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Abstract 
 

Various naval applications can benefit from the synchronization of clocks across mobile 
platforms, particularly if the time synchronization is accomplished at the few-nanosecond 
level.  The Naval Surface Warfare Center, Dahlgren Division, has undertaken the task of 
merging precise point positioning capabilities with common view mode techniques to 
demonstrate the capability of determining relative clock offsets in real time to the 
nanosecond level for clocks on mobile platforms.  These demonstrations compare the GPS-
derived clock offsets between the USNO Master Clock and a portable rubidium clock that 
supports an Ashtech Z12-T and is carried in a van that is located approximately 60 km from 
USNO.   The data are postprocessed as if they were collected and processed in real time.  
The Kalman filter estimates of the relative clock offsets are compared to the measured clock 
offsets that are determined by comparing the rubidium clock to a portable cesium clock that 
was synchronized with the USNO Master Clock.  After adjustment for a system bias, the 
estimated clock offsets agree with the measured clock offsets to the few-nanosecond level.  
These demonstrations have provided the incentive for integrating this capability with 
various measurement systems that could benefit from this level of clock synchronization. 
 

 
INTRODUCTION 
 
The capability to synchronize clocks on two or more mobile platforms in real-time or near real-time can 
be utilized by various systems to improve their performance or capabilities, particularly if the 
synchronization can be accomplished at the few-nanosecond level.  Experiments were conducted at the 
Naval Support Facility Dahlgren (NSFD) to evaluate the use of a Global Positioning System (GPS)-based 
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precise point positioning (PPP) technique [1,2] and the common view mode (CVM) technique [3] in 
achieving nanosecond-level clock synchronization for baseline distances of approximately 60 km for a 
mobile platform.  The basic assumption in these experiments is that GPS data are consistently available to 
the platforms along with precise estimates of the orbit and clock states of the GPS satellites, thus 
permitting reliable PPP solutions at the 10-30 cm level.  A platform’s GPS data would first be used in the 
PPP solutions and then the PPP solutions and GPS data would be used to determine platform clock offsets 
with respect to the GPS satellites in view.  These receiver-satellite clock offsets would then be shared 
with other platforms, allowing for a CVM solution for receiver-receiver clock offsets.  The conceptual 
operating scenario involves the PPP and CVM applications executing in real-time and producing near 
real-time results.  The issues of communicating information between platforms, the communication of 
precise estimates of orbit and clock solutions for the GPS satellites to the platforms, the extrapolation of 
near-real-time estimates, and the resolution of a CVM system bias are not here addressed.  
 
The experiments were conducted in February and October 2007 using a mobile platform located at NSFD 
as one platform and the International Global Navigation Satellite System (GNSS) Service (IGS) reference 
site USN3 located at the United States Naval Observatory (USNO) as the second platform.  The USN3 
GPS receiver is an Ashtech Z12T that is directly referenced to UTC (USNO), the DoD Master Clock.  
Also, high-rate data (1-second interval) are available for postprocessing from USN3 via the Web 
site ftp://cddis.gsfc.nasa.gov/gps/data/highrate/.  The mobile platform was a van equipped with GPS 
receivers, a rubidium oscillator that served the role of the platform clock, a portable cesium clock that 
served the role of representing the Master Clock at USNO, and a time-interval counter to compute the 
time differences between the rubidium oscillator and the portable cesium clock.  All data were collected 
and postprocessed in a manner reflecting a real-time processing sequence.  Altogether, data from 3 days 
of testing are presented.  The platform positioning results demonstrated that the PPP accuracy was at the 
decimeter level.  By using a Kalman filter approach to reduce the noise level and removing a system bias, 
the CVM results demonstrate that the receiver-receiver clock offsets can be determined to the 1-2 
nanosecond level. 
  
 
EXPERIMENT  DESCRIPTION 
 
HARDWARE  DESCRIPTION 
 
The conceptual setup of the experiment is shown in Figure 1.  The principal components are a slam-
synched GPS receiver (an Ashtech Z12T), a rubidium oscillator (Rb Oscillator, an SRS FS725 Rubidium 
Frequency Standard) that provides the reference 20 MHz carrier signal (via an amplifier, “Amp”) and a 
one-pulse-per-second (1 PPS) signal to the Ashtech Z12T, another GPS receiver (an Ashtech Z12) that 
provided a 1 PPS signal that is used to steer the Rb oscillator and provided backup tracking data, a 
portable cesium clock (Cs Oscillator, an Agilent 5071A Cesium Frequency Standard) that provides a local 
representation of the USNO Master Clock, a time-interval counter (SRS SR620) that is used to measure 
the time difference in the 1 PPS signals generated by the Rb oscillator and the Cs oscillator, and a 
computer to record the data and provide a time stamp for the output from the time-interval counter.  Note 
that the Z12T and Z12 shared the same dual-frequency antenna.  These elements, along with supporting 
hardware, were arranged inside of a van with a GPS antenna mounted on the roof of the van and power 
provided by portable generators via UPS units, as shown in Figure 2. 
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Figure 1.  Conceptual experiment layout. 

 
 
 

 
 

Figure 2.  Van with experiment hardware. 
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TESTING  DESCRIPTION 
 
Tests were conducted during the weeks of 26 February-2 March and 1-5 October.  The tests during 
February were set up to collect data while traveling from USNO to NSFD, at NSFD, and traveling back 
from NSFD to USNO.  Analysis of the data indicated that obstructions (trees and buildings) prevented the 
collection of useful data between USNO and NSFD.  However, the data collected on 27 February while at 
NSFD did not suffer from these obstructions.  The tests on 2-5 October involved collecting data while 
traveling around NSFD.  In general, only the data sets of 3 and 4 October were useful.  Thus, there are 3 
days of useful data available from these tests.   
 
The portable cesium clock was used as a local representation of the USNO Master Clock for the purpose 
of computing the “true” time offset between the two platform clocks.  The time offset of the portable 
cesium clock with the USNO Master Clock was measured at USNO at the beginning of each experiment 
span and then measured again at the end of the experiment span.  It was assumed that the portable cesium 
would drift with a nearly constant frequency offset with respect to the Master Clock over the experiment 
span.  This drift rate was taken to be the difference in the time offset measured before and after the 
experiment divided by the interval between these offset measurements.  Thus, variations in the portable 
cesium clock beyond this frequency offset could not be accounted for in the CVM results, but these 
variations were assumed to be at or below the nanosecond level.   
 
Once the equipment was assembled in the van and the generators started, the GPS receivers, the computer, 
the Rb oscillator, and time-interval counter were powered on.  Note that the portable cesium clock has an 
internal battery, allowing movement between power sources while maintaining operating conditions, and 
was powered by the auxiliary power unit of the van until power from the portable generators was 
available.  An initial warm-up period allowed the GPS receivers to complete acquisition of the GPS 
signals, allowed the Rb oscillator to lock on to the 1 PPS signal from the GPS receiver, and allowed for 
the computer to boot up and the data acquisition software used to collect the measurements from the time- 
interval counter and the software used to collect the GPS data to be initialized.  The GPS receivers were 
configured to collected dual-frequency pseudorange and carrier-phase data at 1-second intervals.  The 
data collection from the time-interval counter was configured for 1-second intervals as well.  The clock 
on the computer was manually set to within a few seconds of the time provided by the portable cesium 
clock.  After all of the equipment was operating normally and the data collection appeared to be in order, 
the van was driven over a closed loop pattern at NSFD.  This particular loop was chosen to avoid 
obstructions (buildings and trees).  A schematic of the loop is shown in Figure 3.  A round trip on this 
loop was approximately 2 km.  Speeds on this course reached approximately 25-30 miles per hour, 
although stops were required to obey traffic laws.  This loop would be repeated for approximately 2 hours 
each day of testing.  At the end of the testing period, the data were backed up and transferred to servers 
for storage, and the equipment powered off except for the portable cesium clock, which was transferred 
back to a laboratory to maintain a secure power source. 
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Figure 3.  Experiment course (blocks are 100 meters on a side). 
 
 
RESULTS 
 
The data processing began with the acquisition of the GPS satellites’ precise orbit and clock solutions 
from IGS and the National Geospatial-Intelligence Agency (NGA).  The IGS solutions were computed at 
15-minute intervals for the satellites’ orbits and at 30-second intervals for the satellites’ clock solutions.  
The NGA solutions were computed at 5-minute intervals for both the orbit and clock solutions.  Using the 
broadcast satellite ephemeris data, a trajectory solution for the van was computed using a short-baseline 
kinematic baseline technique referenced to a surveyed site as NSFD.  Using the IGS precise orbit and 
clock solutions, a trajectory solution for the van was computed using a precise point positioning (PPP) 
technique.  These trajectory solutions were computed once using the data from the Ashtech Z12 receiver 
and again using the data from the Ashtech Z12T receiver, which was the basis for computing the receiver-
receiver time offsets.  The various van trajectory solutions were repeated using the NGA orbit and clock 
solutions.  For a specific set of receiver and precise orbit and clock data sets, the trajectories from both 
solution techniques were differenced in the north, east, and up directions to evaluate the quality of the 
PPP solutions under the assumption that the short-baseline kinematic technique should provide solutions 
with accuracies of less than 10 cm.  Figures 4 and 5 show the results of these trajectory differences for the 
test on 3 October using the Ashtech Z12 data set and the Ashtech Z12T data set, respectively, in 
conjunction with the IGS satellite orbit and clock solutions.  The trajectory results of 3 October are 
representative of all 3 days of testing. 
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Figure 4.  3 October trajectory solution differences (meters) between the PPP and the 
short-baseline kinematic solutions using the Ashtech Z12 data and the IGS GPS precise 
orbit and clock solutions. 

 
 
The next step in the data processing began with the collection of the GPS high-rate data (1-second 
interval) from USN3 in RINEX format that corresponded to each testing period.  Using the GPS 
ephemeris information (from either the broadcast ephemeris message or the precise orbit information) and 
the van’s trajectory solution, the relative clock offset between the a receiver’s clock and a satellite clock 
can be computed as 
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Figure 5.  3 October trajectory solution differences (meters) between the PPP and the 
short-baseline kinematic solutions using the Ashtech Z12T data and the IGS GPS precise 
orbit and clock solutions. 

 
 
Figure 6 shows the receiver-receiver clock offsets for 3 October using the L1 pseudorange measurements 
(P1) without correcting for ionospheric or tropospheric effects.  The legend notation of P1Di indicates 
that differences involve the GPS satellite with PRN i.  Note that the approximately 250-nanosecond bias 
in these differences represent the overall system bias due to the arrangement of the equipment in the 
experiment.  Note that the variation in the relative time offset from a single satellite ranges from 20-40 
nanoseconds. 
 
The next step in the data processing involved using the measurements of receiver-receiver time offsets of 
Eq. (2) as measurements in a single-state Kalman filter to form an estimate of the receiver-receiver clock 
offset.  The initial value of the estimated relative clock offset is determined by using all measurements at 
an epoch to compute a mean value and standard deviation about the mean.  If the standard deviation is 
within a predefined threshold, the initial estimate is set equal to the mean and the associated covariance is 
set equal to the measurement variance.  If the standard deviation is not less than the predefined threshold, 
the measurement with the largest difference with respect to the mean is discarded and the mean and 
standard deviation are recomputed.  This process is iterated until either the predefined threshold on the 
standard deviation is achieved or there are only three measurements left.  If the latter condition occurs, the 
epoch is rejected and the next epoch is inspected.  The process of rejecting measurements was adopted 
because the initialization was typically attempted near the beginning of the data collection period during 
which some pseudorange measurements were the first values recorded for a particular satellite and could 
experience significant errors.  Once the initial estimate of the relative clock offset was formed, it would 
be propagated to the next measurement epoch as a constant value to form the a priori estimate and, to 
compensate for this assumption, process noise would be added to the covariance propagation.  The a 
posteriori estimate at the next epoch would be formed by incorporating all the measurements that passed 
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a simple editing test.  The editing test was based on the residual between the current estimate and the 
measurement.  If the absolute value of the residual was greater than a maximum threshold or was greater 
than five times the current covariance, the measurement was rejected.  Figure 7 shows the filter results 
after processing the measurements shown in Figure 6 along with the mean clock offset at each epoch and 
a linear fit for reference.  Note that variability in the epoch mean is much smaller than the measurements 
in Figure 6 and the filtered estimate variability is much smaller than the epoch mean, as might be 
expected.  

 
Figure 6.  Time offsets from Equation (2) between USN3 and the mobile platform on 3 
October using L1 pseudorange measurements without tropospheric and ionospheric 
corrections where P1Di correspond to PRN i. 
 
 

The final step in the data processing involves differencing the estimated time offsets from the offsets 
measured by the time-interval counter and removing a bias from these differences.  The variance of the 
adjusted differences is then used as one measure of the quality for this procedure.  The estimated clock 
offsets and the resulting adjusted differences are shown in the following subsection.   
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Figure 7.  Filter and epoch mean values for the time offsets of Figure 6. 

 
 
27  FEBRUARY  TEST 
 
The results for the test conducted on 27 February 2007 (GPS week 1416) are shown in Figures 8.  The 
data span is 90 minutes with a total relative clock change of nearly 30 nanoseconds.  Note that there is a 
change in the relative drift rate at about 225500 seconds of week, which is probably due to the steering of 
the rubidium oscillator.  The estimated time offsets using the pseudorange measurements track this 
change as seen in Figure 8a.  Biases of 373.2 nanoseconds and 384.9 nanoseconds were removed from the 
differences between the measured offset and the L1- and L2-based estimated offsets to produce the results 
in Figure 8b.  These time offset differences are in the range of −2 to +2 nanoseconds and have standard 
deviations of 0.77 and 0.76 nanoseconds, respectively.   
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 (a) (b) 
 
Figures 8.  (a) Measured and computed clock offsets for 27 February 2007 and (b) 
differences between the measured and computed clock offsets after removing biases.  

 
 
3  OCTOBER  TEST 
 
The results for the test conducted on 3 October 2007 (GPS week 1447) are shown in Figures 9.  The data 
span is 132 minutes with a total relative clock change of approximately 10 nanoseconds.  Note that there 
are four major inflection points in the relative clock offset due to the steering of the rubidium oscillator.  
The first occurs near the beginning of the data at approximately 315000 seconds of week, the second 
occurs  near the midpoint of the data span at approximately 318500 seconds of week, and the remaining 
two occur near the end of the data span at approximately 321500 and 322000 seconds of week.  The 
estimated time offsets using the pseudorange measurements track these changes, as seen in Figure 9a. 
Note that the measured time offsets curve (blue, middle curve) has spurious points separated by 
approximately 1 nanosecond from the remainder of the data for the first portion of the time span and 
again towards the end of the time span.  The origin of these data is unknown, although it is suspected that 
it may due to the behavior of the time-interval counter.  Biases of 254.2 nanoseconds and 265.8 
nanoseconds were removed from the differences between the measured offset and the L1- and L2-based 
estimated offsets to produce the results in Figure 10b.  These time-offset differences are generally in the 
range of −2 to +2 nanoseconds, with some larger differences occurring near the beginning of the data 
span and for some portions where the spurious measured time offsets occur.  The time offset differences 
in Figure 8b have standard deviations of 0.92 and 1.0 nanoseconds, respectively.  The larger values of the 
standard deviations compared to those of 27 February are related to the spurious measured time offsets.   
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 (a) (b) 
Figures 9.  (a) Measured and computed clock offsets for 3 October 2007 and (b) 
differences between the measured and computed clock offsets after removing biases.  

 
 
4  OCTOBER  TEST 
 
The results for the test conducted on 4 October 2007 (GPS week 1447) are shown in Figures 10.  The data 
span is 60 minutes, with a total relative clock change of approximately 35 nanoseconds.  Note that there 
are no major inflection points in the relative clock offset, but rather a smooth change in the relative clock 
rate near the beginning of the data interval due to the steering of the rubidium oscillator.  The estimated 
time offsets using the pseudorange measurements track the trend of the measured clock offset, as seen in 
Figure 10a.  Biases of 275.7 nanoseconds and 287.6 nanoseconds were removed from the differences 
between the measured offset and the L1- and L2-based estimated offsets to produce the results in Figure 
10b.  These time offset differences are generally in the range of −2 to +2 nanoseconds, with some larger 
differences occurring near the beginning of the data.  The time offset differences in Figure 10b have 
standard deviations of 1.2 and 1.1 nanoseconds, respectively.  The larger values of the standard deviations 
relative to those of 27 February are related to the differences during the early portion of the data span.  
 
 
CONCLUSIONS 
 
Two experiments conducted over 3 days during February and October 2007 demonstrate the possibility of 
achieving relative real-time time synchronization at the few-nanosecond level between two mobile clocks.  
This level of synchronization is based upon using GPS data with a loosely coupled relationship between a 
precise point positioning (PPP) technique and the common view mode (CVM) technique.  The simulated 
real-time offsets are estimated using a single-state Kalman filter with errors on the order of 2±  
nanoseconds and standard deviations on the order of 1 nanosecond.  For this approach to be applicable in 
an operational scenario, other real-time issues need to be resolved, including the generation and transfer 
of precise GPS satellite orbit and clock solutions to support the PPP technique that is the core element of 
this approach, the extrapolation of the clock offset estimates to mitigate any latency issues in the support 
of real-time support of other systems, and a calibration process to remove a system bias.   
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 (a) (b) 
 
Figures 10.  (a) Measured and computed clock offsets for 4 October 2007 and (b) 
differences between the measured and computed clock offsets after removing biases.  
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