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Abstract 

The measurement of time is an essential aspect of navigation.  The Global Positioning 
System (GPS) is comprised of a constellation of satellites that transmit one-way pseudorandom 
noise (PRN) coded signals used for range and time measurements.  The signals are referenced 
to onboard atomic clocks.  The GPS provides a model for position determination with a 
precision of a few meters and time dissemination with a precision of about 10 nanoseconds.  
The mathematical algorithms used in the GPS receiver require the application of the principles 
of general relativity. Similar models will be needed for high-precision navigation in the solar 
system.  The adoption of an appropriate coordinate system and time scale is required.  This 
paper outlines the fundamental concepts of relativistic time transfer and describes the details of 
the mathematical model.  The approximate magnitudes of various relativistic effects for clocks 
onboard the GPS satellites, other satellites in Earth orbit, and a clock on the surface of Mars or 
on the Moon are derived. 

 

 

INTRODUCTION 
Relativity has become an important aspect of modern precise timekeeping systems.  Thus, far from being 
simply a textbook problem or merely of theoretical scientific interest, the analysis of relativistic effects on 
time measurement is an essential practical consideration.  The Global Positioning System (GPS) is an 
example of an engineering system in which the recognition of appropriate relativistic corrections are 
necessary for its successful operation.  Clocks onboard GPS satellites run fast by 38 μs/d due to their 
altitude and velocity and have a periodic component with amplitude of about 46 ns due to the small orbit 
eccentricity compared to clocks on the geoid.  The constant drift is compensated by a rate offset prior to 
launch.  Neglect of the periodic effect would result in a radial position error of about 15 m.  Similarly, 
relativistic transformations between clocks throughout the solar system will be required in future space 
missions.  The purpose of this paper is to describe the fundamental theoretical principles for relativistic 
time transfer.  The principal relativistic effects are derived for time transfer between clocks on the Earth’s 
surface to clocks on Earth-orbiting satellites, Mars, and the Moon. 
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PROPER  TIME  AND  COORDINATE  TIME 
In the theory of general relativity, there are two kinds of time.  Proper time τ is the actual reading of a 
clock.  The proper times are different for clocks in different states of motion and in different gravitational 
potentials.  The proper time measured by a clock may be compared to the proper time measured by 
another clock through the intermediate variable t called coordinate time, which, by definition, has the 
same value everywhere for a given event.  The relationship between coordinate time and proper time 
depends on the velocity of the clock and the gravitational potential at the location of the clock.  It is 
established through the invariance of the four-dimensional space-time interval. 

The theory of space, time, and gravitation according to the general theory of relativity is founded upon the 
notion of an invariant Riemannian space-time interval of the form 
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where xα ≡ (c t, x i ).  The fundamental mathematical object is the metric tensor gμν , whose components 
are functions of the coordinates and are symmetric in the indices μ , ν  (that is, gμν = gνμ ).  The metric 
tensor plays the role of the gravitational potentials. 

For a transported clock, the space-time interval is 
3 3

2 2 2

0 0
ds g dx dx c dμ ν

μν
μ ν

τ
= =

= ≡ −∑∑  

where τ is the proper time recorded by the clock.  For a given coordinate system, this equation establishes 
a well-defined transformation between coordinate time and proper time.  The coordinate time is arbitrary, 
as the comparison is made between two proper times.  In an inertial coordinate system with no gravita-
tion, the metric components are – g00 = 1, g11 = g22 = g33 = 1, gμν = 0 for μ  ≠ ν.  Then ds2 = − c 2 (1 – v 

2 / c 2) dt 2 = – c 2 dτ 2, where v is the clock velocity as in special relativity, which implies the phenomenon 
of time dilation of a moving clock relative to a stationary clock. 

For an electromagnetic signal, the space-time interval satisfies the condition 
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In an inertial coordinate system with no gravitation, this reduces to ds 2 = − c2 dt 2 + dx 2 + dy 2 + dz 2 = 0 as 
in special relativity, whose invariance implies that the speed of light is c in all inertial systems. 
 
 
EARTH-ORBITING  SATELLITE  CLOCKS 
To a sufficient approximation in the analysis of clock transport, the components of the metric tensor in an 
Earth-Centered Inertial (ECI) coordinate system are − g00 ≈ 1 – 2 U / c2 ,  g0 j = 0, and gi j ≈ δ i j , where U 
is the Newtonian gravitational potential and δ i j is the Kronecker delta.  For a clock onboard a satellite, 
the elapsed coordinate time is given in terms of the proper time by the integral 
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The first term under the integral is the elapsed proper time, the second term is the correction due to the 
gravitational potential U (gravitational redshift), and the third term is the correction due to the velocity v 
of the satellite (time dilation). 

In the rotating Earth-Centered Earth-Fixed (ECEF) coordinate system, it is convenient to apply a change 
of scale to define a new coordinate time 
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where W0 = 6.2637 × 107 m2/s2 is the geopotential over the surface of the Earth, which is a constant.  Then 
the coordinate time Δt′ corresponds to the proper time registered by a clock at rest on the geoid. Thus, the 
clock becomes a coordinate clock.  Upon integration, the elapsed coordinate time for an Earth-orbiting 
satellite clock is 
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where a is the orbital semimajor axis, e is the orbital eccentricity, and E is the eccentric anomaly.  The 
first term represents a constant rate offset between the satellite clock and a clock on the geoid.  The 
second term is a small relativistic periodic correction due to the orbital eccentricity.  This term may be 
expressed without approximation as 

2 2

2 2sinrelt GM a e E
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where r and v are the position and velocity vectors of the satellite.  As r ⋅ v is a scalar, it may be evaluated 
in either the ECI or ECEF coordinate system. 
 
 
ELECTROMAGNETIC  SIGNALS 
The coordinate time of propagation of an electromagnetic signal is 
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where ρ is the propagation path length.  The integral term is called the Sagnac effect.  In the rotating 
ECEF coordinate system, the metric components are − g00 ≈ 1 ,  g 0 j = (ω × r) j / c , and g i j ≈ δ  i j , where ω 
is the Earth’s rotational angular velocity.  Therefore, the Sagnac effect between two points A and B is 
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where A is the perpendicular projection of the area formed by the center of rotation and the endpoints of 
the light path. For endpoints at (xA , yA) and (xB , yB), the Sagnac effect may be expressed 

        ( )Sagnac 2 2

2
A B A B

At x y y x
c c
ω ωΔ = = − . 

In the case of a receiver at rest on the Earth, an observer in the ECEF frame regards the receiver as 
stationary and applies the Sagnac correction.  However, an observer in the ECI frame sees that the 
receiver has moved due to the Earth’s rotation during the signal time of flight and instead applies a 
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propagation time correction due to the additional path length.  The term “Sagnac effect” is part of the 
vocabulary of only the observer in the rotating reference frame.  The corresponding correction applied by 
the inertial observer might be called a “velocity correction.”  While the interpretation of the correction is 
different in the two frames, the numerical value is the same in either frame. 
 
 
RELATIVISTIC  EFFECTS  ON  SATELLITE  CLOCKS  AND  SIGNALS 
 
THE  GLOBAL  POSITIONING  SYSTEM 
The GPS has served as a laboratory for doing relativity physics.  The consistent application of relativity to 
time and position measurements has been demonstrated by the operational precision of the system and by 
numerous experiments designed to test the individual effects over a wide range of conditions.  The GPS 
provides a model for the application of relativity algorithms to similar applications across a broad 
spectrum of timekeeping systems.  The relativistic effects encountered in the GPS illustrate that the 
effects that must be considered are not negligible.  The satellites transmit one-way pseudorandom noise 
(PRN) coded signals that are used for range and time measurements.  The signals are referenced to 
onboard atomic clocks.  For measurements with a precision at the 1-to-10 nanosecond level, there are 
three relativistic effects that must be considered. 

First, there is the effect of time dilation.  The velocity of a moving clock causes it to appear to run slow 
relative to a clock on the Earth.  GPS satellites revolve around the Earth with an orbital period of 11.967 
hours and a velocity of 3.874 km/s.  Thus, on account of its velocity, a GPS satellite clock appears to run 
slow by 7 μs per day. 

Second, there is the effect of the gravitational redshift, a frequency shift caused by the difference in 
gravitational potential.  (The term “redshift” is generic, regardless of sign, but for a satellite clock the 
frequency shift is actually a “blueshift.”)  The difference in gravitational potential between the altitude of 
the orbit and the surface of the Earth causes the satellite clock to run fast.  At an altitude of 20,184 km, 
the clock runs fast by 45 μs per day. 

The net effect of time dilation and gravitational redshift is that the satellite clock runs fast by 
approximately 38 μs per day when compared to a similar clock at rest on the geoid, including the effects 
of the Earth’s rotation and the gravitational potential at the Earth’s surface.  This is an enormous rate 
difference for a clock that maintains time with a precision of a few nanoseconds over a day.  To 
compensate for this large secular effect, the clock is given a fractional rate offset prior to launch of 
− 4.465 ×10−10 from its nominal frequency of exactly 10.23 MHz, so that when in orbit its average rate is 
the same as the rate of a clock on the ground.  The actual frequency of the satellite clock prior to launch is 
thus 10.229 999 995 43 MHz. 

Although GPS satellite orbits are nominally circular, there is always some residual eccentricity.  The 
eccentricity causes the orbit to be slightly elliptical.  Thus, the velocity and gravitational potential vary 
slightly over one revolution and, although the principal secular effect is compensated by a rate offset, 
there remains a small residual variation that is proportional to the eccentricity.  For example, with an 
orbital eccentricity of 0.02, there is a relativistic sinusoidal variation in the apparent clock time having an 
amplitude of 46 ns at the orbital period.  This correction must be calculated and taken into account in the 
user’s receiver. 

The third relativistic effect is the Sagnac effect.  For a stationary terrestrial receiver on the geoid, the 
Sagnac correction can be as large as 133 ns (corresponding to a GPS signal propagation time of 86 ms 
and a velocity of 465 m/s at the equator in the ECI frame).  This correction is also applied in the receiver. 

Higher-order effects not presently modeled in the GPS include the Earth oblateness contribution to the 
gravitational redshift, the tidal potentials of the Moon and Sun, and the effect of the gravitational potential 
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on the speed of signal propagation.  When satellite cross links are implemented in the future, the orbital 
eccentricity effect will have to be taken into account at both the transmitter and receiver. 

OTHER  SATELLITES  IN  EARTH  ORBIT 
To illustrate their orders of magnitude, the relativistic effects on clocks and signal propagation for a 
variety of Earth orbiting satellites are compared in Table 1. 

 
Table 1.  Relativistic effects on clocks and signals for satellites in Earth orbit. 

 
Constants        
Velocity of light m/s 299 792 458      
Gravitational constant of Earth km3/s2 398 600.44      
Radius of Earth km 6378.137      
J2 oblateness coefficient  0.0010826      
Angular velocity of Earth rotation rad/s 7.292 × 10−5      

Geopotential on geoid U0 m2/s2 6.264 × 107      

U0/c2  -6.969 × 10−10      
Satellite orbital properties        
Satellite  ISS GLONASS GPS Galileo Molniya GEO 
Semimajor axis km 6766 25510 26561.8 29994 26562 42164 
Eccentricity  0.01 0.02 0.02 0.02 0.722 0.01 
Inclination deg 51.6 64.8 55.0 56.0 63.4 0.1 
Argument of perigee deg 0 0 0 0 250 0 
Apogee altitude km 456 19642 20715 24216 39362 36208 
Perigee altitude km 320 18622 19652 23016 1006 35364 
Ascending node altitude km 320 18622 19652 23016 10507 35364 
Period of revolution s 5539 40549 43082 51697 43083 86164 
Mean motion rev/d 15.6 2.1 2.0 1.7 2.0 1.0 
Mean velocity km/s 7.675 3.953 3.874 3.645 3.874 3.075 
Clock effects        
Secular time dilation μs/d -28.2 -7.4 -7.1 -6.3 -7.1 -4.4 
Secular redshift μs/d 3.5 45.1 45.7 47.3 45.7 51.0 
Net secular effect μs/d -24.7 37.7 38.6 41.1 38.6 46.6 
Amplitude of periodic effect due to 
eccentricity ns 12 45 46 49 1653 29 
Secular oblateness contribution to 
redshift ns/d 23.7 0.8 0.5 0.4 2.5 -0.1 
Amplitude of periodic effect due to 
oblateness ps 264 50 38 33 167 0 
Amplitude of periodic tidal effect of 
Moon ps 0.0 1.0 1.2 1.8 1.2 6.1 
Amplitude of periodic tidal effect of 
Sun ps 0.0 0.5 0.5 0.8 0.5 2.7 
Signal propagation        
Maximum Sagnac effect ns 13 131 136 155 234 218 
Gravitational propagation delay 
along radius ps 0.8 -3.5 -4.7 -9.1 -4.7 -27.3 
Amplitude of periodic fractional 
Doppler shift 10-12 13.1 7.0 6.7 5.9 241.1 2.1 
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RELATIVISTIC  TRANSFORMATION  FROM  MARS  TO  EARTH 
 
For clocks in communication and navigation systems used for space exploration, analogous corrections 
are required.  Thus, appropriate relativistic transformations are necessary in transferring time from one 
frame of reference to another, for example between a clock on Mars to a clock on Earth.  Reference data 
used in these calculations are summarized in Table 2. 
 
 

Table 2.  Reference data for the Sun, Earth, and Mars. 
 

 
 

The analysis of time transfer must be carried out in a common coordinate system.  A convenient 
coordinate system is one whose origin is at the solar system barycenter.  The corresponding coordinate 
time is called Barycentric Coordinate Time (TCB).  For time transfer between Mars and Earth, two 
transformations are required.  The first transformation is from Terrestrial Time (TT) to Barycentric 
Coordinate Time (TCB).  The second is from Barycentric Coordinate Time (TCB) to Mars Time (MT).  
The coordinate time TCB is an intermediate variable that ultimately cancels out.  These transformations 
are illustrated schematically in Figure 1. 
 
BARYCENTRIC  COORDINATE  TIME  -  TERRESTRIAL  TIME 
The elapsed coordinate time Δt in a barycentric coordinate system corresponding to the proper time Δτ 
maintained by a clock, having an arbitrary position and velocity in this coordinate system, is 

Mass 
 Sun    1.9891 × 1030 kg 
 Earth    5.9742 × 1024 kg 
 Mars    0.6419 × 1024 kg 

Planetary radius 
 Earth    6378 km 
 Mars    3397 km 

Orbital semimajor axis 
 Earth    1.000 AU = 1.496 × 108 km 
 Mars    1.524 AU = 2.279 × 108 km 

Orbital period 
 Earth    365.2422 d 
 Mars    686.9297 d 

Average orbital velocity 
 Earth    29.8 km/s 
 Mars    24.1 km/s 

Orbital eccentricity 
 Earth    0.0167 
 Mars    0.0934 

Speed of light    299,792,458 m/s (exact) 

Gravitational constant   6.6726 × 10−11m3 / kg s2 
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where r and v are the barycentric position and velocity of the clock and U(r) is the gravitational potential 
of all the bodies in the solar system (including the Earth) evaluated at the clock.  The integral depends on 
the position and velocity of the clock in the barycentric coordinate system.  The coordinate time Δt is 
identified with TCB. 
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Figure 1.  Relativistic time transformations. 
 

 
It is desirable to separate the clock–dependent part from the clock–independent part. In this 
approximation, one may express r and v as E= +r r R  and E= +v v R& , where rE and vE are the 

barycentric position and velocity of the Earth’s center of mass, and R  and R&  are the geocentric position 
and velocity of the clock, as illustrated in Figure 2.  The total potential at position r is 

U(r) = UE(r) + Uext(r) 

where UE is the Newtonian potential of the Earth and Uext is the external Newtonian potential of all of the 
solar system bodies apart from the Earth.  The external potential may be expressed 
 

ext ext ext( ) ( )EU U U≈ + ∇ ⋅r r R  
Also, 
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is the Earth’s acceleration in the barycentric coordinate system.  Substituting these expressions into the 
integral, one obtains 

[ ] ( )
0

2 2
2 2

1 1 1 11 ( ) ( ) | |
2 2E ext E ext E E E

dU U U v d
c c dt

τ

τ

τ
⎧ ⎫⎡ ⎤+ + + ∇ ⋅ + + ⋅ − ⋅ +⎨ ⎬⎢ ⎥⎣ ⎦ ⎭⎩

⌠
⎮
⌡

r r R R v R a R& . 

 
 

Figure 2.  Geometry of clock, Earth, and solar system barycenter. 

The gravitational acceleration terms extU∇ ⋅R  and E⋅R a  cancel out.  Thus, as UE(r) = UE(R) 
(they refer to the same point), the elapsed coordinate time is   
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This equation is completely general, regardless of the position of the clock.  The first term is the proper 
time measured by the clock.  The second term is due to the combined redshift and time dilation effects at 
the geocenter with respect to the barycenter and is independent of the clock.  The third term is the time 
difference between a clock at the geocenter and a clock at position R with respect to the geocenter.  The 
fourth term depends on the clock’s velocity and position.  In the limit of flat space-time, it represents the 
special relativity clock synchronization correction in the moving geocentric frame when observed from 
the barycentric frame.  The cancellation of the two acceleration terms is a manifestation of the Principle 
of Equivalence for a freely falling frame of reference.  That is, the Earth constitutes a freely falling frame 
in its orbit about the Sun. 

The coordinate time scale of Terrestrial Time (TT) is equivalent to the proper time kept by a hypothetical 
clock on the geoid.  This timescale is related to International Atomic Time (TAI) by the equation 

 

The constant offset represents the difference between Ephemeris Time (an obsolete Newtonian timescale 
used for astronomical ephemerides which has been superseded by TT) and TAI at the defining epoch of 
TAI on 1 January 1958.  For an actual clock at rest at an elevation h above the geoid where the local 
acceleration of gravity is g, the relation between TT and the proper time reading Δτ of the clock is 

2TT (1 / )t g h c τ′= Δ = − Δ  

The transformation from TT to Geocentric Coordinate Time (TCG) is 

 

where W0E is the Earth’s geopotential, LG ≡ W0E  / c2 = 6.969 290 134 × 10−10 ≅ 60.2 μs/d, and ΔT is the 
time elapsed since 1 January 1977 0 h TAI (JD 2443144.5). 

In the general equation above, the first integral may be calculated by numerical integration or it may be 
represented by an analytical formula.  It is expressed as the sum of a secular term LC  ΔT and periodic 
terms P.  For a clock on the geoid the second integral is simply W0E Δt .  Thus for a clock on the geoid  
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where LC  = 1.480 826 867 41 × 10−8 ≅ 1.28 ms/d.  The diurnal term has a maximum amplitude of 2.1 μs 
(for a clock on the equator).  The leading terms in the evaluation of the integral are 

 

 

 
where GMS is the gravitational constant of the Sun, and where aE  and eE are the Earth’s orbital semimajor 
axis and eccentricity.  The first term is an approximation to LC ΔT.  The second term is the principal 
periodic term in P, which has amplitude of 1.7 ms. 
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BARYCENTRIC  COORDINATE  TIME  -  MARS  TIME 

By an analogous derivation, one finds that the transformation from Barycentric Coordinate Time (TCB) 
to Mars Time (MT) is given by 
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where LCM = 0.972 × 10−8 ≅ 0.84 ms/d, LM ≡ W0M  / c2 = 1.403 × 10−10 ≅ 12.1 μs/d, W0M is the areopotential 
(“geopotential” on Mars), P represents periodic terms, and MR  is the areocentric position of the clock on 
the surface of Mars.  The diurnal term has a maximum amplitude of 0.9 μs.  The leading terms in the 
integral are 

 

 

where GMS is the gravitational constant of the Sun, and where aM  and eM are the Mars orbital semimajor 
axis and eccentricity.  The first term is an approximation to LCM ΔT.  The second term is the principal 
periodic term in P, which has amplitude of 11.4 ms. 

NET  EFFECTS:   MARS  TIME  -  TERRESTRIAL  TIME 

The results of these calculations are summarized in Table 3.  The difference in the readings of a clock on 
the surface of Mars and a clock on the surface of the Earth has both secular and periodic terms.  The 
difference between Mars Time (MT) and Terrestrial Time (TT) is 

MT – TT = (TCB – TT)  –  (TCB – MT) 

The net secular drift is (1.28 ms/d + 0.06 ms/d) – (0.84 ms/d + 0.01 ms/d) = 0.49 ms/d.  The amplitudes of 
the periodic variations are: (a) 1.7 ms at the Earth orbital period (365.2422 d); (b) 11.4 ms at the Mars 
orbital period (687 d).  Therefore, in the transfer of time between a clock on Mars and a clock on the 
Earth, there are both secular and periodic effects that are on the order of 1 to 10 milliseconds.  For a 
navigation ranging system referenced to a clock on Mars and an ephemeris referenced to clocks on Earth, 
the radial position error could be as much as 3,000 km if the relativistic effects were not modeled. 
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Table 3.  Principal relativity effects for time transfer between Mars and Earth. 

  Geoid to Geocenter 
  Secular drift     60.2 μs/d 
  Maximum amplitude of diurnal term  2.1 μs 

  Geocenter to Barycenter 
  Secular drift     1.28 ms/d 
  Amplitude of principal periodic term  1.7 ms 

 Mars surface to Mars center 
  Secular drift     12.1 μs/d 
  Maximum amplitude of diurnal term  0.9 μs 

 Mars center to Barycenter 
  Secular drift     0.84 ms/d 
  Amplitude of principal periodic term  11.4 ms 

 

 

RELATIVISTIC  TRANSFORMATION  FROM  THE  MOON  TO  EARTH 
For time transfer from the surface of the Moon to the surface of the Earth, the procedure is similar, but the 
relative magnitudes of the terms are different.  A convenient coordinate system is one whose origin is at 
the center of the Earth.  (The motion of the Earth’s center about the center of mass of the Earth-Moon 
system will be neglected.)  As above, the difference between Geocentric Coordinate Time and Terrestrial 
Time is 

 

where LG = 60.2 μs/d.  But in addition, TCG is related to Lunar Time (LT), the proper time measured by 
clocks on the Moon’s surface, by the equation 
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Reference data for the Moon are summarized in Table 4. 
   
 

TCG TT GL T− = Δ
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Table 4.  Reference data for the Moon. 

 

Mass     0.07353 × 1024 kg 

Radius     1738.2 km 

Orbital semimajor axis   384,400 km 

Orbital eccentricity   0.05490 

Average orbital velocity   1.023 km/s 

Distance of geocenter from barycenter 4671 km 

                                            

 

Thus LCm = 1.731 × 10−11 = 1.5 μs/d, 2(2 / ) 0.48 μsE m mc GM a e = , and Lm = 3.141 × 10−11 = 2.7 μs/d. 
The difference between Lunar Time (LT) and Terrestrial Time (TT) is 

    LT – TT = (TCG – TT)  –  (TCG – LT) 

The net secular drift rate is 60.2 μs/d – (1.5 μs/d + 2.7 μs/d) = 56.0 μs/d and the amplitude of the periodic 
effect is 0.48 μs at the Moon’s orbital period (27.3 d). 

 

TIME  EPHEMERIS  AND  THE  PLANETARY  EPHEMERIDES 

Another coordinate time of interest is Time Ephemeris teph , which is a solar system barycenter coordinate 
time that has been rescaled to have the same secular rate as TT.  This relativistic coordinate time is used 
in the planetary and satellite ephemerides published by the Jet Propulsion Laboratory.  (Although it has a 
similar name, it is not related to the Newtonian scale of Ephemeris Time.)  This definition of time 
changes the secular rates of coordinate time by subtracting the quantity LG + LC = 1.551 × 10−8 = 1.34 
ms/day from the given secular rates.  Using the recent DE410 ephemeris published by JPL, numerical 
results of the difference between proper time and Time Ephemeris for a Mars lander is shown in Figure 3.  
The simulations are for 6 years and begin on the J2000 epoch of 1 January 2000.  The results clearly show 
a large 11.4 ms periodic term for a clock on Mars.  The results also show that relativistic time calculations 
at Mars must account for the secular rate difference between in-situ clocks and Earth clocks. 

 

 

 



38th Annual Precise Time and Time Interval (PTTI) Meeting 

 317

 
 

 
Figure 3.  Secular and periodic relativistic effects, proper time – coordinate time (seconds), 
for a Mars lander using Time Ephemeris as the coordinate time. 

 
CONCLUSION 

Transformations between clocks operating on the Earth and clocks at Mars or on the Moon will become 
an essential activity for future space missions.  The analysis of this paper has shown that the relativistic 
effects at Mars are comprised of a secular rate difference of about 0.49 ms/d and periodic variations with 
amplitudes of 1.7 ms and 11.4 ms relative to Earth-based clocks.  The secular effect for the Moon is about 
an order of magnitude less.  Accurate time transfer in the solar system for communications and navigation 
systems requires the consideration of these relativistic effects. 
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