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Abstract 

 
The detection of jumps in a frequency record is a challenging problem by either visual or 

mathematical means.  The former takes considerable experience and judgment, and is therefore 
quite subjective, but has the advantage of providing insight into device behavior.  The latter is 
more impartial and consistent, and can be automated.  In combination, mathematical jump 
detection can be applied for automatic clock testing and monitoring.  If a jump is detected, the 
record can then be inspected visually before deciding on the action required.  This paper 
describes frequency jump detection algorithms that are included in a program for frequency 
stability analysis. 

 
 
INTRODUCTION 
 
There is a large body of technical literature on the subject of detecting discontinuities in time series (often 
referred to as regime shift or change-point analysis) [2-4].  Many such algorithms involve comparing the 
mean values of two adjacent windows that are moved through the data, while others use cumulative sum 
charts and other similar techniques.  Some of these methods require a data model whose parameters must 
be determined, while other methods are non-parametric.  They can variously detect outliers, transients, 
level shifts, and changes in variance for data having different noise characteristics and trends [5].  The 
emphasis here is on detecting jumps in reasonably white frequency residuals after outliers and 
deterministic drift have been removed from the data.  Robust and effective means exist for outlier 
removal based on the median absolute deviation (MAD); several models exist for fitting and removing 
frequency drift; and the dynamic Allan deviation (DAVAR) can be used to examine clock data for 
stability changes [6].  This paper describes several simple and intuitive techniques for detecting, 
analyzing, and displaying frequency jumps [1]. 
 
 
FREQUENCY  JUMP  DETECTION  ALGORITHMS 
 
This paper describes two methods for frequency jump detection, using either block averaging (BLKAVG) 
or sequential averaging (SEQAVG) of the frequency data.  It also covers the classic cumulative sum 
(CUMSUM) method for analyzing data for changes in mean [3]. 
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The BLKAVG algorithm is very intuitive.  It simply compares the average values within two non-
overlapping moving analysis windows, declaring a jump if their difference exceeds a certain limit that 
remains the same throughout the data set.  This detection method has been used by the author for many 
years to automatically screen clock data for frequency jumps. 
 
The SEQAVG algorithm is based on the Rodionov Sequential T-test Analysis of Regime Shifts (STARS) 
algorithm [7].  It does not use fixed analysis windows, but rather scans the data sequentially.  If a suspect 
point is found that exceeds the jump threshold, the next block of data is examined to confirm or reject the 
jump.  Instead of using a jump threshold based on the Student’s t-test [8], the SEQAVG method uses a 
fractional frequency jump limit.  
 
The CUMSUM method is well-explained by Taylor in Reference [3].  It is effective for locating and 
quantifying single jumps in otherwise well-behaved frequency data.  Interestingly, it is identical to the 
corresponding normalized (mean-removed) phase data, where a sharp slope change denotes a frequency 
jump. 
 
BLOCK  AVERAGE  ALGORITHM 
 
The Block Average (BLKAVG) frequency jump detection algorithm compares the difference between the 
average values within a pair of adjacent windows of adjustable length against a selectable jump threshold.  
That threshold can be either an absolute fractional frequency limit or a sigma-factor-based on the Allan 
deviation at an averaging factor equal to the window length over the entire data set.  The start of the data 
windows can be offset up to the amount that the data that exceeds the total span of the data windows.  The 
BLKAVG jump detection algorithm is shown in the flowchart of Figure 1. 
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Figure 1.  Block Average (BLKAVG) jump detection algorithm flowchart. 
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The visual presentation of a BLKAVG frequency jump analysis can be enhanced by plotting the average 
value of each analysis window along with the underlying frequency data. 
 
SEQUENTIAL  AVERAGE  ALGORITHM 
 
The Sequential Average (SEQAVG) method is similar, but, instead of dividing the frequency record into 
fixed blocks, it searches the data sequentially.  If a potential jump is detected, the following points are 
examined in an averaging window to accept or reject the jump. The SEQAVG plot shows the actual 
frequency averages in each jump regime, and is able to locate the jump more closely, but does not show 
trends in the data.  The SEQAVG jump detection algorithm is shown in the flowchart of Figure 2. 
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Figure 2.  Sequential Average (SEQAVG) jump detection algorithm flowchart. 
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The visual presentation of a SEQAVG frequency jump analysis can also be enhanced by plotting the 
average value of each jump regime along with the underlying frequency data. 
 
A comparison between the BLKAVG and SEQAVG methods is shown in Table 1. 
 

 
Table 1.  Comparison between BLKAVG and SEQAVG frequency jump detection methods. 

 
Method Advantages Disadvantages 

Block 
Average 
(BLKAVG) 

1. Simple, intuitive, easy to 
understand, obvious from plot. 

2. Shows non-jump changes. 
3. Handles drift better; shows it as 

block averages, not jumps. 

1. Doesn’t get exact jump location. 
2. Doesn’t get actual frequency averages. 
3. May not get accurate jump size. 

Sequential 
Average 
(SEQAVG) 

1. Get right jump location. 
2. Get actual frequency averages 

within jump regimes. 
3. Cleaner plot. 
4. Better jump size estimates. 
5. No offset parameter needed. 
6. Window length less critical (if not 

too long). 

1. More complex algorithm. 
2. Doesn’t show non-jump changes. 
3. Depends on average at beginning of each 

regime. 
4. Shows drift as staircase of jumps. 
5. Slower (but not significantly). 

 
 
CUMULATIVE  SUM   JUMP  DETECTION 
 
The Cumulative Sum (CUSUM) is a classic change-point analysis technique that uses the cumulative sum 
of the differences between the current value and the overall average [3].  Starting with S0 = 0,  
 

)(1 yySS iii −+= − . 
 

(1)
 
where Si is the cumulative sum and y  is the average of the data. 
 
The CUSUM slope indicates the value of the data with respect to the overall average.  A flat cumulative 
sum indicates that the data are near the average value; a straight cumulative sum indicates a period of 
constant data values; and, most importantly, a sudden change in the CUSUM slope indicates a jump in the 
data.  The CUSUM plot for a data set having a single jump will have a V or inverted V shape.  The value 
of the jump can be determined by the sum of the two slopes of the CUSUM curve.  For N data points 
having a maximum or minimum cumulative sum value M at point P, the frequency jump is equal to 
 

PN
M

P
M

−
+

−1
 . 

 
(2)

 
STARS ALGORITHM 
 
Recent progress in detecting “regime shifts” in ecological records has resulted in a jump detection 
algorithm called the Sequential t-Test Analysis of Regime Shifts (STARS), which could be useful for 
analyzing clock frequency records [7].  The STARS algorithm uses the Student's t-test [8] to compare the 
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mean values of two analysis windows that are moved sequentially through the data record, searching for 
differences that are associated with a significant jump.  The problem with the STARS method is that it is 
too sensitive.  Frequency stability mainly involves the analysis of noise.  The t-test indicates whether, at a 
certain confidence level, there has been a shift in the mean, generally for small sample sizes.  For the 
analysis of noise, this detects too many changes.  The better criterion for noise is either an absolute 
frequency deviation, or a jump that exceeds the Allan deviation by a certain factor. 
 
 
FREQUENCY  JUMP  DETECTION  EXAMPLES 
 
Examples of the BLKAVG, SEQAVG, and CUSUM frequency jump detection methods are shown below 
for a set of 1024 points of simulated frequency data having white FM noise at a level of 1×10-12 at a 1-
second sampling time plus a step of -1×10-12 at the center of the record.   The objective is to correctly 
detect this frequency jump in the presence of an equal amount of noise, and quantify both the location of 
the jump and its value, preferably using default detection parameters (an analysis window size based on 
the record length and a frequency jump threshold equal to a multiple of the Allan deviation). 
  
BLKAVG  JUMP  DETECTION 
 
This example of the BLKAVG frequency jump detection algorithm is shown in Figure 3.  The light 
horizontal lines on the plot are the average values of the frequency data over the analysis windows, and a 
detected frequency jump is shown by a heavy vertical line.  The text box shows the jump detection 
results, and the inset shows the corresponding CUSUM plot. 
 
 

 
 

Figure 3.  BLKAVG plot and results. 
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The default window length is one-tenth of the record length or five, whichever is larger.  The default 
window offset is zero, and it can have a maximum value equal to the number of frequency data points 
modulo the window length.  The default jump threshold is three times the value of the Allan deviation of 
the entire data set at an averaging factor equal to the window length.  The jump detection behavior can be 
optimized for the particular application by adjusting the detection parameters. 
 
SEQAVG  JUMP  DETECTION 
 
An example of the SEQAVG frequency jump detection algorithm for the same data set is shown in Figure 
4.  Here, the light horizontal lines on the plot are the average values of the frequency data over the entire 
jump regimes, and the detected frequency jump is again shown by the heavy vertical line near the center 
of the plot. 
 
The default window length and jump threshold are the same as for the BLKAVG method, and can also be 
tuned for the particular application.  The window offset parameter does not apply to the SEQAVG 
method.  One jump is correctly detected for window lengths between 28 and 220 for these data. 
 
 

 
 

Figure 4.  SEQAVG plot and results. 
 
 
SEQAVG  JUMP  LOCATION 
 
The SEQAVG frequency jump detection algorithm tends to estimate the jump location earlier than it 
actually is, because it reports it at the beginning of the averaging window in which the jump is confirmed.  
That bias can be reduced significantly by averaging the jump location estimates for the normal forward 
and reversed data sets.  That improved jump location estimate is given by: 

246 
 



40th Annual Precise Time and Time Interval (PTTI) Meeting 
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=  

 
 

where: J = Estimated Jump Location 
 F = Forward Jump Location 
 R = Reverse Jump Location 
 N = # Data Points 

(3)

 
For example, the forward and reverse default SEQAVG jump detection results for the same 1024-point 
set of simulated frequency data are 482 and 478 respectively, while the combined jump location estimate 
is 514, very close to that expected 512, much closer than either the forward or reverse estimates alone. 
 
SEQAVG  JUMP  MAGNITUDE 
 
The jump magnitudes are similar in each direction (differing only by about 3.5%), and have an average 
value of 9.18×10-13, reasonably close to the nominal value of 1×10-12 and the actual difference between 
the two halves of the data, 9.77×10-13.  Reducing the window size to 50 yields an average jump magnitude 
of 9.54×10-13, 2.4% below the actual. 
 
SUMMARY  OF  BLKAVG  AND  SEQAVG  RESULTS 
 
The previous examples of frequency jump detection methods showed the analysis an abrupt frequency 
change of 1×10-12 at the center of a 1024-point frequency record of simulated white FM noise having an 
Allan deviation of 1×10-12 at the 1-second sampling interval.  The jump was correctly identified using the 
default BLKAVG detection parameters as having a magnitude of 1.05×10-12 at point 509.  The calculated 
1-second overlapping Allan deviation of the entire frequency record, 0.992×10-12, is not significantly 
affected by the jump, which causes the stability plot to flatten and then go upward at longer averaging 
times.  Varying the window offset over its allowable range of 0 to 24 had little effect on the magnitude of 
the detected frequency jump, which varied from 0.993 to 1.116 ×10-12.  The frequency jump is visually 
apparent in the data plot, especially if they are averaged by a factor of about 10, and the detection 
algorithms are able to quantify the jump automatically at least as well as can be done manually. 
 
CUMSUM  PLOT 
 
The BLKAVG and SEQAVG frequency jump detection methods can also make use of cumulative sum 
(CUSUM) calculations to help identify and estimate the location and value of frequency jumps, as shown 
in Figure 5. 
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Figure 5.  CUSUM plot. 
 

 
Inspection of the CUSUM plot provides a good indication of the confidence in the jump determination 
and can show the presence of other smaller, below-threshold jumps.  For a single dominant jump, it does 
an excellent job of locating and quantifying the jump.  For frequency data, the CUSUM is the same as its 
corresponding phase data after frequency normalization. 
 
 
CONFIDENCE  FACTOR 
 
A nice aspect of the CUSUM method is its ability to provide an estimate of the confidence factor for a 
detected jump.  This can be accomplished by randomly reordering the frequency data and calculating the 
CUSUM for many such cases, thereby establishing a basis of comparison for the actual jump estimation.  
For example, if in 995 out of 1000 such cases, the CUSUM range is less than that for the actual data, the 
confidence in the jump is 99.5%.  In most cases, for data set sizes and thresholds appropriate for clock 
frequency data, the confidence level is above 99.9% when a jump is detected. 
 
 
JUMP  DETECTION  CRITERIA 
 
Important considerations are the ability to reliably detect jumps of a specified magnitude with minimal 
false alarms in the presence of common clock noises and slow frequency trends.  Frequency jumps can be 
the most significant limitation to clock performance in many applications.  While there is no substitute for 
human judgment in assessing clock behavior, automated jump detection can be a valuable supplement to 
that, especially in a large-scale production situation (e.g., commercial telecom clocks), or for critical 
applications (e.g., GPS or Galileo satellite clocks). 
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JUMP  DISPLAY  AND  REPORTING 
 
Frequency jump detection is naturally associated with a frequency data plot, as shown in the preceding 
examples.   The frequency averages are shown as green horizontal lines extending over the analysis data 
windows.  Those average values are connected by vertical steps that, in the case of a detected frequency 
jump, are shown as heavy green lines.  The jump detection parameters are shown as an annotation at the 
bottom of the plot; the largest jump magnitude and location (if any) are shown as an optional message; 
and a CUSUM plot inset may also be displayed.  Complete information about the jump detection 
parameters and results is written to the Windows clipboard, and can be pasted into a plot note or another 
application. The frequency averages and cumulative sums corresponding to each data point are 
automatically written to data files.  The color of the frequency data in the BLKAVG and SEQAVG plots 
can be changed to a faint yellow so that the jump analysis can be better seen. 
 
 
JUMP  DETECTION  LIMITATIONS 
 
The most significant limitation of the BLKAVG frequency jump detection algorithm is that it uses 
analysis windows of a fixed (although selectable) size.  That means that jumps can be detected only at 
certain places in the frequency record, and, accordingly, the magnitudes of the detected jumps are not 
necessarily those of the underlying data, but simply the changes in the average value at the boundary of 
the two analysis windows.  This limitation can be reduced by changing the size of the analysis window 
and/or their offset.  The window size is a tradeoff between better time resolution (short) and better noise 
averaging (long).  In contrast, the SEQAVG and CUSUM methods can detect a jump at any point in the 
data record.  The SEQAVG jump location can be improved by analyzing the data in both directions.  All 
of these jump detection methods are sensitive to drift and divergent noise. 
 
 
AUTOREGRESSIVE  PREWHITENING 
 
It can be hard to tell the difference between divergent noise and an actual jump.  For example, random 
walk FM noise with no jump resembles white FM noise having an actual jump in mean value.  Jump 
detection can sometimes be improved by removing not only outliers and deterministic drift, but also by 
removing flicker (“pink”) and random walk (“red”) noise from the data [9].  That prewhitening process 
can help to distinguish between true jumps and the lurching behavior caused by divergent noise.  Such 
noise removal, although inexact, can be accomplished by determining the lag 1 autocorrelation 
coefficient, ρ1, of the data and using that to remove an AR(1) autoregressive noise component [10,11]: 
 

( ) ( ) ( )tytyty ⋅−+= 11 ρ .  
(4)

 
A ρ1 value of 0 corresponds to white noise, while increasingly positive ρ1 values result from pink and red 
noise spectra, with a value of 1 associated with random walk noise.  Examples of AR(1) noise processes 
and their autocorrelations and spectra are shown in Reference [11].  The lurches of the more divergent 
noise processes can often resemble jumps. 
 
Consider, for example, the sample of random walk FM noise in Figure 6a having a ρ1 = 0.998 and a 
power-law exponent α = -2.05 at an averaging factor of 1.  If those noise data are prewhitened as 
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described above, the resulting Figure 6b residuals are white (ρ1 =  -0.029, α = -0.06) and are without any 
apparent spike or jump. 
 
 

 

Figure 6a.  RW FM noise. 
 

Figure 6b.  After AR(1) removal. 
 
 
If, however, the random walk FM noise does contain a frequency jump, as shown in Figure 7a for data 
having a very similar ρ1 = 0.996 and a power-law exponent α = -2.04 noise plus a jump of -2×10-12 at 
about day 27.5, there is a large spike at the jump point, after an AR(1) fit removal indicating an actual 
frequency jump. 
 

 

Figure 7a.  RW FM noise with frequency jump. 
 

Figure 7b.  After AR(1) removal. 
 
 
A determination of ρ1 can itself be affected by a jump, and techniques have been described for sectioning 
the data and correcting for bias [9].  Nevertheless, the prewhitening operation provides valuable insight in 
distinguishing between divergent noise and an actual jump, whose location and approximate size are 
clearly shown. 
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ADDITIONAL  EXAMPLES 
 
Another example of SEQAVG frequency jump detection is shown in Figure 8, again using the default 
detection parameters plus a CUSUM plot inset.  This is a 30-day set of 2880 points of τ = 900 second (15 
minutes) simulated clock data having 2×10-12τ -1/2 white FM noise and flicker FM noise at a level of  
2×10-14 plus a jump of +1×10-13 at the center (point 1440). 
 
 
 

 
 

Figure 8.  SEQAVG frequency jump detection with simulated white and flicker FM noise. 
 
 

The jump is detected, located, and quantified with reasonable accuracy.  The CUSUM analysis 
characterizes the jump as having a value of +1.06×10-13 at point 1435.  The positive frequency “lurch” 
near point 500 is not a jump, but rather a result of the divergent flicker FM noise.  It is visible in both the 
frequency and CUSUM plots, and its average frequency change is about half the threshold level.  The 
same simulated noise without the frequency jump has a CUSUM range of 232, about one-third the jump 
size, and no jumps are found with the same detection parameters.  A typical set of 1000 random CUSUMs 
has a range of 118, a mean of 82, and a standard deviation of 19.3, so the actual CUSUM range of 767 is 
many standard deviations larger, implying a high confidence in the jump detection. 
 
Other analysis methods, such as Allan deviation and autocorrelation function plots, can also provide 
insight into the presence and effect of a frequency jump.  An upward slope of a drift-removed Allan 
deviation plot at long τ indicates a significant frequency disturbance of some sort, since flicker FM noise 
would have a flat characteristic.  Although usually associated with random walk FM noise, a τ1/2 slope 
can also be caused by a step in average frequency.   Similarly, a long positive autocorrelation tail at large 
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lags is a sign of either divergent noise or some sort of long-term frequency change.  However, neither of 
these plots can be uniquely or simply related to a frequency jump. 
 
These frequency jump detection and analysis methods have also been applied to actual clock data, 
including the 42-day, τ = 900-second early stabilization frequency residual record of a rubidium 
frequency standard after removal of a log fit shown in Figure 9.  For these data, the BKLAVG method 
works best with its default settings, because it better tracks the frequency drift, although the SEQAVG 
method locates the jump more precisely. 
 
 
 

 
 

Figure 9.  BLKAVG frequency jump detection for an RFS stabilization record. 
 
 

This record shows two frequency jumps, the first during the early rapid stabilization and a second more 
prominent jump at about point 1600.  The relatively long analysis window size (399) delays detection of 
the large jump, and the default detection threshold ignores the first smaller jump.  The CUSUM inset 
shows only one sharp change, because the first jump is actually more like a transient, and the multiple 
peaks distort its jump magnitude determination.  If the window size is changed to 100, the analysis still 
detects a single jump, whose location is then determined more exactly, while still providing adequate 
noise averaging.  Reducing the jump threshold to 5×10-14 produces three detected jumps (including the 
first one), but splits the second jump into two parts.  Clearly, user judgment is needed when performing a 
jump analysis on a complex record. 
 
In another similar example, the frequency residuals show a single large lurch and several smaller jumps.  
The default 3-sigma BLKAVG jump analysis works well for this slower frequency discontinuity.  The 
CUSUM plot has its sharpest and largest peak at the large lurch, but is too complex to provide a 
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meaningful jump estimate.  Multiple smaller jumps can be detected by reducing the window size and 
threshold. 
 
 
CONCLUSIONS 
 
This paper has described several methods for the detection and analysis of frequency jumps in clock data.  
The BLKAVG and SEQAVG algorithms, along with a CUSUM plot and autoregressive prewhitening, are 
reasonably consistent and effective ways to examine such jumps.  Those methods have been successfully 
implemented into a program for frequency stability analysis [12]. 
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