Time and Frequency Activities at the U.S. Naval Observatory **Demetrios Matsakis** Time Service Department, U.S. Naval Observatory, Washington, DC 20392, USA *Demetrios.Matsakis@usno.navy.mil** Abstract—The U.S. Naval Observatory (USNO) has provided timing for the Navy since 1830 and via DoD Directives 4650.05 and 4650.07 is the sole source of timing for the Department of Defense. In cooperation with other institutions, the USNO also provides timing for the United States and the international community. Its Master Clock (MC) is the source of UTC (USNO), USNO's realization of Coordinated Universal Time (UTC), which has stayed within 5 ns rms of UTC since 1999 and within 2 ns rms in 2012. The data used to generate UTC (USNO) are based upon 87 cesium, 38 hydrogen maser, and 4 rubidium fountain frequency standards in several buildings at two sites. USNO disseminates time via voice, telephone modem, Network Time Protocol (NTP), GPS, and Two-Way Satellite Time Transfer (TWSTT). This paper describes some of the changes being made to meet the future needs for precision, accuracy, and robustness. Further details and explanations of our services can be found online at http://www.usno.navy.mil/USNO/time. ## I. TIME GENERATION The most important part of USNO's Time Service Department is its staff, which currently consists of 33 positions. Of these, the largest group, about 40% of the staff, is directly involved in time transfer. The rest are fairly evenly divided between those who service the clocks, those who monitor them, and those developing new ones. The core stability of USNO time is based upon the clock ensemble. The clocks used for the USNO timescale are kept in environments whose temperatures are kept constant to within 0.1 deg C and whose relative humidities (for all fountains and masers, and most cesiums) are kept constant to within 1%. A large number of our Washington clocks are now maintained in our new clock building, and most of our chambers that house the remaining clocks are now upgraded to designs that should have a lower failure rate and require reduced maintenance. The timescale is based only upon the clocks located in Washington, D.C., and this number has been gradually decreasing for various reasons. On 17 November 2012, 41 of those standards were weighted in the operational timescale computations; this includes four rubidium atomic fountains [1], which are now currently weighted as if they were simple cesium beam clocks while also being used to predict UTC. The atomic fountain performance has been excellent (Figure 1), although one unit underwent a frequency variation of ~10⁻¹⁵ before upgrading, and another had a similar variation as a result of an upgrade. The data from the four USNO rubidium fountains have been contributed to the BIPM since December 1, 2011 and the clocks have now attained the maximum weight allowed by the TAI algorithm. Figure 1. Allan Deviation from N-cornered hat analysis of three USNO rubidium fountains, March 2011-October 2012, from [1]. The fourth fountain's pre-upgrade frequency variations preclude its inclusion here, but it currently shows a similar stability. The operational measurement system is based upon switches and counters that compare each clock against each of three master clocks once per hour and store the data on multiple computers, each of which generates a timescale and is capable of controlling the master clocks. Where possible, all connectors are screw-on (SMA). The clock measurement noise is about 25 picoseconds (ps) rms, which is less than the variation of a cesium clock over an hour. Because the maser clocks only vary by about 5 ps over an hour, we also measure them using a system to generate comparisons every 20 seconds, with a measurement noise of 2 ps. For robustness, duplicate low-noise systems measure each maser, with different master clocks as references. All clock data and time transfer data are gathered by redundant parallel computer systems that are protected by a firewall and backed up nightly on magnetic tape. Before averaging data to form a timescale, real-time and postprocessed clock editing is accomplished by analyzing deviations in terms of frequency and time; all the clocks are detrended against the average of the best detrended cesiums [2]. A maser average represents the most precise average in the short term, and the detrending ensures that it is equivalent to the cesium average over periods exceeding a few months. A.1 is USNO's operational timescale; it is dynamic in the sense that it weights recent maser and cesium data by their inverse Allan variance at an averaging time (tau) equal to the age of the data. Plottable files of both A.1 and the maser mean are available through https://tycho.usno.navy.mil. UTC (USNO) is created by frequency-steering the A.1 timescale to UTC. The past steering strategy called "gentle steering" [3-5], that minimizes the control effort used to achieve the desired goal, has been slightly modified to use the atomic fountains as predictors of TAI. To realize UTC (USNO) physically, we use the one pulse per second (1-PPS) output of a frequency divider fed by a 5 MHz signal from an Auxiliary Output Generator (AOG). The AOG creates its output from the signal of a cavity-tuned maser steered to a timescale that is itself steered to UTC [3-6]. The MC has a backup maser and an AOG in the same environmental chamber. On 29 October 2004, we changed the steering method so that state estimation and steering are achieved hourly with a Kalman filter with a gain function as described in [7]. A second master clock (mc), duplicating the MC, is located in an adjacent chamber. In a different building, we have the same arrangement for a third mc, which is steered to the MC. Its backup AOG is steered to a mean timescale, based only on clocks in that building, which is itself steered to the MC. An important part of operations is the USNO Alternate Master Clock (AMC), located at Schriever AFB in Colorado, adjacent to the GPS Master Control Station. The AMC's mc is kept in close communication with the MC through use of Two-Way Satellite Time Transfer (TWSTT) and modern steering theory [8]. The difference is often less than 1 nanosecond (ns) as measured. We have not yet integrated the four masers and 12 cesiums at the AMC into USNO's Washington, D.C. timescale, but it remains a possibility that carrier-phase TWSTT or GPS techniques can be made reliable and accurate enough to attempt this. The operational unsteered timescale (A.1) is based upon averaging only the currently better clocks, which are about 60% of the total and first detrended using past performance. As a result of a study conducted in 2000 [9], we have widened the definition of a "good clock" and are recharacterizing the clocks less frequently, and new methods of clock characterization are under development [10]. We are also continuing to work on developing algorithms to combine optimally the short-term precision of the masers with the longer-term precision of the cesiums and the accuracy of International Atomic Time (TAI) itself, which is frequency-calibrated using the primary (fully calibrated) frequency standards operated by other institutions. It is planned to implement an algorithm that steers the MC hourly and tightly to a timescale based only upon masers, which are individually steered either to the atomic fountain ensemble or a cesium-only timescale, that itself is steered to UTC using the information in the Circular T [7, 11, 12]. ## II. STABILITY OF UTC(USNO) Figures 2 and 3 show how UTC (USNO) has compared to UTC and also how its fractional frequency has compared to the unsteered maser mean, relative to an overall constant offset. Figure 2. Interplay between time and fractional frequency stability of the USNO Master Clock; frequency from February, 1997 to the present. The markers indicate times of events described in the text. Figure 3. Interplay between time and fractional frequency stability of the USNO Master Clock, time from UTC from February, 1997 to the present. The markers indicate times of events described in the text. Figure 3 is UTC – UTC (USNO) from the International Bureau of Weights and Measure's (BIPM's) Circular T. Figure 3 shows the fractional frequency difference of the Master Clock against the maser mean, derived by subtracting an arbitrary constant (for plot display) from the difference between the Master Clock and mean frequencies, measured in Hz and divided by the 5 MHz frequency of the signal-realization. The rising curve previous to MJD 51000 is due to the graduated introduction of the 1.7 × 10⁻¹⁴ blackbody correction to the primary frequency measurements. The steering time constant for the time deviations between the Master Clock and the mean was halved to 25 days on MJD 51050. Beginning about 51900, the mean has usually been steered so as to remove only half the predicted difference with UTC each month. Less aggressive clock characterization was implemented at around 52275. Hourly steers were implemented on 53307, and the USNO's rubidium fountains were first reported to the BIPM on 55896. Vertical lines indicate the times of these changes. Most of our users need and desire access to only UTC (USNO), which is accessible via GPS and other time transfer modes. Other users are interested in UTC, and for those we make predictions of UTC – UTC (USNO) available on the Web pages. The Web pages also provide the information needed for users who are interested in using the MC to measure absolute frequency. For those users interested mostly in frequency stability, we have made available the difference between the MC and the maser mean using anonymous ftp. While the long-term stability of the Master Clock is set by steering to UTC, the exceptional stability of USNO's unsteered mean can also be used to attempt to diagnose issues involving the long-term stability of UTC itself. The dense purple line in Figure 4 shows the fractional frequency difference between our unsteered cesium average and EAL, Echelle Atomique Libre, which is the unsteered timescale generated by BIPM that is steered to primary frequency standards so as to create UTC. The other curves show the frequency difference between the USNO cesium average and every atomic fountain reporting to the BIPM (including the USNO's). The frequency drift of the cesium average is obvious, and it is interesting to note that EAL's frequency did not drift relative to the cesium average until the EAL algorithm was changed to make it follow the primary standards [13]. Figure 4. Fractional frequency of unsteered average of USNO's Washington DC cesiums against that of EAL (blue curve) and against atomic fountains reporting to the BIPM, including the USNO's. Beginning MJD 55574, the BIPM altered its algorithm for EAL so as to better follow the primary frequency standards and this is evident in the behavior of EAL. # III. TIME TRANSFER A. Time Transfer at precisions coarser than 100 nanoseconds Table 1 shows how many times USNO was queried by various time-transfer systems in the past year. | Talanhana Voice Announcer | 2 000 000 | |-----------------------------|-------------| | Telephone Voice-Announcer | 3,000,000 | | Leitch Clock System | 62,000 | | Telephone Modem | 65,000 | | Web Server | 600 million | | Network Time Protocol (NTP) | 300 billion | Table 1. Yearly access rate of low-precision time distribution services. Our lowest precision service is our telephone voice announcer (202-762-1401). The voice is that of Fred Covington, a well-known actor whose history is given in http://www.imdb.com. The bias of the system was measured to be < 100 ms at the source, but this was degraded to 500 ms when sampled with a cell phone. Until the summer of 2012, the call volume decreased by almost 50% on the weekends and holidays (Figure 5). It decreases still more on holidays such as December 25 and July 4. The abrupt peaks typically, but not always, coincide with the days of switches to and from Standard Time. The long-term trends may be indicators of human behavior, or to variations in telephone connectivity. The several-month long maximum beginning MJD 55700 coincides with the local telephone company's termination of its time service. Figure 5. Daily number of telephone calls to USNO's DC and AMC Voice Announcers. The gap in the plot was due to an information assurance upgrade blocking electronic reporting of call volume, and not associated with any service failures. Figure 6. NTP Traffic at USNO's Public-Facing Servers. The recent increase shows a traffic approaching a billion a day. The largest service is the Internet service Network Time Protocol (NTP). Until 2005, the number of individual requests doubled every year since the program was initiated. The billions of requests correspond to at least several million users. Unfortunately, in late 2004 the NTP load reached 5000 queries per second at the Washington, DC site, which saturated the Internet connections [14]. Due to this saturation, perhaps a third of the NTP requests sent to the Washington site were not responded to. In August 2005, the Defense Information Services Agency (DISA) provided higher-bandwidth Internet access and the measured query rate increased to a plateau of over 5000 packet requests/second. An increase to almost 6000 requests/second was observed when a fourth server was added behind the load balancer, and beginning mid-2012 it slowly went up to 10,000 per second (Figure 6). The access rate is much higher at the start of each hour. The large spikes in Figure 6 are probably due to Distributed Denial of Service Attacks. A way has been found to protect our service from this vulnerability. Another form of vulnerability would be spoofing. There are many ways to protect against such attacks, and the USNO publicly recommends the use of multiple servers complemented by authentication if available. To meet DoD needs, the USNO has initiated an authentication service on the NIPRnet, and plans to extend this to other DoD networks in the near future. NTP can achieve submillisecond precision over very short distances. USNO monitors the time-transfer performance of its NIPRnet NTP sites from Washington and the AMC. Because there is a block on NTP packets leaving the NIPRnet, USNO monitors its internet sites from an external location that is not on the NIPRnet. Figure 7 shows the USNO-AMC timing difference measured two different ways. To generate the figure, NTP timing data whose round-trip time deviated by 10% from the average were excluded; however on a daily scale this editing would only be noticeable if all data were excluded. USNO has begun experimenting with and implementing a more precise form of network time transfer is known as Precise Time Protocol, PTP, which uses the IEEE-1588 format [15]. Figure 7. Time differences measured via NTP between USNO's Washington, DC and the AMC server tock, edited to remove large round-trip times, and measured from the USNO and from an Internet site that is also in Washington, DC. Since the AMC site is timed to UTC(USNO) via TWSTT, ideal systems would produce zero offsets. The internet data are noisier and biased compared to the NIPRnet data, however different internet providers or configurations could show different results. The reduced noise in NIPRNet performance after 56141 is coincident with an upgrade of USNO's primary outfacing router. Biases are largely determined by internet/NIPRnet asymmetries, however a 2 msec bias reduction was coincident with a server upgrade on 56092, and a residual 1-millisecond bias disappeared with the router upgrade. Ever since the early 20th-century pioneering efforts of Henry Warren, America's electric power lines have been kept on time (GMT and later UTC). Although USNO is not directly involved, we reported in 2011 that the National Electric Reliability Corporation (NERC) was considering eliminating the process of timing the 60 Hz line signals to UTC (http://www.nerc.com/page.php?cid=6/386). The frequency would instead always be kept as closely to 60 Hz as possible. This would introduce a random walk accumulating to about 20 minutes a year on the East Coast. In October 2012 the NERC announced that it would abandon this plan. For future reference, USNO will continue to monitor 60 Hz time and frequency as seen in Washington, DC. B. Two-Way Satellite Time Transfer (TWSTT), also referred to as Two-Way Satellite Time and Frequency Transfer (TWSTFT) The most accurate means of operational long-distance time transfer is generally believed to be TWSTT [24-27], although the most precise, on subdaily scales, is via GPS carrier phase, which for TAI-generation is computed using Precise Point Positioning (PPP). We routinely calibrate and recalibrate the TWSTT at 20 sites each year. For TAI generation, we have maintained the calibration of the transatlantic link with the Physikalisch-Technische Bundesanstalt (PTB) [28] via Ku-band TWSTT observations. For improved robustness, we have begun constructing loop-back setups at USNO, moved electronics indoors where possible, and developed temperature-stabilizing equipment to test on some of the outdoor electronics packages. This year our modifications have reduced the diurnal signature in their data by a factor of two at some sites. For improved precision, we have made some efforts to develop carrier-phase TWSTT [29], although it appears the most promising technology would include a frequency standard in the satellite [30]. ## C. Time Transfer via GPS GPS is an extremely important vehicle for distributing UTC (USNO). Since 9 July 2002, the official GPS Precise Positioning Service (PPS) monitor data have been taken with the TTR-12 GPS receivers, which are all-in-view and dual-frequency [16], including SAASM-enabled variants. The standard setup includes temperature-stable cables and flat-passband, low-temperature-sensitivity antennas. Our single-frequency Standard Positioning Service (SPS) receiver was switched to an Ashtech Z12T in January 2012, and then to modern geodetic receiver (NovAtel) on September 1, 2012. Two additional geodetic units from a different manufacturer (Septentrio) have been set up to monitor the calibration consistency. Operational antennas are installed on a 4-meter-tall structure built to reduce multipath by locating GPS antennas higher than the existing structures on the roof, and a second structure has been built. Figure 8. Recent daily averages of UTC(USNO)-GPS, modulo 1 second. GPS timing is maintained through a daily upload of GPS data to the Second Space Operations Squadron (2SOPS), where the Master Control Station uses the information to steer GPS Time to UTC (USNO) and to predict the difference between GPS Time and UTC (USNO) in subframe 4, page 18 of the broadcast navigation message. GPS Time itself was designed for use in navigational solutions and is not adjusted for leap seconds. As shown in Figures 8 and 9, users can achieve tighter access to UTC (USNO) by applying these broadcast corrections. For subdaily measurements, it is a good idea, if possible, to examine the age of each satellite's data so that the most recent correction can be applied. The continuous real-time sampling by highly precise systems was increased in 2006, when USNO's Washington facility became a full-fledged GPS monitor site, in cooperation with the National Geospatial-Intelligence Agency (NGA). Still other improvements occurred in November 1, 2010, when the USNO began applying corrections for the Estimated Range Deviations (ERD) to its monitor data, and on January 12, 2011 when the GPS bang-bang algorithm was modified by lowering its acceleration steps to 5×10^{-20} . The NGA is installing improved GPS receivers, which would make possible an alternate means of providing time directly to GPS, both at the Washington site and at the AMC. Although the architecture of GPS III has not yet been finalized, it is likely that closer and more frequent ties between GPS Time and UTC (USNO) will be established. Figure 9. Recent daily averages of UTC(USNO) minus GPS's delivered prediction of the same. Figures 10 and 11 show the rms time and frequency stability of GPS Time and that of GPS's delivered prediction of UTC (USNO) as a function of averaging period. Note that the rms corresponds to the "Type A" (random) component of a user's achievable uncertainty. Figure 10. The precision of GPS Time and of GPS's delivered prediction of UTC(USNO), using TTR-12 data since March 30, 2011, measured by the attainable external precision (rms, mean not removed) as a function of averaging time, and referenced to UTC(USNO). Improved performance in accessing UTC(USNO) could be realized if only the most recently updated navigation messages are used. The accuracy attainable over a given averaging time also depends upon the calibration of the user's receivers. Although not directly required by frequency transfer users, all users ultimately benefit because repeated calibrations are the best way to verify long-term precision. For this reason, we are working with the U.S. Naval Research Laboratory (NRL), BIPM, and others to establish absolute calibration of GPS receivers [17, 18]. Recent work suggests that 1-sigma errors at the L1 and L2 frequencies can be as low as 0.64 ns at the receiver, and 1 ns overall [19]. Since this error is largely uncorrelated between the two GPS frequencies, the error in ionosphere-corrected data becomes a factor of almost three larger. Experimental verification by side-by-side comparison contributes an additional √2, pushing the formal error of a link calibration above 5 ns if undertaken by absolute calibration. For comparison, relative calibration by means of traveling GPS receivers can provide an estimated overall time transfer accuracy of 0.64 ns [20]. We strongly support BIPM's relative calibration efforts for geodetic GPS receivers, and in particular are looking forward to comparisons with the TWSTT calibrations. In 2003, the Wide-Area Augmentation System (WAAS) became operational. USNO has been collecting data on WAAS network time (WNT). Daily averages generated by averaging WNT with WAAS-corrected time from GPS satellites are very similar to WNT-only averages. WNT obtained by narrow-beam antenna may be the optimal solution for a non-navigational user for whom interference is a problem or jamming may be a threat. Figure 11. RMS fractional frequency external precision and the fractional frequency stability, as measured by the Allan deviation, of GPS Time and for GPS's delivered prediction of UTC (USNO), using TTR-12 data as with the previous figure. USNO has been participating in discussions involving the interoperability of GPS, Galileo, QZSS (Quasi-Zenith Satellite System), and GLONASS. In December 2006, a Galileo monitor station was installed, and USNO has developed the ability to monitor the GPS/GNSS timing offset (GGTO) [21] in parallel and in concert with the Galileo Precise Timing Facilities (PTF). The GGTO will be measured by direct comparison of the received satellite timing, and by the use of TWSTT to measure the 1-pps offset between the time signals at USNO and PTF. The GGTO will eventually be broadcast by both GPS and Galileo, for use in generating combined position and timing solutions. To exchange similar information with the QZSS system, a TWSTT station became functional in Hawaii in July 2010, as a relay point for daily TWSTT with the National Institute of Information and Communications Technology (NICT) in Japan. Since NICT and USNO do TWSTT with the PTB, from opposite sides of the Earth, this has enabled us to transfer frequency completely around the northern hemisphere. With the use of multiple GNSS systems, problems involving receiver and satellite biases will become more significant. These have been shown to be related to the complex pattern of delay variations across the filtered passband, and correlator spacing. In principle, every satellite would have a different bias for every receiver/satellite combination [22, 23]. USNO has analyzed how calibration errors associated with the Timing Group Delay (TGD) bias measurements of GPS as applied to the Observatory of Paris (OP)'s data could have been the cause of the noticeable offset in GPS Time vs. UTC, as measured in BIPM's Circular T (Figure 12). In the last year this bias has decreased. On the basis of Figures 13 and 14, we believe that the initial bias decrease was due to variations in the now-replaced Ashtech Z12T receiver identified by the IGS as USN3, while the later decrease is due to calibration variations of the Ashtech Z12T maintained by the BIPM. Figure 12. UTC – UTC(USNO) 5-day points as reported in the Circular T section 1, and UTC – UTC(USNO) via GPS, reported in Section 5 of the Circular T as smooth 1-day points. U TC (USNO) – GPS can be obtained from the satellite broadcasts, and the BIPM uses that reported by the Observatory of Paris (OP), transferred to the BIPM via TWSTFT. This is compared to USNO data transferred to the BIPM using geodetic carrier phase data from unclassified receivers not used by the USNO for official GPS monitoring. Figure 13. Variations of older-model GPS receiver as measured against two modern units in common clock mode. Data after this are not shown because the USNO then-secondary receiver delays were being adjusted; however the inferred calibration variations of USN3 remained $<\sim 0.5$ ns. Figure 14. Variation of the PTB's Ashtech Z12 (PTBB) as measured against two modern units in common clock mode. The Time Service Department of USNO has also actively pursued development of GPS carrier-phase time transfer, in cooperation with the International GPS Service (IGS). With assistance from the Jet Propulsion Laboratory (JPL), USNO developed continuous filtering of timing data and showed that it can be used to greatly reduce the day-boundary discontinuities in independent daily solutions without introducing long-term systematic variations [26]. Working with the manufacturer, USNO has helped to develop a modification for the TurboRogue/Benchmark receivers, which preserve timing information through receiver resets. Using IGS data, USNO has developed a timescale that is now an IGS product [31]. USNO is currently contributing to real-time carrier-phase systems run by JPL/NASA [32] and the Canadian real-time NRCan networks [33]. While the promise of Carrier Phase GNSS for time transfer is on its way to fulfillment, the greatest impediments to subnanosecond operations are probably bias corrections as in [23] and in receiver calibration instabilities. The receivers used at USNO and elsewhere have exhibited both sudden and gradual variations at the 1 ns level as shown in this work and in [34, 35]. All of these receivers were designed in the 20th century and, therefore, USNO has implemented modern components [36, 37]. By working with manufacturers, it is possible that still more stable equipment can be developed. While several algorithms are insensitive to short-term variations of the receiver's pseudo-range calibration [24, 38-40], only human intervention in the form of calibration monitoring and recalibration can correctly account for non-transient receiver variations. Despite receiver variations, it has been shown that carrier-phase GPS analysis can be improved by appropriate algorithmic innovations. Frequency transfer has been shown to be achievable at a few parts in 10⁻¹⁶ if one removes the discontinuities at day boundaries, which are largely due to instabilities in the pseudorange reception [26]. Simulations have shown that, in the absence of receiver calibration variations, frequency errors due to misestimating of satellite orbits, Earth orientation, receiver position, and other effects can be reduced still further if sufficient signal to noise exists to enable double-difference ambiguity resolution [39]. Given these theoretical advances, we suspect that UTC's stability would be improved on all but the longest scales if BIPM had available data from timing laboratories that were extracted from several improved receivers, which are observing all available frequencies, in thermally, humidity, and multipath-optimized environments. # D. The Importance of Continuous Calibration USNO experience is that TWSTT calibrations frequently, but not always, have the subnanosecond repeatability [41], although as noted in [42], some TWSTT systems have displayed many-nanosecond variations over 100-day periods, which could or could not be due to components supplying the reference signal to the hardware. As noted in this work and elsewhere, many things can be done and are being done to improve the robustness, for example by reducing environmental sensitivity. However, many real-time applications cannot afford the risk of equipment failure. Therefore, USNO now has been implementing redundant time transfer systems wherever possible. For reporting data to the BIPM, USNO now has three modern carrier-phase GNSS receivers recording data in parallel, as well as other units that can serve as tie-breakers if necessary. This is consistent with the opinion of this author that multiple independent redundant time transfer systems that are frequently calibrated remain the best way to ensure performance, although TWSTT remains unrivalled for many real-time applications that require simple instantaneous results independent of GPS. ## IV. MEASURES TO SECURE THE ROBUSTNESS OF THE MASTER CLOCK The most common source of non-robustness is the occasional failure of the environmental chambers. In order to minimize such variations, and to house the fountain clocks, we have constructed a special clock building [43]. The building has redundant environmental controls designed to keep the entire building constant to within 0.1 deg C and 3% relative humidity even when an HVAC unit is taken offline for maintenance. The clocks themselves are kept on vibration-isolated piers. Standardized instrument racks will facilitate rapid and accurate repairs. The temperature and humidity specifications appear to be realizable, although the need for relatively minor design modifications continues to be realized and implemented. The building has been put into operational use, and measures have been taken to mitigate the fact that no system is perfect in terms of technology or security. The clocks in all Washington, DC buildings are protected by an electrical power system whose design includes multiple parallel and independent pathways, each of which is capable of supplying the full electrical power needs of the Master Clock. The components of each pathway are automatically interchangeable, and the entire system is supplemented by local batteries that can sustain performance long enough for staff to arrive and complete most possible repairs. Although we have never experienced a complete failure of this system, most of the components have failed at least once. To protect against aging effects, we have recently replaced most of our components, many of which had been in use for decades. Our ability to maintain continuous operations while bringing about quick replacement of the failed components, and periodic testing, give some confidence in the robustness of the system. The common design in all the operations and improvements is reliance upon multiple parallel redundant systems continuously operated and monitored. Such a scheme can be no more reliable than the monitoring process. For this reason, we have also created a system wherein we will have fully real-time interchangeable and geographically redundant computer systems. In addition, we do a daily tape backup of all data, and maintain a restrictive firewall policy. Information about failures can reach key staff via telephone, emails, pagers, and texting. Additional measures for robustness, beyond the scope of this paper, have also been taken. ## V. DISCLAIMER Although some manufacturers are identified for the purpose of scientific clarity, USNO does not endorse any commercial product, nor does USNO permit any use of this document for marketing or advertising. We further caution the reader that the equipment quality described here may not be characteristic of similar equipment maintained at other laboratories, nor of equipment currently marketed by any commercial vendor. #### ACKNOWLEDGMENTS I thank the staff of USNO's Time Service Department for their skill and dedication in maintaining, operating, and improving the USNO Master Clock. ## REFERENCES - [1] S. Peil, J. Hanssen, T. Swanson, and C. Ekstrom, 2013, "An Ensemble of Atomic Fountains," in Proceedings of the 44th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2012, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.). - [2] L. A. Breakiron, 1992, "Timescale Algorithms Combining Cesium Clocks and Hydrogen Masers," in Proceedings of the 23rd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, 3-5 December 1991, Pasadena, California, USA (NASA CP-3159), pp. 297-305. - [3] D. N. Matsakis, M. Miranian, and P. A. Koppang, 2000, "Alternative Strategies for Steering the U.S. Naval Observatory (USNO) Master Clock," in Proceedings of the ION 56th Annual Meeting, 26-28 June 2000, San Diego, California, USA (Institute of Navigation, Alexandria, Virginia), pp. 791-795. - [4] D. N. Matsakis, M. Miranian, and P. A. Koppang, 2000, "Steering the U.S. Naval Observatory (USNO) Master Clock," in Proceedings of 1999 ION National Technical Meeting, 25-27 January 2000, San Diego, California, USA (Institute of Navigation, Alexandria, Virginia), pp. 871-879. - [5] P. A. Koppang and D. N. Matsakis, 2000, "New Steering Strategies for the USNO Master Clocks," in Proceedings of the 31st Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 1999, Dana Point, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 277-284. - [6] P. Koppang, D. Johns, and J. Skinner, 2004, "Application of Control Theory in the Formation of a Timescale," in Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2003, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 319-325. - [7] J. Skinner, D. Johns, and P. Koppang, 2005, "Robust Control of Frequency Standards in the Presence of Systematic Disturbances," in Proceedings of the 2005 Joint IEEE International Frequency Control Symposium and the 37th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 29-31 August 2005, Vancouver, British Columbia, Canada (IEEE 05CH37664C), pp. 639-641 - [8] J. G. Skinner and P. A. Koppang, 2002, "Effects of Parameter Estimation and Control Limits on Steered Frequency Standards," in Proceedings of the 33rd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2001, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 399-405. - [9] L. A. Breakiron and D. N. Matsakis, 2001 "Performance and Characterization of USNO Clocks," in Proceedings of the 32nd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 28-30 November 2000, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 269-288. - [10] J. Skinner, D. Johns, and P. Koppang, 2009, "Statistics of Modeling Errors in an Ensemble Mean," presented at the 40th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2008, Reston, Virginia, USA, but not published in the Proceedings. - [11] P. A. Koppang, J. G. Skinner, and D. Johns, 2007, "USNO Master Clock Design Enhancements," in Proceedings of the 38th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 5-7 December 2006, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 185-192. - [12] J. G. Skinner and P. A. Koppang, 2007, "Analysis of Clock Modeling Techniques for the USNO Cesium Mean," in Proceedings of the 38th Annual Precise Time and Time Interval (PTTI) - Systems and Applications Meeting, 5-7 December 2006, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 373-378 - [13] G. Panfilo and E. Arias, 2010, "Studies and Possible Improvements on the EAL Algorithm," in IEEE Trans. UFFC, 57, No. 1, January 2010, pp 154-160. - [14] R. Schmidt, 2005, "Reflections on Ten Years of Network Time Service," in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 123-137. - [15] R. Schmidt, 2011, "A Network Time Protocol Stratum-1 Server Farm Fed by IEEE-1588" Proceedings of the 42th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 16-18 November 2010, Reston, Va. - [16] M. Miranian, E. Powers, L. Schmidt, K. Senior, F. Vannicola, J. Brad, and J. White, 2001, "Evaluation and Preliminary Results of the New USNO PPS Timing Receiver," in Proceedings of the 32nd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 28-30 November 2000, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 79-90. - [17] J. White, R. Beard, G. Landis, G. Petit, G., and E. Powers, 2001, "Dual Frequency Absolute Calibration of a Geodetic GPS Receiver for Time Transfer," in Proceedings of the 15th European Frequency and Time Forum (EFTF), 6-8 March 2001, Neuchâtel, Switzerland (Swiss Foundation for Research in Microtechnology, Neuchâtel), pp. 167-172. - [18] P. Landis and J. White, 2003, "Limitations of GPS Receiver Calibration," in Proceedings of the 34th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 3-5 December 2002, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 325-332. - [19] A. Proia and G. Cibel, 2010, "Progress Report of the CNES Activities Regarding the Absolute Calibration Method", Proceedings of the 42th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 16-18 November 2010, Reston, Va. - [20] T. Feldmann, A. Bauch, D. Piester, M. Roster, E. Goldberg, S. Mitchell, and B. Fonville, 2010, "Advanced GPS Based Time Link Calibration with PTB's New GPS Calibration Setup", Proceedings of the 42th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 16-18 November 2010, Reston, Va. - [21] J. Hahn and E. Powers 2006, "Implementation of the GPS to Galileo Time Offset (GGTO)," in Proceedings of the 2005 Joint IEEE International Frequency Control Symposium and the 37th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 29-31 August 2005, Vancouver, British Columbia, Canada (IEEE 05CH37664C), pp. 33-37. - [22] C. Hegarty, E. Powers, and B. Fonville, 2005, "Accounting for the Timing Bias Between GPS, Modernized GPS, and Galileo Signals," in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 307-317. - [23] D. Matsakis, 2007, "The Timing Group Delay Correction (TGD) and GPS Timing Biases," in Proceedings of the 63rd Annual ION National Technical Meeting, 23-25 April, 2007, Cambridge, Massachusetts, USA (Institute of Navigation, Alexandria, Virginia). - [24] D. Kirchner, 1999, "Two Way Satellite Time and Frequency Transfer (TWSTFT)," Review of Radio Science (Oxford Science Publications), pp. 27-44. - [25] L. A. Breakiron, A. L. Smith, B. C. Fonville, E. Powers, and D. N. Matsakis, 2005, "The Accuracy of Two-Way Satellite Time Transfer Calibrations," in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 139-148. - [26] D. Matsakis, K. Senior, and P. Cook, 2002, "Comparison of Continuously Filtered GPS Carrier Phase Time Transfer with Independent GPS Carrier-Phase Solutions and with Two-Way Satellite Time Transfer," in Proceedings of the 33rd Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2001, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 63-87. - [27] D. Matsakis, L. Breakiron, A. Bauch, D. Piester, D., and Z. Jiang, 2009, "Two-Way Satellite Time and Frequency (TWSTFT) Transfer Calibration Constancy from Closure Sums," in Proceedings of the 40th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2008, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.), pp. 587-604. - [28] D. Piester, A. Bauch, J. Becker, T. Polewka, A. McKinley, and D. Matsakis, 2004, "Time Transfer Between USNO and PTB: Operation and Results," 2004, in Proceedings of the 35th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2003, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 93-102. - [29] B. Fonville, D. Matsakis, W. Shäfer, and A. Pawlitzki, 2005, "Development of Carrier-Phase-Based Two-Way Satellite Time and Frequency Transfer (TWSTFT)," in Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 7-9 December 2004, Washington, D.C. (U.S. Naval Observatory, Washington, D.C.), pp. 149-164. - [30] Y. Takahashi, M. Imae, T. Gotoh, F. Nakagawa, M. Fujieda, H. Kiuchi, M. Hosokawa, H. Noda, and K. Sano, 2004, "Development of Time Comparison Equipment for ETS-VII Satellite," in Proceedings of the Conference on Precision Electromagnetic Measurements, 27 June-2 July 2004, London, England, UK (IEEE), pp. 232-233. - [31] K. Senior, P. A. Koppang, D. Matsakis, and J. Ray, 2001, "Developing an IGS Time Scale," in Proceedings of the 2001 IEEE & PDA Exhibition International Frequency Control Symposium, 6-8 June 2001, Seattle, Washington, USA (IEEE Publication 01CH37218), pp. 211-218. - [32] E. Powers, K. Senior, Y. Bar-Server, W. Bertiger, R. Muellerschoen, and D. Stowers, 2003, "Real Time Ultra-Precise Time Transfer to UTC Using the NASA Differential GPS System," in Proceedings of the 16th Annual European Frequency and Time Forum (EFTF), 12-14 March 2002, St. Petersburg, Russia. - [33] F. Lahaye, P. Collins, P. Héroux, M. Daniels, and J. Popelar, 2002, "Using the Canadian Active Control System (CACS) for Real-Time Monitoring of GPS Receiver External Frequency Standards," in Proceedings of ION-GPS 2001, 11-14 September 2001, Salt Lake City, Utah, USA (Institute of Navigation, Alexandria, Virginia), pp. 2220-2228. - [34] D. Matsakis, M. Lee, R. Dach, U. Hugentobler, and Z. Jiang, 2006, "GPS Carrier Phase Analysis Noise on the USNO-PTB Baselines," in Proceedings of the 2006 IEEE International Frequency Control Symposium, 5-7 June 2006, Miami, Florida, USA (IEEE 06CH37752), pp. 631-636. - [35] Z. Jiang, D. Matsakis, S. Mitchell, L. Breakiron, A. Bauch, D. Piester, H. Maeno, and L.G. Bernier, "Long-term Instability of GPS-based Time Transfer and Proposals for Improvements," in Proceedings of the 43th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 26-29 November 2007, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.). - [36] B. Fonville, E. Powers, A. Kropp, and F. Vannicola, 2008, "Evaluation of Carrier-Phase GNSS Timing Receivers for TAI Applications," in Proceedings of the 39th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 26-29 November 2007, Long Beach, California, USA (U.S. Naval Observatory, Washington, D.C.), pp. 331-337. - [37] J. Prillaman, B. Fonville, S. Mitchell, and E. Goldberg, 2010, "Evaluation of Carrier-phase GNSS Timing Receivers for UTC/TAI Applications", Proceedings of the 42th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 16-18 November 2010, Reston, Va - [38] C. Hackman and J. Levine, 2006, "Towards Sub-10⁻¹⁶ Transcontinental GPS Carrier-Phase Frequency Transfer: a Simulation Study," in Proceedings of the 2006 IEEE International Frequency Control Symposium, 5-7 June 2006, Miami, Florida, USA (IEEE 06CH37752), pp. 779-787. - [39] R. Dach, T. Schildknecht, U. Hugentobler, L.-G. Bernier, and G. Dudle, 2006, "Continuous Geodetic Time Transfer Analysis Method," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-53, 1250-1259. - [40] C. Hackman, J. Levine, T. E. Parker, D. Piester, and J. Becker, 2006, "A Straightforward Frequency-Estimation Technique for GPS Carrier-Phase Time Transfer," IEEE Transactions on Ultrasonics, Ferroelectronics, and Frequency Control, UFFC-53, 1570-1583. - [41] D. Matsakis, 2010, "Time and Frequency Activities of the U.S. Naval Observatory," in Proceedings of the 41th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 17-19 November 2009, Albuquerque, NM - [42] V. Zhang, T.E. Parker, R. Bumgarner, J.Hirschauer, A. McKinley, S. Mitchell, E. Powers, J, Skinner, and D. Matsakis, 2013, "Recent Calibrations of UTC(NIST)-UTC(USNO)," in Proceedings of the 44th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 27-29 November 2012, Reston, Virginia, USA (U.S. Naval Observatory, Washington, D.C.). - [43] W. Walls, 2009, "The Master Clock Building and USNO Infrastructure," in Proceedings of the 40th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2-4 December 2008, Reston, Virginia (U.S. Naval Observatory, Washington, D.C.), pp. 17-28.