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Abstract—We report on a study of the carrier-phase time transfer boundary discontinuity by the use of the 

precise point positioning (PPP) technique. Carrier-phase time transfer is first compared with two-way 

satellite time and frequency transfer (TWSTFT) between the same stations. It matches TWSTFT quite well 

and provides better short-term stability. Later, we extract 1-day data-arc boundary discontinuity jump 

values for 151 days. The distribution of jump values is almost Gaussian. Different GPS receivers have 

different mean jump values (-200 ps to +200 ps) and different standard deviations (100 ps to 300 ps). Among 

the receivers at NIST (USA), USNO (USA), and PTB (Germany), USNO has the smallest absolute mean jump 

value (14.2 ps) and the smallest deviation (105.1 ps). In addition, with the increase of data-arc from 1-day to 

4-days, both mean value and deviation increase. For receivers at the same station, the correlation varies. At 

PTB, the correlation between the jumps for receivers PTBB and PTBG is only -0.064. At NICT (Japan), the 

correlation between receivers SEPA and SEPB is 0.47, while that between receivers SEPB and SEPT is 0.10. 

The above variation in the correlation between receivers at the same location suggests that the boundary 

discontinuity does not mainly come from satellite-path-related noise. Further investigation reveals that 

multipath also contributes little to boundary discontinuity. Comparison between PPP and network method 

shows that the algorithm of fixing phase ambiguity plays an important role in boundary discontinuity.  
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I. INTRODUCTION 

Global Positioning System (GPS) carrier-phase (CP) measurements are currently a widely accepted 

method for high precision time transfer [1, 2]. The method provides lower short-term noise than other 

time transfer methods, such as Two Way Satellite Time and Frequency Transfer (TWSTFT) and Common 

View (CV) Time Transfer [3].  

However, independent daily CP time transfer solutions frequently show boundary discontinuities of up to 

1 ns due to the inconsistency of the phase ambiguity between two independent days. Although there are 

some post-processing methods [4, 5] that mitigate the discontinuity, the origin of the inconsistency of the 

phase ambiguity is still not very clear, which makes CP time transfer not very useful for comparing 

primary frequency standards and similar high-accuracy applications. 

The GPS observation equations for code and CP measurements have the following form, respectively: 

   
 
                                     

 
    

  
 
                                     

                         
 
      

where     is the clock bias of station i,     is the clock bias of satellite j;        and       are the 

tropospheric delay and ionospheric delay, respectively;     
 
 is the multipath correction;   is the noise 
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term;   
 

 is the phase ambiguity. The multipath and noise terms are different for code and CP 

measurements. 

Code measurement is much noisier than CP measurement. It provides accurate but not very precise timing 

information, while CP measurement provides precise but less accurate timing information due to the 

uncertainty of the phase ambiguity   
 
. Code measurements are used to help fix the phase ambiguity so 

that we have both accurate and precise time. The physical noise in code measurements can lead to an 

incorrect phase ambiguity, which can lead to a boundary discontinuity in the end. Another possible reason 

leading to an incorrect phase ambiguity is the algorithm that is used to fix ambiguity itself. In the precise 

point positioning (PPP) technique, the zero-difference ambiguity of a satellite-receiver pair or the single-

difference ambiguity between two satellites is naturally not an integer value, due to the existence of the 

uncalibrated phase delays originating in the receiver and satellite [6]. This makes the resolution of 

ambiguities by PPP method lower than that by the network method, which uses double differences to 

determine the uncalibrated phase delays. 

In this paper, we begin with details of GPS data processing. Then we compare CP time transfer with 

TWSTFT. In Section IV, we study the statistical behavior of the boundary discontinuity, especially the 

mean and the standard deviation (STD). In Section V, we explore the possible physical noise in code 

measurement, e.g., multipath, the satellite orbit, and the correlation of boundary discontinuity between 

two receivers at the same station. Furthermore, we compare the boundary discontinuity of the PPP 

method and the network method, which shows the importance of the algorithm that is used to fix the 

ambiguity. 

II. GPS DATA PROCESSING 

The NRCan PPP software [7] was run for several GPS receivers for more than 150 days. The default 

settings are as follows: “USER DYNAMICS” is set to “STATIC” because all receivers used in this paper 

are in static mode; we use International GNSS Service (IGS) rapid products (SP3 and CLK) and RINEX 

as the input files for NRCan PPP; the software solves for both the station position and the clock bias; the 

cutoff elevation is set to 10 degrees. We extract the backward data to get the clock bias because a 

calculation in this direction provides a better tropospheric delay estimate and the solutions converge better 

in backward mode.  

We use two strategies to extract the boundary discontinuity [2]. The first strategy is called “Raw 

Method,” which computes the time difference between the average of 0:00 and 0:05 for each day and the 

average of 23:50 and 23:55 for the previous day, and then corrects for the slope during the 10 min time 

period. The second strategy is called “Overlapping Method,” which runs PPP first for two consecutive 

days independently, then runs PPP for the combined two days, and then extracts the difference between 

the first day and the combined two days      and the difference between the combined two days and the 

second day     . Then                gives the jump value between the two days (See Figure 1). 

These two discontinuity extraction strategies give us almost the same jump values. For the sake of 

consistency, we will keep using the Overlapping Method except that the Raw Method is used in Section 

V.3 because IGS does not provide the timing information for the combined two days. 

III. COMPARISON BETWEEN CP AND TWSTFT 

TWSTFT uses a modem to generate a pseudo-random code synchronized to the 1 Hz ticks of the local 

clock [3]. This code is used to modulate the “up-link” microwave carrier at about 14 GHz. After receiving 

this signal, the satellite re-transmits it on the “down-link” frequency at about 12 GHz. This signal is 

received at the remote end and converted back to 1 Hz ticks. The system is full-duplex and transmits 

signals in both directions simultaneously. Since contributions to the path delay (such as the tropospheric, 

the ionospheric, the satellite position and clock) are nearly the same for both directions, we can eliminate 

the delay and achieve a timing accuracy that is typically better than 1 ns.  
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It is good for us to compare the CP method with TWSTFT in order to make sure that we run the CP 

method properly. Figure 2 shows us the comparison of the two methods for 30 days. The y-axis is the 

time difference between NIST and PTB. The uncalibrated cable delay leads to a non-zero average of the 

time difference between the two stations for CP method. In order to compare CP and TWSTFT, the 

TWSTFT data have been shifted by -418.5 ns. We can see that CP matches TWSTFT very well. They 

have the same long-period variation, and CP provides much better short-term stability.    

 

Figure 1.  Algorithm of Overlapping Method.      is the average time difference between the first day and the 

combined two days from 15:00 to 21:00.       is the average time difference between the second day and the 

combined two days from 3:00 to 9:00.               , where       is the jump value estimated by the 

Overlapping Method. 

Figure 2.  Comparison between carrier-phase time transfer and TWSTFT. TWSTFT  has been shifted by -418.5 ns. 

IV. STATISTICS OF BOUNDARY DISCONTINUITY 

Figure 3 illustrates the UTC(NIST) clock bias with respect to the IGS time. Between Modified Julian Day 

(MJD) 55667 and MJD 55668, there is an adjustment in IGS time that leads to about a -7 ns jump. For all 

other days, we can see that there are many small jumps up to 1 ns. Before we explore the origin of these 

jumps, let us first study the statistics, e.g., the mean value and the STD of these jumps, and use statistics 

to describe these jumps. The statistics of jumps is also a touchstone for the improvement of the boundary 
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discontinuities. Figures 4 (a)-(c) are the histograms of the jump values for NIST, PTBB, and USN3 (in 

USNO), respectively. The distribution of the boundary discontinuities is almost Gaussian. The mean 

values are -146.7 ps, 45.4 ps and 21.4 ps, and the STDs are 236.7 ps, 138.5 ps and 106.7 ps. We can see 

that USN3 provides the smallest boundary discontinuity jump. The mean value of NIST is far from 0, 

which makes the popular concatenating algorithm difficult to implement [8].    

Figure 3.  Time difference between UTC(NIST) and IGS Time over 151 days. 

   
                                  (a)                                                      (b)                                                     (c)                

Figure 4.  Histograms of jump values of NIST, PTBB, USN3 for MJD 55600-55750.  

In Figure 4 are the statistics of the discontinuities for a data-arc of 1-day. The longer data-arc (e.g. 35 

days) time transfer is accepted by many organizations, including BIPM [9]. Figures 5 (a)-(b) show the 

impact of longer data-arcs on the boundary discontinuity by running PPP for USN3 for MJD 55500-

55900. Here, data-arcs range from 1-day to 4-days. Both the mean value and the STD of boundary 

discontinuity increase as the data-arc increases. That means that when a longer data-arc is used we should 

expect a greater boundary discontinuity. Theoretically, if the boundary discontinuity is an ideal 

independent white noise, we should have               and              . The actual data in 

Fig. 5 (a)-(b) agree with this expectation.    

V. ORIGIN OF BOUNDARY DISCONTINUITY 

As stated in Section I, the boundary discontinuity may come from physical noise, or from the algorithm, 

or both. For physical noise, it can be separated into two categories. One is the satellite-path-related noise, 
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e.g., satellite orbit, satellite clock, tropospheric delay, and ionospheric delay. The other is the receiver-

related noise, e.g., multipath, antenna, cable, and internal noise in the receiver circuits.  

For receivers at the same station, the satellite-path-related noise should be almost the same. So the study 

of receivers at the same station can reveal how important the satellite-path-related noise is on the 

discontinuity, which is discussed in Part 1 of this section. Next, we explore the effect of multipath, an 

important receiver-related noise, in Part 2. Last, the PPP algorithm is compared with the network 

algorithm, in terms of boundary discontinuity. Other issues, such as the periodic behavior of 

discontinuity, are also discussed. 

 
                                                 (a)                                                                                      (b)      

Figure 5.  Statistics of boundary discontinuity of different data-arcs. 

1. Boundary Discontinuity of Receivers at the Same Station 

If the satellite-path-related noise plays an important role, the boundary discontinuity jump values of 

receivers at the same station should be highly correlated.  

PTBB and PTBG are GPS receivers in PTB (See Figure 6(a)). Both of them are Ashtech Z-XII3T 

receivers. The distance between them is 6.51 m. Based on the statistics of jump values of MJD 55600-

55750, the correlation coefficient between these two receivers is only -0.064, which is very close to 0. So 

the jump values of PTBB and PTBG are not correlated. This means that, compared with other noise, the 

satellite-path-related noise is so small that it has little impact on discontinuity. For SEPA, SEPB and 

SEPT in NICT (Japan), the correlation between SEPB and SEPT is only 0.102, which further confirms 

this conclusion. The totally different STD of SEPA and SEPT (see Figure 6(b)) also reveals that jump 

value has little relation with satellite-path-related noise. The high correlation between SEPA and SEPB 

could come from the receiver-related noise (e.g., multipath, cable noise, receiver circuits) or the algorithm 

of fixing phase ambiguity.  

2. Multipath 

Now that we have excluded the effect of the satellite-path-related noise on boundary discontinuity, let us 

explore the receiver-related noise. Multipath is of great importance. It varies from station to station. 

Multipath in code measurement is usually at the level of a few meters. With the help of CP measurement, 

the bias due to multipath can still be at a several centimeters level, which can lead to 100 ps clock bias. 

Besides, although multipath repeats every 23 h 56 min, it is different every 24 h, which may lead to 



44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting 

322 

different phase ambiguities between 2 days. So it is necessary for us to explore the impact of multipath on 

boundary discontinuity.  

                                        (a)                                                                                        (b) 

Figure 6.  Correlation of boundary discontinuity of receivers at the same station. PTBB and PTBG are GPS 

receivers at PTB, Germany. SEPA, SEPB and SEPT are receivers at NICT, Japan. 

Increasing the cutoff elevation has two impacts. On one side, it blocks some multipath from the low 

elevations which form the main part of the total multipath. So from this point of view, we should expect a 

decrease of boundary discontinuity, if multipath does affect boundary discontinuity. On the other hand, 

increasing the cutoff elevation reduces the visible satellite number, which leads to fewer observations, so 

it increases the uncertainty of the computed phase ambiguity. So from this point of view, we should 

expect an increase of discontinuity. However, this increase should be very small because low-elevation 

observations are given less weight than high-elevation observations. In sum, if the multipath affects our 

observation seriously, we should expect a big decrease of discontinuity as the cutoff elevation increases.   

Figure 7 is the STD of boundary discontinuity of USN3, PTBB and SEPA at different cutoff elevations 

during MJD 55650-55850. We can see that the increase of cutoff elevation gives little improvement on 

boundary discontinuity. This illustrates that multipath, at least at USN3, PTBB and SEPA, is not an 

important factor on the magnitude of the boundary discontinuity. 

Figure 7.  Effect of cutoff elevation on boundary discontinuity. 
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3. Algorithms of Fixing Ambiguity 

In the PPP method, the receiver delay and the N satellites delays cannot be separated. In the N 

observations, we cannot resolve these N+1 unknown variables. So we need to set one delay to a specific 

value and solve for the other N variables. This makes it hard to resolve the phase ambiguity to an integer. 

In the network method, since we have other receivers (e.g., we have three receivers and three satellites in 

total), there are nine independent observations with six unknown cable delays for satellites and receivers. 

So we can solve these delays. This leads to a great improvement of fixing the ambiguity in eq. (2).  

The IGS clock file has clock biases of many ground stations that are computed by the network method. So 

the IGS clock data should be considered as the network solution, which is compared with the PPP 

method, as shown in Figure 8. We can see that the mean jump value is closer to 0 in the network method 

than the PPP method. Furthermore, the STD is typically more than 20 ps smaller than with the PPP 

method. This means that the network method is better than the PPP method in terms of boundary 

discontinuity. Any improvement in the algorithm for fixing the ambiguity can give a smaller 

discontinuity, even though the noise in physical measurement is still the same. 

 
(a) 

 
(b) 

Figure 8.  Effect of algorithms of fixing ambiguity on boundary discontinuity. Figure 8(a) shows the absolute mean 

of discontinuity of both the PPP method and the network method for five stations. Figure 8(b) shows the STD of 

discontinuity.  

4. Other Issues 

The boundary discontinuity behavior is not changed whether IGS final products or IGS rapid products are 

used. For PTBB from MJD 55600 to MJD 56017, the mean of jump values is 41.3 ps and the standard 

deviation is 147.2 ps when the IGS rapid products are used. Those values are 53.0 ps and 146.5 ps, 

respectively, when the IGS final products are used. This confirms our conclusion that the satellite-path-

related noise is of little importance on the magnitude of the boundary discontinuity. 
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Figure 9 shows the long-term (more than 1000 days) boundary discontinuity. In February and August, 

there are some peaks in the jump values. In addition, as shown by the red curve, the period of boundary 

discontinuity is approximately one year. The peaks of jump values happen when the red curve reaches a 

local minimum (February) or maximum (August). The origin of the periodic behavior is still not clear. It 

may come from imperfect modeling of the tropospheric mapping function.  

We have also run the PPP software in the position-fixed mode, which fixes the station at the initial input 

position and solves only for the clock bias. Running PPP in this mode leads to greater slope and greater 

boundary discontinuity in time transfer, when the initial input position is not at the right position (See 

Figure 10). The blue curve is the computed clock bias when the USN3 receiver is fixed at the right 

position. We can see that the boundary discontinuity is quite small in this case. However, when the 

receiver is fixed at a position with a -10 cm offset in X direction (black curve), the boundary discontinuity 

is more than 1 ns. The mean of the jump values is no longer near 0 ps. 

 

Figure 9.  Long-term periodic behavior of boundary discontinuity. The start point of x-axis is MJD 55000. 

 

Figure 10.  Effect of fixing receiver position on boundary discontinuity. 
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VI. CONCLUSIONS 

Based on the above analysis, we know that the distribution of boundary discontinuity is almost Gaussian. 

Different GPS receivers have different mean jump values (ranging from -200 ps to 200 ps) and different 

standard deviations (100 ps to 300 ps). With the increase of data-arc from 1-day to 4-days, both mean 

value and standard deviation increase. So long-term data-arc carrier-phase time transfer should have a 

poorer discontinuity behavior.  

For receivers in the same station, the correlation can be very small, which suggests that boundary 

discontinuity does not mainly come from the satellite-path-related noise. Further investigation reveals that 

multipath also contributes little to boundary discontinuity. Comparison between the PPP method and the 

network method shows that the algorithm of fixing phase ambiguity plays an important role in boundary 

discontinuity. Besides, the boundary discontinuity jump value has a period of approximately a year, 

which may come from imperfect modeling of the tropospheric mapping function. 
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