can infer how to
correctly interpret the value stored for cnt mod n, i.e., whether ther-
mometer encoding of cnt is of the form 11..100..0 (even) or 00..011..1
(odd); making us count the leading 1s or 0s. What if the Gray code
counter was metastable, and thus b was metastable, too? As before,
this does not matter, as the resolution of the counter (and thus b) will
induce a difference of 1 in the value of cnt at most (the counter has
been triggered or has not).

However, this approach requires us to store TDC readouts as tuples
of Gray code and thermometer codes, until they are guaranteed to have
stabilized.

We discuss a more efficient encoding in the next section. Observe
that this is non-trivial, because the interpretation of the ring latch states
depends on the Gray code counter’s value.

Encoding the Ring Latch States Also here, we need to make use of
a Gray code for safely “compressing” the (n´ 1)-bit thermometer en-
coding into a rlogns-bit string. It can be shown that given an arbitrary
Gray code, e.g., the binary reflected Gray code (BRGC), there is a cir-
cuit that efficiently (i.e., in O(logn)-depth) translates the thermometer
encoded ring state to this Gray code, inducing metastability of at most
one bit that is the currently least significant bit.

As an additional benefit of this approach, note that the same XOR-
tree circuit can be used to encode the number of 0s in n-bit strings
00..011..1, for the following reason: Switching between encodings
11..100..0 and 00..011..1 is just by negation of the input. Propagating
the negations from all inputs through the XOR-tree to the outputs
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0 1 2 3 4 5 6 0 1 2 #1s #0s

0 0 0 0 0 0 0 0 0 0 0 7
1 0 0 0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0 1 1 2
1 1 1 0 0 0 0 0 1 0 3
1 1 1 1 0 0 0 1 1 0 4
1 1 1 1 1 0 0 1 1 1 5
1 1 1 1 1 1 0 1 0 1 6
1 1 1 1 1 1 1 1 0 0 7 0

0 1 1 1 1 1 1 1 0 1 1
0 0 1 1 1 1 1 1 1 1 2
0 0 0 1 1 1 1 1 1 0 3
0 0 0 0 1 1 1 0 1 0 4
0 0 0 0 0 1 1 0 1 1 5
0 0 0 0 0 0 1 0 0 1 6

Table 11.1: Encoding the ring latch states in case n = 8: original ther-
mometer encoded (n ´ 1 bits 0 . . . 6), efficient BRGC encoded (log2(n)
bits 0 . . . 2), and the relevant decimal counts of 1s and 0s.

yields that it suffices to negate a fixed subset of the output bits to ob-
tain the Gray code for the complemented input thermometer encoding.
In the case of BRGC, only the left-most BRGC bit has to be negated:
e.g, see Table 11.1: counting 1s in input 1000000 yields output 001,
counting 0s in 0111111 yields 101.

In particular, one can “delay” the application of the respective out-
put negations until after potential metastability of the counter (and
thus how the rlogns-bit string is to be interpreted) has been resolved.

1
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1
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1
3

M
4

0
5

0
6

1
0

1
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M
2

Figure 11.9: XOR-tree circuit implementation counting the number
of 1s as specified in Table 11.1. Note that a metastable ring latch
influences only one, the current least significant, bit (compare lines 4
and 5 in Table 11.1): no precision is lost when encoding metastable
data.
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Figure 11.10: Circuit encoding a TDC measurement value (n ´ 1
thermometer encoded ring latch states and B bit coarse BRGC counter
state) as a single BRGC encoded value without losing precision in
presence of a metastable input bit. Here n = 8 and B = 2 and the
coarse counter is even (decimal 0), i.e., we have to count 1s in latch
states. Observe that the final value 0011M correctly encodes decimal 4
or 5, depending on how M resolves.

In summary, we obtain a memory-efficient metastability-containing
TDC by using a B-bit Gray code coarse counter and the XOR-tree
circuit from above, a measurement can be stored as a tuple of two Gray
codes, using B + rlogns bits, without losing precision.

Metastability-containing Computations Above, we presented a way to
efficiently store a, potentially metastable, TDC measurement as a Gray
code tuple. While this is memory-optimal, the question arises if we can
store a TDC measurement as a single Gray code value that does not
need any further transformation when being read by an application.

For operations which are metastability-containing, meaning perform-
ing the computations before metastability has been resolved, having a
single BRGC measurement value is of specific interest as there already
exist circuits requiring BRGC inputs [BLM17; FFL18; LM16].

Providing such inputs with our approach is not only possible, but
straightforward. For n being a power of 2, a single BRGC encoded
value of the measurement value can be generated in a very convenient
way. If we use a BRGC coarse counter and n is a power of 2, then just
the concatenation of (a) the output of the above XOR-tree circuit,
without the need to negate any of its output bits, and (b) the output of
the BRGC counter yields a BRGC encoding of the TDC measurement
value. Fig. 11.10 depicts the resulting circuit in case of an even coarse
counter value. Fig. 11.11 demonstrates that the same circuit works for
odd and for metastable coarse counter values.

We stress the utility of this insight. A naive implementation would
require to build an adder with inputs (a) BRGC encoded cyc and (b)
thermometer encoded latch outputs, which is a complex circuit. Addi-
tionally, this requires both inputs to be metastability-free or to design a
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Figure 11.11: Left: coarse counter is odd (decimal 1), i.e., we have to
count 0s in latch states. Observe that the final value 0101M correctly
encodes decimal 12 or 13, depending on how M resolves. Right: coarse
counter is metastable. Observe that the final value 0M100 correctly
encodes decimal 7 or 8, depending on how M resolves.
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Figure 11.12: Solution III: Gray code counter variant with single-bit
latch.

metastability-containing adder. By contrast, concatenation is trivially
metastability-containing: no precision is lost due to possible metastabil-
ity.

Solution III: Gray Code Counter with Latch

The Gray code counter variant of the previous section requires that
the output of the counter is stable at all times outside a time win-
dow of size similar to the critical window of the latches (limited by
Td, cf. Fig. 11.7). For high accuracy TDCs with small Td, this (a) ei-
ther imposes a harsh constraint on the design of the counter, which is
potentially difficult to meet, or (b) requires an implementation with
additional registers as a workaround (see Fig. 11.8).

For these cases, we propose a different metastability-aware design
depicted in Fig. 11.12: We add one extra (single-bit) latch L with
output b only. The XOR gate delays the counter increment input and
additionally transforms rising and falling transitions to pulses, allowing
the use of standard single-edge triggered flip-flops for the Gray code
counter implementation.

Analogously to the redundant binary counter solution, we only
require non-overlapping critical windows of latch L and Gray code
counter C; see Fig. 11.13.
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Figure 11.13: Critical windows for Solution III.

Given a (stabilized) TDC readout, again we determine whether cyc
is odd or even – this time not from the counter value, but from the
explicitly stored b in latch L. This enables to correctly interpret the
value stored for cnt mod n as before. Moreover, it is used to account
for an incomplete up-count of the Gray code counter: if the parity
of the stored counter value differs from b, we know that the counter
should have been incremented, but has been prevented from doing so
by the stopping signal. In this case, we amend this by performing an
up-count on the stored value (w.r.t. the used Gray code). This results
in a correct value, because metastability of the counter affects only the
(unique) bit that is being changed on the respective up-count.

Naturally, it may also happen that b becomes metastable. However,
in this case, the delay Tdel ensures that the counter did not start the in-
crement corresponding to the (incomplete) transition of L. Thus, either
resolution of b results in a correct interpretation of the measurement: If
L stabilizes as if it had not been triggered, all is well; if it stabilizes as if
it had been triggered, we fix the counter value accordingly.

11.4 Conclusion

In TDC applications that require high-speed sampling together with
deterministic guarantees on precision, one must account for metastable
upsets and memory-efficient storage of sampled data. Using Spice simu-
lations, we demonstrated that a state-of-the-art ring TDC with coarse
binary counter indeed suffers from significant upset rates. As a solution,
we compare and formally prove correct three variants of ring TDCs
that provide high-speed sampling, optimal guaranteed precision of 1
delay unit, and memory-efficient storage of TDC values. The proposed
variants offer different trade-offs between ease of implementation and
memory overhead. We stress that variant II uses an encoding of mea-
surement values with zero memory overhead that can be computed
without waiting for metastability to resolve. This renders it of particu-
lar interest for use in metastability-containing circuits [BLM17; FFL18;
LM16].



CHAPTER 12

Efficient Metastability-Containing
Multiplexers

12.1 Introduction

Multiplexers (MUXes) are ubiquitous in digital circuits. A MUX ac-
cepts a select bit s and input words a, b, and outputs a if s = 0 and
b otherwise. If a = b, the MUX must output a, regardless of s, as s
represents the choice between two identical options. Unfortunately,
common MUX implementations— see Figures 12.1a, 12.2a, and 12.2b
for gate-level, transistor-level, and pass-gate MUXes—violate that
specification if s is degraded.

In this chapter, we address this issue by specifying and efficiently
implementing a Metastability-Containing Multiplexer (CMUX), and
simulating it using Simulation Program with Integrated Circuit Empha-
sis (SPICE). A CMUX behaves like a regular MUX with one additional
property: If a = b, the output is a, regardless of how degraded the
select bit is.

CMUXes are useful in the presence of degraded inputs in general,
but our prime motivation is metastability-containment [FFL18]. While
degraded select bits can be avoided in standard digital circuits, this is
not the case for metastability-containing circuits, which typically mask
possibly metastable bits as follows: If s may be metastable but one can
guarantee that this only happens if a = b, a CMUX is fed with inputs
s, a, b and outputs a, thereby masking metastability of s [FFL18]. A
standard MUX fails in this situation, violating timing constraints and
yielding an undefined output, thus risking further metastable upsets.
We detail on the concept of metastability-containment in the following
section.

Specifically in a Lynch-Welch based clock synchronization scheme
like presented in Chapter 10, MUXes play a crucial role. After the TDC

This part is the result of close collaboration with Stephan
Friedrichs. It is based on an article published as [FK17]. The au-
thor’s focus was on circuit simulation and circuit optimization.
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captured the pulse arrival time, there will be some signals left that are
metastable (c.f. Chapter 11). Either time has to be spent to resolve
metastability, which can be arbitrary long, depending on the MTBF
target, or any further processing has to be done in a way that can
contain metastability from degrading the output, or worse “infecting”
the whole computation. In Lynch-Welch based systems the first, and
most involved computation step after time measurement is a sort
operation. It has been shown in [BLM17] that this can be done in such
a way that metastability can be contained in an optimal way, i.e. that
the output precision is not any worse than the input precision. But they
rely on the used MUX to be CMUX.

Most metastability-containing circuits proposed to date critically
depend on CMUXes [FFL18; BLM17; Füg+17; LM16]. However,
the only implementation of a CMUX previously proposed is an 18-
transistor gate-level implementation that has not been subject to sim-
ulations [FFL18]. We propose an implementation that reduces the
transistor count to 8, matching that of a standard MUX, demonstrate
its correctness with SPICE simulations, and hence improve a core com-
ponent of metastability-containing circuits.

Motivation: Metastability-Containing Circuits

We define a metastable [Mar81] signal as having a voltage between
logical 0 and 1. Such a signal can be stuck between 0 and 1, oscillate,
or show any unspecified behavior. In short, it can obtain any voltage
between logical 0 and 1, and perform arbitrary and unclean transitions.
Metastability may break the abstraction of Boolean logic in digital
circuits. Unfortunately, one inherently takes the risk of metastability
whenever communicating signals across unsynchronized clock domains,
and when using analog to digital converters (ADCs) or TDCs [Mar81].

As it is well-known that no digital circuit can deterministically avoid,
resolve, or detect metastability [Mar81], the established strategy is to
(1) store potentially metastable signals in synchronizers [BG15; Gin03]
for a predefined time and (2) only afterwards use them in the main cir-
cuit. This isolates metastable signals from the main circuit by restoring
them to proper levels; the probability of maintaining metastability in a
synchronizer decreases exponentially over time [KBY02; Vee80].

Recently, the radically different approach of metastability-containing
circuits emerged [FFL18; BLM17; Füg+17; LM16]. Instead of avoiding
metastability altogether, one can fortify a circuit—using fine-grained
logical masking—such that metastability only “infects” a limited
part of it. Such techniques are necessary when the delay required for
reliable synchronization is unacceptable, e.g., in highly time-critical
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applications like high-frequency clock synchronization [FFL18], or in
ADCs [Cha+17; GHL12; WMM16] and TDCs [Füg+17], i.e., before
synchronizers can be applied. Using metastability-containing tech-
niques, it is possible to completely avoid synchronizers if one accepts a
certain degree of metastability in the output [FFL18].

An example are metastability-containing Gray code sorting net-
works [BLM17; LM16]. Suppose ADCs output Gray code but, due to
their analog input, a possibly metastable bit decides whether to output
x or x + 1. As x and x + 1 only differ in a single bit, their metastable
superposition has at most one metastable bit; all other bits are stable in
an appropriate implementation. The property of all possible stabiliza-
tions lying in tx, x + 1u,1 is called precision-1 [FFL18; LM16]. It has 1. This is not the

case for binary
numbers, e.g., 7 and
8 differ in 4 bits.

been shown that it is possible to sort inputs of precision-1 such that the
output still has precision-1 using metastability-containing Gray code
comparators [BLM17; LM16].

In addition to Gray code sorting networks, a metastability-containing
TDC [Füg+17], several operations on unary numbers and their Gray
code conversion [FFL18], and a synchronizer-free clock synchroniza-
tion scheme [FFL18] have been proposed.

To the best of our knowledge, all metastability-containing circuits
proposed to date have one thing in common: At some point, a control
bit s that decides whether to output a or b may become metastable. In
that case, the circuits are specified such that a and b only differ in a
limited number of bits and that the output is a superposition of a and b

that can only become metastable in the differing bits. While a standard
MUX fails for this operation, a CMUX ensures that the identical bits
in a and b are stable in the output. Regarding Gray code comparators,
s may e.g. be metastable if comparing x to a superposition of x and
x+ 1 [BLM17; LM16].

Related Work

Metastability-containing circuits has been established by Friedrichs
et al. [FFL18]. These techniques have been successfully applied to
TDCs by Függer et al. [Füg+17], and to Gray code sorting networks by
Lenzen and Medina [LM16] and Bund et al. [BLM17] Tarawneh et al.
presented the related technique of speculative computations [TY12;
TYM14].

Metastability-containing circuits are related to glitch-free/hazard-
free circuits, which have been extensively studied since Huffman [Huf57]
and Unger [Ung59] introduced them. Both show how to identify and
prevent hazards resulting from a single transition of a single input.
Eichelberger [Eic65] extended these results to multiple switching inputs
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and dynamic hazards, Brzozowski and Yoeli extended the simulation
algorithm [BY79], Brzozowski et al. surveyed techniques using higher-
valued logics [BEI01], and Mendler et al. studied delay requirements
needed to achieve consistency with simulated results [MSB12].

A common assumption in hazard detection is that inputs only per-
form well-defined, clean transitions, i.e., the assumption of a hazard-
free input-generating circuitry is made. This is the key difference to
metastability-containment: Metastability encompasses much more than
inputs that are in the process of switching; metastable signals may or
may not be in the process of completing a transition, may be oscillating,
and may get “stuck” at an intermediate voltage.

Another common assumption in hazard detection is that circuits
have a constant delay. This is no longer the case in the presence me-
tastability. In fact, we demonstrate in Section 12.4 that circuit delays
can deteriorate in the presence of metastable input signals, even if the
circuit generates a stable output.

Model

Friedrichs et al. model metastability in digital circuits on the gate
level [FFL18]. In addition to logical 0 and 1, they introduce M as a
third signal value; M is a placeholder for arbitrary voltages between 0

and 1, including 0 and 1 as well as any voltage in between. M includes
the output of a metastable latch, as well as the output of any circuit or
process that may degrade the signal voltage. Metastability breaks the
abstraction of Boolean logic: Under input x = M, the output voltage of
a circuit implementing x_ x is undefined, i.e., M. Metastable signals
can be contained using logical masking; for example, M ^ 0 = 0 and
M _ 1 = 1, but M ^ 1 = M and M _ 0 = M. If one can limit the
number of metastable input bits, one can use these masking techniques
to limit the number and the position of metastable bits in the output,
see Section 12.1.

As our goal is an efficient transistor-level implementation of a
CMUX, we transfer this model from the Register-Transfer Level (RTL)
to the transistor level. To this end, we examine the behavior of transis-
tors under undefined input voltages. A transistor exposed to an input
of M might not be completely switched on or off, resulting in an unde-
fined output voltage, i.e., M. Hence, when applying stable voltages to a
transistor’s source and drain but M to its gate, it acts as an undefined
source–drain resistance.

Note that while combinational logic may output stable values under
metastable input, its timing behavior may still be degraded; in fact, we
observe this effect in Section 12.4. It is well-known that violated timing
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Figure 12.1: Gate-level MUX behavior under inputs a = b = 1; in this
case, the output should be 1 regardless of the select bit s. For s = M,
however, the standard MUX (a) can become metastable. The CMUX
implementation (b) uses logical masking and outputs 1. Figure adapted
from [FFL18].

constraints may result in metastability in latches and flip-flops. Hence,
we denote violated timing constraints by M as well.

12.2 Problem Statement

A Metastability-Containing Multiplexer (CMUX) has three single-bit2 2. Specification and
circuits directly gen-
eralize to arbitrary
bit-widths.

inputs s, a, b, one output, and behaves as follows.

(1) If s = 0 the output is a,

(2) if s = 1 the output is b,

(3) if s = M but a = b the output is a, and

(4) the output is unspecified if s = M and a ‰ b.

Condition (3) reflects that even if the choice between a and b is unclear
due to a metastable select bit, this must not affect the output in the
case of a = b. Omitting Condition (3) yields a standard MUX which is
oblivious to degraded select bits.

Figure 12.1a shows how a gate-level MUX can become metastable
under input s = M and a = b = 1. The gate-level CMUX in Fig-
ure 12.1b mitigates the effect of s = M using logical masking, i.e., a
third And-gate. Friedrichs et al. show that the circuit in Figure 12.1b
satisfies (1)–(4) [FFL18]. However, they do not present an efficient
implementation or simulations.

We propose efficient transistor-level implementations which main-
tain Conditions (1)–(4) and simulate them to verify their behavior.
Using 8 and 10 transistors, our implementations require a fraction
of the 18 transistors for a naive implementation3 of the CMUX in 3. 4 and 6 transis-

tors for a binary and
a ternary Nand, re-
spectively; The latter
is the de Morgan
equivalent of the
ternary Or.
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Figure 12.1b.
Our focus is a proof of concept using a generic process and node

size. Hence, we do not analyze process variations, leakage current,
or area overhead as they vary with technology. Further, note that the
actual likelihood of degenerate input signals heavily depends on the
input-generating circuit.

12.3 Circuits

We propose two transistor-level implementations of a CMUX, CMUX-A
and CMUX-B, depicted in Figures 12.2c and 12.2d, respectively. Both
implement Conditions (1)–(4) and invert the output. CMUX-A is a
conservative implementation that requires 10 transistors. CMUX-B
needs only 8 transistors— the same as the conventional MUX-C—
but has a slightly higher peak current and a slightly degraded output
voltage under Condition (3), i.e., if s = M and a = b.

CMUX-A

Clearly, CMUX-A (Figure 12.2c) satisfies Conditions (1) and (2) if all
inputs s, a, b are logical 0 or 1, up to inversion of the output. Regarding
Condition (3), recall Section 12.1: A transistor with an undefined
input voltage produces an undefined output voltage. So if s = M and
a = b = 0, there is a low-resistance path from ō to VDD at the top
right of CMUX-A, but only high-resistance paths from ō to GND, so
ō = 1 = ā. Note that all transistors with voltage M at the gate are
bypassed and do not influence the output voltage. CMUX-A behaves
symmetrically if s = M and a = b = 1. Together, we see that CMUX-A
satisfies Conditions (1)–(4). We discuss in Section 12.4 that SPICE
simulations confirm the correct behavior of CMUX-A.

CMUX-B

It is easy to check that CMUX-B (Figure 12.2d) fulfills Conditions (1)
and (2): If all inputs s, a, b are logical 0 or 1, CMUX-B outputs ā if
s = 0 and b̄ if s = 1. As for Condition (3), consider the the case s = M
and a = b. Then transistors with gate input s or s̄ act as resistors of
undefined resistance, hence, there is a current from VDD to GND along
the left path of CMUX-B. This results in a higher peak current under
s = M. If a = b = 1 the n-Field-Effect Transistors (FETs) pull the
output low while the p-FETs on the left represent an undefined resis-
tance, which may become low enough to cause an undefined output
level. This constitutes the key difference to CMUX-A, which masks this
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Figure 12.2: Transistor-level MUX and CMUX implementations.
MUX-C (a) and MUX-P (b) show conventional combinational and
pass-gate MUXes, respectively. Both are vulnerable to metasta-
bility, especially the MUX-P: A metastable (or in any other way
degraded) select bit causes an undefined pass resistance and connecting
them in series severely degrades the output signal. CMUX-A (c) and
CMUX-B (d) implement CMUXes, i.e., metastability-containing alter-
natives. CMUX-A is a conservative implementation that requires 10
transistors and has a low peak current. CMUX-B saves 2 transistors—
matching the transistor count of MUX-C—at the expense of a slightly
increased peak current in the case of s = M and a = b.
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case. To ensure correct output levels we use transistors of double width
on the right branch with inputs a and b. Our simulations confirm that
with this tweak CMUX-B behaves correctly under Condition (3), see
Section 12.4. In the case of a = b = 0, CMUX-B behaves symmetrically.
Altogether, CMUX-B satisfies Conditions (1)–(4), but has a higher
peak current than CMUX-A under Condition (3). See Section 12.4 for
SPICE simulations confirming our claims regarding correct behavior
and peak current.

On Pass-Gate Implementations

MUX-P (Figure 12.2b) is is a standard pass-gate implementation. Such
implementations have a non-negligible pass-resistance, even for stable
inputs, degrading the output signal. This problem severely intensifies
in the context of metastability-containment: s = M effectively turns
all transistors in MUX-P into undefined resistances or—depending on
the Complementary Metal Oxide (CMOS) process—even worse, into
source-followers with an input voltage close to mid-voltage. This effect
is especially problematic when connecting MUXes in series. Hence, the
output signal has to be cleaned up, surrendering the advantage of a
pass-gate implementation in the first place. Therefore, we do not base
our CMUX implementations on pass gates.

12.4 Simulation

We simulated CMUX-A and CMUX-B, and the reference implemen-
tations MUX-C and MUX-P, in SPICE, using a 180nm process with
transistors sized 2.41µm/0.18µm and 4.90µm/0.18µm for N- and P-
FETs respectively. As discussed in Section 12.3, the transistors on the
right branch of CMUX-B were twice the minimal width to guarantee a
stable output voltage under all operating conditions.

In each simulation, we applied a fixed voltage to s and simultane-
ously switched a and b, maintaining a = b, from 0 to 1 or from 1 to 0.
To obtain realistic waveforms, a and b passed through two inverters.
For each circuit, we measured the delay between the first change of the
input and the stabilization of its output to 0.18V (10%) or to 1.62V
(90%).

Figure 12.3 shows the input waveform applied to a and b (blue)
and the output behavior under a wide range of voltages of s. Fig-
ures 12.3a–12.3d show the behavior of the conventional reference
implementations MUX-C and MUX-P and Figures 12.3e–12.3h that
of the proposed implementations CMUX-A and CMUX-B. Table 12.1
summarizes the best-case (nominal) and worst-case delays, the end
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(b) MUX-C, 1Ñ 0 transition
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(c) MUX-P, 0Ñ 1 transition
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(d) MUX-P, 1Ñ 0 transition
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(e) CMUX-A, 0Ñ 1 transition
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(f) CMUX-A, 1Ñ 0 transition
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(g) CMUX-B, 0Ñ 1 transition
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(h) CMUX-B, 1Ñ 0 transition

input 0.1V 0.3V 0.5V 0.7V 0.8V 0.9V 1.0V 1.2V 1.5V 1.7V

Figure 12.3: SPICE simulation results. The graphs show the input
signal (blue) for a = b, and the obtained output signal for different
voltages (between 0.1V and 1.7V) applied to s. The timing perfor-
mance of the conventional MUX implementations MUX-C (a)–(b) and
MUX-P (c)–(d) severely degrades under a wide variety of these voltages.
In contrast, CMUX-A (e)–(f) and CMUX-B (g)–(h) hardly show any
degradation.
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Type MUX-C MUX-P CMUX-A CMUX-B
Fig. 12.2a Fig. 12.2b Fig. 12.2c Fig. 12.2d

Transistor Count 8 4 10 8
Prop. Delay 0Ñ 1 215ps 315ps 155ps 155ps
(nominal) 1Ñ 0 319ps 206ps 237ps 231ps
Prop. Delay 0Ñ 1 600ps 607ps 222ps 192ps
(worst-case) 1Ñ 0 728ps 532ps 326ps 300ps
End Voltage 0Ñ 1 0.001V 1.799V 0.001V 0.049V
(worst-case) 1Ñ 0 1.799V 0.001V 1.799V 1.709V
Avg. Power 0Ñ 1 13.5µW 30.6µW 14.9µW 18.4µW
(nominal) 1Ñ 0 42.6µW 19.4µW 44.9µW 51.6µW
Avg. Power 0Ñ 1 429µW 447µW 431µW 657µW
(worst-case) 1Ñ 0 458µW 436µW 461µW 709µW

Table 12.1: SPICE simulation results. Nominal and worst-case refer to
the condition of the select bit.

voltages after 8ns, and the average power consumption (including the
input inverters) over 10ns.

Clearly, the output waveforms of the reference implementations
MUX-C and MUX-P degrade heavily under the influence of metasta-
bility at s. Furthermore, the propagation delays become large as the
voltage of s approaches 0.8V. Hence, despite eventually reaching a well-
defined output voltage, they do not contain metastability: The severely
degraded propagation delay of MUX-C and MUX-P leads to violated
timing constraints when used in larger circuits. This in turn can lead
to the violation of setup/hold times of registers further downstream,
increasing the risk of metastable upsets.

In stark contrast, Figures 12.3e–12.3h demonstrate CMUX-A and
CMUX-B are indeed metastability-containing: they only show negligi-
ble degradation. In terms of power consumption, CMUX-B requires
slightly more than CMUX-A and MUX-C in the nominal and about
50% more in the worst case. This is due to the cross links between
the branches that cause an additional current flow through the FETs
controlled by s and s̄.

The bottom line is that CMUX-A and CMUX-B cope with even the
most severely degraded select bits, and thus fulfill Conditions (1)–(4).
As the conventional implementations fail to fulfill Condition (3),
the proposed CMUXes form a solid foundation for metastability-
containing circuits capable of keeping timing guarantees without undue
guard bands or comprising the MTBF.



impact on metastability-containing circuits 115

bits
4-sort 7-sort 10-sort

[LM16] we saved [LM16] we saved [LM16] we saved
2 370 340 8.1% 1010 1010 0.0% 1750 1750 0.0%
4 2990 1620 45.8% 7654 5184 32.3% 12986 9396 27.6%
8 21060 7060 66.5% 67392 22592 66.5% 122148 40948 66.5%
16 95460 29460 69.1% 305472 94272 69.1% 553668 170868 69.1%

bits
4-sort 7-sort 10-sort

[BLM17] we saved [BLM17] we saved [BLM17] we saved
2 960 400 58.3% 3072 1280 58.3% 5568 2320 58.3%
4 4440 1640 63.1% 14208 5248 63.1% 25752 9512 63.1%
8 13920 4960 64.4% 44544 15872 64.4% 80736 28768 64.4%
16 37080 13000 65.0% 118656 41600 65.0% 215064 75400 65.0%

Table 12.2: Transistors saved by using CMUX-B in the sorting net-
works of Lenzen and Medina [LM16] and Bund et al. [BLM17].

12.5 Impact on Metastability-Containing Circuits

In this section, we demonstrate how our CMUX implementations
drastically reduce the complexity of existing metastability-containing
circuits. This is achieved by using CMUX-A or CMUX-B as a drop-in
replacement wherever a CMUX is required. As an example, consider
the metastability-containing Gray code sorting networks proposed
by Lenzen and Medina [LM16] and the more recent improvement
by Bund et al. [BLM17]; Using CMUX-B reduces the size of a 16-bit
10-sort by 69% and 65%, respectively.

Both papers describe 2-sort implementations for Gray code numbers
and metastable superpositions of successive Gray code numbers, as
motivated in Section 12.1; Lenzen and Medina require O(B2) transis-
tors for a B-bit comparator, and Bund et al. reduce the transistor count
to O(B logB). Each paper presents the transistor counts required by
optimal sorting networks of 4, 7, and 10 channels for B P t2, 4, 8, 16u

assembled from their respective 2-sort implementation.
The proposed 2-sort implementations require a 4-CMUX. We re-

quire 28 transistors to implement a 4-CMUX from CMUX-B, much
less than the 84 transistors of the naive implementation of Lenzen and
Medina based on Figure 12.1b.

Table 12.2 demonstrates how replacing the naive CMUX used
in [BLM17; LM16] with CMUX-B from Figure 12.2d reduces the tran-
sistor count of the sorting networks. As for the comparison with [LM16],
note that Lenzen and Medina present a polynomially as well as an
exponentially sized circuit. We always plug CMUX-B into the polyno-
mially sized circuit and compare against their smallest circuit, hence
the reduced savings for small B. When sorting 4-bit numbers, our
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approach saves between 27.6% and 45.8% of the transistors; our ap-
proach even saves 69.1% when sorting 16-bit numbers. The savings
w.r.t. [BLM17] are equally drastic: Using CMUX-B reduces the size of
the sorting network by 58.3%–65.0%, removing almost two thirds of
the circuit.

12.6 Conclusion

We propose two transistor-level implementations of Metastability-
Containing Multiplexers (CMUXes)—MUXes that guarantee correct
behavior in the presence of a severely degraded or metastable select
bit—and verify them using SPICE simulations. Despite having little
to no overhead in transistor count and power consumption w.r.t. a
conventional MUX, (1) our implementations perform extremely well
in the presence of degraded select bits, (2) show almost no degradation
in performance even under worst-case conditions, and (3) outperform
conventional MUX architectures in terms of propagation delay under
simultaneously switching inputs.

Furthermore, we demonstrate the usefulness of our CMUX: It
drastically improves the metastability-containing sorting networks by
Lenzen and Medina [LM16] and Bund et al. [BLM17], reducing the
transistor count by up to 69% and 65%, respectively.
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