
44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

257

A Voice Time Monitoring and Recording

Sub-System for the Telephone Speaking Clock

C.C. Lin*, P. C. Chang, J. L. Wang, T. Y. Chiu, and S. Y. Lin

National Time & Frequency Standard Lab., TL,

Chunghwa Telecom. Co., Ltd.

 No. 99, Dianyan Rd., Yangmei City, Taoyuan County 326, Taiwan

*cchlin@cht.com.tw

Abstract—Previous research has developed a time source selecting and data monitoring system (TSMS) for

the time synchronized speaking clock (TSSC) [1]. This developed includes two sub-systems. One is for multi-

time signal source selecting and the other is for input status monitoring.

In this research, the TSMS was extended to monitor the output of the TSSC on dedicated telephone line,

called TSMS_A1. From this sub-system, an interrupt circuit with a Linux kernel driver was developed for

capturing the rising edge of the on-time tone which is from TSSC output to produce an interrupt event.

Through this event, the TSMS’ controller was trigged immediately to measure the time error and record the

announced voice program into an audio file. The audio recording procedures and a raw file converting from

PCM (Pulse Code Modulation) into Waveform Audio File Format (WAVE) were studied. In the system

design, Unified Modeling Language (UML) notation tools, such as user case diagram and activity diagram

were used to express basic concepts of the system requirements and interactive behaviors.

Finally, the data were analyzed from the on-time tone measured by setting three typical threshold levels.

Comparing these results, optimum one was chosen as the input threshold for the TSMS_A1. Its time

comparison error is within ±100μs after the path delay has been removed. From this result, we could indeed

monitor the output status of the TSSC and then could be providing more reliable voice time service for users.

Key words: speaking clock, monitoring system, recording system, interrupt, UML, PCM, RIFF, WAVE, OTM

I. INTRODUCTION

In Taiwan, the speaking clock can be reached by dialing „117‟ on a telephone line. A recorded female

voice says (for example): "下面音響 10點 20分 30 秒" followed by a tone (beep) of 800Hz, 250 ms

long, as shown in Figure 1. The meaning is, at the rise edge of the beep, the time will be 10 hours, 20

minutes and 30 seconds. The time is announced in 10 second intervals. The TSSC‟s broadcasting center is

located in Taipei City, which is north of TL (Chunghwa Telecom. labs in Taiwan) by about 50 kilometers.

In the center, the TSSC is synchronized with the national standard time by a telephone dedicated line, on

24 hours a day and 7 days a week.

Figure 1. An announced voice program in 10 second intervals.

 1st sec 3th sec 4th sec 6th sec 10th sec

下面音響

X 秒

t
10點 20分 30秒 beep

On-time

1st sec 3th sec 4th sec 6th sec 10th sec

下面音響

X 秒

t
10點 20分 30秒 beep

On-time

cchlin@cht.com.tw

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

258

In the previous research, the TSMS, only aimed at the input signal of the TSSC, was developed as shown

in Figure 2, labeled “A” and “B.” Two major tasks are as follows. First, set up a multi-time selecting

system which can switch to a backup time signal source automatically when the present one detects an

error. Second, establish data monitoring which helps the operator check the condition of input

synchronized time signals. When the system is detected in abnormal condition, it may trigger an alarm

immediately. However, the TSMS does not have the output status monitoring functions for the TSSC yet.

Thus, the objective of this research is to extend the functions of the TSMS to monitor the TSSC output

signal labeled “C.” It includes recording the announced voice program and measuring the time error of the

on-time tone.

UTC-TL Data

splitter splitter

Time

Display

NTPIRIG-B

IRIG-B
Announce
Voice

Local

Office

Multi-time
Selecting System
(MTSS)

Time
Synchronized
Speaking Clock

(TSSC)

Data Acquisition
System

(DAS)

Data
Management
System

(DMS)
National Standard
Time (UTC-TL)

TL

Broadcasting

Station

“A”

“B”

ReportRow

Data

Printer

IRIG-B

50Km

Distributor

“C”

Figure 2. Whole block diagrams of the speaking clock monitoring system.

II. REQUIREMENTS ANALYSIS

The basic idea of the TSMS_A1 could look like Figure 3. First, the input signal is separated into two paths

flowing through the measuring part and the recording part. In the measuring part an on-time pulse should

be generated by a filter and a shaper comparing with a standard time. In the recording part it should

amplify the input signal and then an announced voice program is recorded by a recorder. At last, all data

need to be saved into a store device for analysis after operating. The main functions of the TSMS_A1 are

going to be considered in the flow diagrams:

 Every 10
th
 second, capture the on-time tone from the announced voice program through the

telephone line.

 Measure the time error of the on-time tone comparing to the standard time and then save the data to

an external storage device.

 Every 10
th
 second, record the announced voice programs into an audio file, and then save the file to

an external storage device.

 The measuring and recording mechanics should be stable and reliable.

 Be of good sound quality, and easy to replay.

 A controller should work under the Linux operating system to meet the previous TSMS‟ operating

environment.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

259

Figure 3. Abstract statement diagrams of the requirements of the TSMS_A1.

A. User Cases

Use cases describe the functionality of the system from the user‟s point of view [2]. In the TSMS_A1 there

is an event and then many different use cases, as shown in Figure 4.

event

VOICE TIME MONITORING AND RECORDING SUB-SYSTEM(TSMS_A1)

measure t ime error

capture on-t ime tone

amplify level

record announced voice program

Convert f i le type

<<include>>

mask noise

save data

<<include>>

<<include>>

<<include>>

announce voice program

come from the speaking

clock every 10th second

<<include>>

<<include>>

Figure 4. The user case of the system requirements of the TSMS_A1.

1) Event: In this first stage of the analysis, consider the system is a black box reacting to the requests
and message from the environment. An event is an important message from the environment. A real-time
reactive system has to react to the external events in a bounded time.

2) Measure time error: Describe how to start a job that measures the time error comparing the on-time
tone with the standard time.

3) Capture on-time tone: Describe how to capture the on-time tone from the announced voice program.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

260

4) Mask noise: Describe how to filter the noise from the the input signal to keep an on-time tone only.

5) Record announced voice: Describe how to provoke a job that records all announced voice programs.

6) Amplify level: Describe how to amplify the weak voice for the recorder.

7) Convert file type: Describe how to convert the audio file from raw PCM to WAVE.

8) Save data: Describe how to save the data to the external hard disk including time error and

announced voice programs.

B. Scenarios

This describes the interaction between the external event and the TSMS_A1 system. Here, two main parts

are described. Figure 5 shows the scenarios for the Measure Time Error user case. In 10 second intervals,

the event triggers the Noise Masker to mask the announced voice program from the 1
st
 to 9

th
second except

for the 10
th
 second, an on-time tone. The only on-time tone flows to the Interrupt Pulse Generator

producing a sharp pulse which starts the interrupt action of the controller to execute a service subroutine. In

this time, the subroutine plays the role of calculating the time error and then saves these data to an external

hard disk. Then, the system waits for the next event spaced 10 seconds again.

loop

Figure 5. The interactive behaviors of the Measure Time Error user case.

Figure 6 shows the scenarios for the Record Announced Voice Program use case. Interactions between the

external event and the record system are described. First, the Amplifier magnifies the event level to feed

the soundcard which is plugged into the controller‟s slot. Then, the Controller converts the audio file type

from PCM into WAVE format. After the file type converted completely, it should save the audio file into

an external hard disk. Then, the system waits for the next event again.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

261

loop

Figure 6. The interactive behaviors of the Record Announced Voice Program user case.

III. HARDWARE DESIGN

In Figure 7, the whole hardware structure is shown including a capture and amplifier circuit added to the

TSMS‟ controller. First, the input announced voice striking an audio transformer (ST-71) induces two

current paths. One flows into the on-time tone measuring leg and the other flows into the announced voice

recording leg. In the measuring leg, an operational amplifier (OP) is used to construct a SCHMITT trigger

circuit, which shapes the input announced voice to produce a bipolar pulse in 10 second intervals when the

input signal level reaches the threshold in advance setting. At this OP (1/2 TL082) output, the bipolar pulse

is rectified into a unipolar pulse by a diode (IN4148). Then, the pulse flows into an interrupt port (labeled

INT5) of the controller. The controller starts to execute a service subroutine for calculating time error of

the on-time tone comparing with the standard time. In the recording leg, the input voice level is increased

by the other OP of the TL082 IC. Then, the magnified voice flows into the audio input port CD-IN which

is one of the sound card audio inputs. At the same time, the controller executes an application program to

record and store the audio file onto a hard disk every 10 seconds.

national
standard
time

-5v

½ TL082

+

-

+5v

50K

15K

51K

ST-71

10K

68K 2.2K

IN4148

phone

line

-

+

½ TL082

8

4

2

3

6

5

1

7

Linux

App.

kernel

IPC

INT5

CD-IN

announce
voice

R1

R2

Vth

Vo

Figure 7. The hardware structure and the circuit of the TSMS_A1.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

262

IV. S OFTWARE DESIGN

In the scheme of software design of the TSMS_A1, two software programs including a kernel driver and

an application program are designed under Linux operating system in C language. It is shown by three

thick line blocks in Figure 8. An application program is mainly concerned with processing including the

time error calculating, the audio file recording and its data format converting from the raw PCM to WAVE.

In kernel space a driver, including Get/Set time functions for an IRIG-B time card and Enable/Disable

interrupt functions for the controller, was designed. Generally, I/O hardware devices can only be accessed

through kernel programs called device drivers. Direct access to the devices is not permitted by the

operating system, so an application program has to go through device drivers to gain access [3][4].

User space

Kernel space

Hardware

1. Calculate time error

2. Record and convert

an audio file

IR
IG

-B
 tim

e card

(R
eference)

C
apture voice card

Sound card

Sound card
driver

Application Program:

IR
IG

-B
 tim

e card

(under-test signal)

Driver:

1. Get time

2. Set time

3. Enable/disable

interrupt

Figure 8. Three main design blocks of the TSMS_A1 on the Linux operating system.

A. Kernel driver

Figure 9 shows the state chart consisting of 7 states to model the behavior of the kernel driver in response

to the application program (APP) or the external event. It includes a time process function and an interrupt

service routine to measure the time error of the on-time tone. When the power turns on, it causes a

transition to the Initial state. Subsequent is the ready event, which transitions from the Initial state to the

Waiting for APP control code state. During this state, the driver is waiting for APP to input the control

code. When the control code enter event occurs, the driver transitions to the Validating control code state.

In this state, the driver determines whether the control code matches the stored control code. If the control

code does not match, the invalid control code is taken back to the Waiting for APP control code state. If

the control codes match, there are two possible state transitions out of the Validating control code state.

One is the valid APP timestamp at the 9
th
 second control code which transitions to the Enable interrupt

state. From this state, the external on-time pulse event causes a transition to the Disable interrupt state. The

measure event is depicted after the Disable interrupt state, which causes a transition to the Get reference

time data state. The other event is the valid APP timestamp at 1
st
 second control code, which will transition

to the Write data to APP state. At the next event, it will transition back to the Waiting for APP control code

state.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

263

Waiting for APP control code

Get referece time data Disable interrupt

Enable interrupt

on-time
pulse input

(0.1pps)

power on

Validating control code

Write data to APP

control code
enter

APP
timestamp
at 1st sec

Initial

ready

invalid control
code

APP
timestamp
at 9 th sec

measure

next

Figure 9. The state chart of the kernel driver.

Initial

IRIG-B card (Ref)

pid=fork()

y

n

pid=0
n

y

Parent Program

Timestamp

at „1.2‟ sec

Get time

Timestamp

at „9‟ sec

y

Get time data

from driver

Timestamp

at „1‟ sec

y

Enable interrupt

to driver

n

n

1. Set mode

2. Set format

3. Set channel

4. Set sampling rate

5. Set period size

Initial sound card

Open a new file

PCM read

Reach size?

y

n

PCM to WAVE

Save to the disk

Close the file

Child Program

(Recorder)

Display status

& data

Figure 10. The flow chart of the application program.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

264

B. Application programs

Figure 10 shows the flowchart for the application program to monitor the output of the TSSC. This

flowchart with a loop is started by entering a parent process which performs a role of a status monitor, and

then creates (forks) a new child process every 10
th
 second, which performs the role of recording the

announced voice programs. In the parent process, the system current operating status and the measured

data is displayed in the screen. The decision symbol tests whether the timestamp is at the 9
th
 second. If the

answer is “Yes,” it enables an interrupt operation in the kernel driver. Next decision symbol tests whether

the timestamp is at 1
st
 second. If the answer is “Yes,” it starts to get time data from the kernel driver and

then stores these data to a disk. In the child process, a recording program first initializes a sound card

including mode, format, channel, sampling rate, and period size to perform a role of an audio recorder.

Then, it opens a file and reads audio raw data in PCM format. Next, the decision symbol tests whether the

data size has been reached in full. If the answer is “Yes,” it converts the audio file from PCM into WAVE

and then stores the file to a disk. Finally, it closes the file and ends the child program.

C. Audio file convertion

To develop the announced voice recorder, an off-the-shelf sound card with kernel driver plugging into the

controller‟s slot is used and a linked Advanced Linux Sound Architecture (ALSA) library implements

required functions. ALSA consists of an application programming interface (API) library, a kernel driver

and utility programs for sound operations under the Linux operating system. PCM is a digital audio

processing technique with samples generated in continuous time periods. To write a PCM application for

ALSA, first it needs a handler for the PCM device and then some information about the configuration like

buffer size, sample rate and the PCM data format. In this development system, it first stores the audio file

to an external storage device and then converts its raw PCM file to a WAVE file. A WAVE format is a

subset of Resource Interchange File Format (RIFF), which can include many different kinds of data. It was

intended for multimedia files originally, but the contents are open enough to enable more things to be

placed. A RIFF file starts out with a file header followed by a sequence of data chunks. The structure of a

RIFF file looks like follows [5]:

 Offset Description

 00 'R', 'I', 'F', 'F'

 04 Length of the entire file (32-bit unsigned integer)

 08 form type (4 characters)

 12 first chunk type (4 characters)

 16 first chunk length (32-bit unsigned integer)

 20 first chunk's data

The WAVE file is often just a RIFF file with a single “WAVE” chunk which consists of two sub-chunks:

the format chunk which describes the sample rate, sample width, etc. and the data chunk which contains

the actual samples, i.e. the raw data of the PCM. Contents are stored in the low-high byte ordering (little-

endian) or in the high-low byte ordering (big-endian). Table 1 [6] illustrates the Canonical WAVE file

format. As an example, one of the recorded WAVE files is described in decimal numbers as shown in

Table 2 [6]. The size of a record is about 7Kbyes.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

265

Table 1. The Canonical WAVE file format.

 Field

offset
(bytes)

Field name Endian Field

size
(bytes)

Description

0 ChunkID big 4 Contains the letters “RIFF”

4 ChunkSize little 4 36+SubChunk2Size

8 Format big 4 Contains the letters “WAVE”

12 SubChunk1ID big 4 Contains the letters “fmt”

16 SubChunk1Size little 4 16 for PCM

20 AudioFormat little 2 PCM=1 (Linear quantization)

22 NumberChannels little 2 Mono=1, Stereo=2, etc.

24 SampleRate little 4 8000, 44100, etc.

28 ByteRate little 4 SampleRate x NumChannels xBitsPerSample/8

32 BlockAlign little 2 NumChannels xBitsPerSample/8

34 Bits/Sample little 2 8 bits =8, 16bits=16, etc.

36 SubChunk2ID big 4 Contains the letters “data”

40 SubChunk2Size little 4 NumSamples x NumChannels xBitsPerSample/8

44 Data little SubChunk

Size

The actual sound data

Table 2. A recorded WAVE file of the TSMS_A1 real operation.

chunk descriptor

52 49 46 46 64 19 01 00 57 41 56 45 66 6d 74 20 10 00 00 00 01 00 01 00
R I F F W A V E f m t

Chunk

Size=72036

40 1F 00 00 40 1F 00 00 01 00 08 00 64 61 74 61 40 19 01 00 80 80 80 80

Sample

Rate=8000

SubChunk1

Size=16

Audio

Format=1

Number

Channel=1

format subchunk

Byte

Rate=8000

d a t a

data subchunk

SubChunk2

Size=72000

Block

Align=1

Bits per

Sample=8 Sample1

Sample4

80 80 7F 80 7F 80 80 80 80 80 7F 7F

Sample2 Sample3 Sample5

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

266

V. EXPERIMENTAL RESULTS

To get optimum performance for the TSMS_A1, choosing a suitable threshold voltage in the capture

circuit is very important because it would affect measuring results. First of all, it is necessary to examine

the vibration characteristics of the original interrupt-processing of the controller, bypassing the capture

circuit and directly connecting 1PPS (a standard time) into the interrupt port of the controller. Then,

executing an interrupt service routine calculates the time error. Figure 11 shows the histogram of

estimated. Its standard deviation is equal to 1.3μs and the mean approaches zero. Therefore, the effects of

the latency may be neglected in terms of the sub millisecond grade in following tests.

0

50

100

150

200

250

-4 -3 -2 -1 0 1 2 3 4 other

FR
EQ

U
EN

C
Y

TIME ERROR(μSEC)

Original Interrupt Latency

N=500

Mean=0.4μs

Std.

Dev=1.3μs

Max=11μs

Min=-15μs

Figure 11. The time error of an original interrupt test.

For the capture circuit in Figure 7, the input signal level in voltage is between -0.6V and +0.6V from the

dedicated phone line. Three representative examples of the threshold level are described respectively in

Figure 12. It was calculated according to following formula:

21

2

RR

R
VV oth




 Where Vth: threshold voltage

 Vo: output voltage

1) Low level:
Vth is set at 0V, adjusting R2 to zero Ω. Its x-y plot is shown in Figure 12 labeled “Low.” From this plot,

some spikes are burst up by noise due to the lower threshold. The standard deviation is equal to 100μs and

the mean approaches 1.4ms.

2) Middle level:
Vth is set at +0.16V adjusting R2 to 220 Ω. Its x-y plot is shown in Figure 12 labeled “Middle.” The

standard deviation is equal to 48μs and the mean is equal to 2.6ms. There is not any spike in this line.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

267

3) High level:
Vth is set at +0.34V, adjusting R2 to 470 Ω. Its x-y plot is shown in Figure 12 labeled “High.” From this

plot, it has two boundaries, high within 3.75ms and low within 2.50ms. It means that sometime, the first

cycle of the input signal level cannot reach the threshold, but the second cycle may reach it. This

ambiguous interval is just in 1.25ms (800Hz) shown in Figure 12.

1.25ms

spike spike spike

Figure 12. Noise immunity using three difference threshold levels.

0

50

100

150

200

2450 2490 2530 2570 2610 2650 2690 other

FR
EQ

U
EN

C
Y

TIME ERROR(μSEC)

Middle Threshold Level
N=500

Mean=2572μs

Std.

Dev=48μs

Max=2676μs

Min=2460μs

Figure 13. Histogram of the optimum one threshold chosen.

44
th
 Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting

268

VI. CONCLUSION

In this research, a sub-system was developed aimed at the output monitoring of the speaking clock. Using

an on-time tone capture circuit and a PC-based interrupt faculty operated under controlled conditions, the

time error was effectively measured. Three curves in Figure 12 show obvious difference of the mean

because of the vary threshold chosen. Also spikes, ambiguous points are appearance in the low and high

threshold settled. These results indicate that the optimum threshold for the TSMS_A1 design is the

“middle” level to achieve the maximum efficiency. The histogram of the middle threshold is shown in

Figure 13. This present a path delay of 2.57ms, a standard deviation is less than 50μs. The time comparison

error is within ±100μs after the path delay (mean) has been removed. It is allowing a sufficiently accuracy

for the speaking clock monitoring. At the same time, whole announced voice program was recorded and

stored into an external storage in WAVE format. It can be traceable in after days when an error broken.

From this research, we could indeed help the operator of the speaking clock service to make informed

device-replacing decisions. We also recommend that these experiments could be useful in measuring the

accuracy of time facilities in the sub-millisecond range.

REFERENCES

[1] C. C. Lin, P. C. Chang, J. L. Wang, and S. Y. Lin, “Design and Implementation of a Time Source

Selecting and Monitoring System for the Telephone Speaking Clock,” Proc. of 41st PTTI, 2009.

[2] G. Booch, R. A. Maksimchuk, M. W. Engel, B. J. Young, J. Conallen, and K. A. Houston, “Object-

Oriented Analysis and Design with Applications,” Third Edition, Addison Wesley Professional, 2007.

[3] J. Corbet, A. Bubini, and G. Kroah-Hartman, “Linux Device Drivers,” 3rd Edition, O‟Reilly Media,

Feb. 2005.

[4] Yutaka Hirata, “Linux Device Driver Programming,” Traditional Chinese edition, DrMaster Press

Co., Ltd. Mar. 2009.

[5] http://www.lightlink.com/tjweber/StripWav/WAVE.html

[6] https://ccrma.stanford.edu/courses/422/projects/WaveFormat/

