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Abstract— The 3-state unbiased finite impulse response (FIR)
filter and the 3-state Kalman filters are investigated for the time
interval error (TIE) K-degree polynomial model of a local crystal
clock in GPS-based timekeeping in presence of the sawtooth noise
induced by the receiver. We show that both algorithms produce
consistent estimates for the reference (rubidium) measurements.
We also demonstrate that the unbiased FIR algorithm produces
a lower error than the standard Kalman filter in presence of the
sawtooth noise.

I. INTRODUCTION

Fast and accurate estimation and adjustment of a local clock
performance, making possible for a variety of modern digital
systems to operate in common time with minimum “slips”, is
of importance for the Global Positioning System (GPS)-based
timekeeping [1], [2]. To obtain filtering in an optimum way,
the time interval error (TIE) model of a local clock must be
known for the filter memory. In the discrete time, such a model
[3] may be written as

x1(n) = x1(0) + x2(0)τn +
x3(0)

2
τ2n2 + w1(n, τ) , (1)

where n = 0, 1, ...; τ = tn − tn−1 is a time step multiple
to the 1 s; tn is a discrete time; x1(0) is an initial time
error; x2(0) is an initial fractional frequency offset of a local
clock from the reference frequency; x3(0) is an initial linear
fractional frequency drift rate; and w1(n, τ) is a random
component caused by the oscillator noise and environment.

In GPS-based measurements, the TIE model is observed via
the mixture ξ1(n) = x1(n)+v1(n), in which v1(n) is a noisy
component induced at the receiver (noise of a measurement set
is usually small). In modern receivers [4], a random variable
v1(n) is uniformly distributed owing to the sawtooth noise
caused by a principle of the 1 PPS (one pulse per second)
signal formation.

To estimate the states of the clocks, we have studied several
filtering algorithms [5]–[12], among which, an unbiased mov-
ing average filter for the linear clock model was proposed in
[11]. An unbiased approach was then generalized in the finite
impulse response (FIR) unbiased filtering algorithms [12] for
the clock model of the K-degree.

In this paper, we investigate the 3-state unbiased FIR
filtering algorithm for the GPS-based measurements of the TIE
model of a local crystal clock in presence of the sawtooth noise
induced by the receiver. We also apply the 3-state standard
Kalman filter and compare the results obtained with two these
algorithms.

II. THREE-STATE UNBIASED FIR FILTERING ALGORITHM

Here we present the TIE clock model and the unbiased FIR
filtering algorithm as they are described in [12].

A. TIE clock model

Most commonly, the TIE polynomial model projects ahead
on a horizon of N points from the start point n = 0 with the
K-degree Taylor polynomial

x1(n) =
K∑

p=0

xp+1
τpnp

p!
+ w1(n, τ)

= x1 + x2τn +
x3

2
τ2n2 +

x4

6
τ3n3... + w1(n, τ) , (2)

where xl+1 ≡ xl+1(0), l ∈ [0,K], are initial states of the clock
and w1(n, τ) is a noise with known properties. By extending
the time derivatives of the TIE model to the Taylor series, the
signal and observation equations become, respectively,

λ(n) = A(n)λ(0) + w(n, τ) , (3)

ξ(n) = Cλ(n) + v(n) , (4)

where λ(n) = [x1(n)x2(n)...xK+1(n)]T is a vector [(K +
1)×1] of the clock states and a time-varying transition matrix
[(K + 1) × (K + 1)] is

A(n) =

⎡
⎢⎢⎢⎢⎣

1 τn τ2n2/2 ... (τn)K/K!
0 1 τn ... (τn)K−1/(K − 1)!
0 0 1 ... (τn)K−2/(K − 2)!
... ... ... ... ...
0 0 0 ... 1

⎤
⎥⎥⎥⎥⎦

.

(5)
For M = K − 1, the observation vector is ξ(n) =

[ξ1(n)ξ2(n)...ξM (n)]T and a measurement matrix C of [(K+

6680-7803-9052-0/05/$20.00 © 2005 IEEE.



Fig. 1. Structure of the (K + 1)-State unbiased FIR filtering algorithm for
the K-degree TIE polynomial model observable with a single GPS timing
receiver.

1) × (K + 1)] is typically unit. The clock noise vector is
w(n, τ) = [w1(n, τ)w2(n, τ)...wK+1(n, τ)]T with the com-
ponents caused by the oscillator noises. Finally, the noise
vector v(n) = [v1(n)v2(n)...vM (n)]T contains correlated or
uncorrelated components that are not obligatory Gaussian. The
GPS noise v(n) dominates on a horizon N ; that is, typically,
〈w2

u(n, τ)〉N << 〈v2
l (n)〉N . Therefore, w(n, τ) is neglected

in the FIR procedure [12]. Note that the TIE noise cannot be
discarded in the Kalman algorithm.

B. Three-state unbiased FIR filtering algorithm

The algorithm is illustrated in Fig. 1. The clock first state
estimate x̂1(n) is obtained with hK(i) at a horizon of NK

points. The observation ξ2(n) for the second state x2(n)
is then formed by increments of x̂1(n). Accordingly, x̂2(n)
is achieved with hK−1(i) at a horizon of NK−1 points.
Inherently, the first accurate value of x̂2(n) appears at (NK +
NK−1 − 2)th point starting from n = 0. Finally, the last
state estimate x̂K+1(n) is calculated with h0(i) at a horizon
of N0 points, using ξK+1(n) that is formed in the same
manner as ξ2(n). The first correct value of x̂K+1(n) appears
at (NK + NK−1 + ... + N0 − K − 1)th point.

For the quadratic TIE model, K = 2, associated with crystal
clocks, the 3-state unbiased FIR batch algorithm becomes

x̂1(n) =
N2−1∑
i=0

h2(i)ξ1(n − i) , (6)

x̂2(n) =
1
τ

N1−1∑
j=0

h1(j)[x̂1(n − j) − x̂1(n − j − 1)] , (7)

x̂3(n) =
1

τN0

N0−1∑
r=0

[x̂2(n − r) − x̂2(n − r − 1)] , (8)

where the unique FIRs h2(i) and h1(i) are given by, respec-
tively,

h1(i) =
2(2N − 1) − 6i

N(N + 1)
, (9)

h2(i) =
3(3N2 − 3N + 2) − 18(2N − 1)i + 30i2

N(N + 1)(N + 2)
, (10)

III. THREE-STATE KALMAN FILTERING ALGORITHM

In the state space, the TIE model (1) is given by
⎡
⎣

x(n)
y(n)
z(n)

⎤
⎦

⎡
⎣

1 τ τ2/2
0 1 τ
0 0 1

⎤
⎦

⎡
⎣

x(n − 1)
y(n − 1)
z(n − 1)

⎤
⎦ +

⎡
⎣

w1(n, τ)
w2(n, τ)
w3(n, τ)

⎤
⎦ , (11a)

x(n) = Ax(n − 1) + w(n, τ) , (11b)

and (5) becomes, assuming a single receiver,

ξ(n) =
[

1 0 0
]
⎡
⎣

x(n)
y(n)
z(n)

⎤
⎦ + v(n) , (12a)

ξ(n) = Cx(n) + v(n) , (12b)

The noises w(n, τ) and v(n) are mean zero and jointly
uncorrelated. The sawtooth noise v(n) has a uniform dis-
tribution p(v) = 1/2vmax and correlated increments. Its
white Gaussian approximation has a variance V = σ2

v =
1

2vmax

∫ vmax

−vmax
v2dv = v2

max/3. The autocorrelation matrix of
the white Gaussian noise w(n) is given by

Ψ = τ

⎡
⎢⎣

q1 + q2τ2

3 + q3τ4

20
q2τ
2 + q3τ3

8
q3τ2

6
q2τ
2 + q3τ3

8 q2 + q3τ2

3
q3τ
2

q3τ2

6
q3τ
2 q3

⎤
⎥⎦ , (13)

in which the diffusion coefficients q’s, namely q1, q2, and q3,
specify the white FM noise (WHFM), white random walk FM
noise (WRFM), and white random run FM noise (RRFM),
respectively, in the τ -domain power law.

The linear Kalman filtering algorithm reads as follows.
Enter the q’s, Rn−1, and x̂n−1 and then calculate recursively:

R̃n = ARn−1AT + Ψ , (14)

Kn = R̃nCT (CR̃nCT + V )−1 , (15)

x̂n = Ax̂n−1 + Kn(ξn − CAx̂n−1) , (16)

Rn = (I − KnC)R̃n . (17)

Below, we employ the 3-state unbiased FIR algorithm (6)–
(8) and the 3-state Kalman algorithm (14)–(17) to estimate
the TIE model of an oven crystal clock embedded to the
Stanford Frequency Counter SR620. The measurement is done
with the GPS timing sensor SynPaQ III and SR620 for τ =
1 s (GPS-measurement). Simultaneously, to get a reference
trend, the TIE of the same crystal clock is measured, by
SR625, for the rubidium clock (Rb-measurement). Initial time
and frequency shifts between two measurements are then
eliminated statistically and a transition to τ = 10 s is provided
by the data thinning in time. At the early stage, the TIE model
was identified to be quadratic, K = 2. Then Nl and q′s were
determined for the FIR and Kalman algorithms, respectively,
in the minimum MSE sense.
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IV. MEASUREMENTS AND ESTIMATIONS

A. Several Hours Measurements

In this experiment, a short-term measurement of the TIE
has been done during several hours (Fig. 2a). The algorithm
then was run. The horizons were identified for τ = 10s
to be N1 = 155 or 0.43 hours, N2 = 950 or 2.64 hours,
and N3 = 860 or 2.39 hours for the Rb-measurements.
Thereafter, we set the values of q’s in the Kalman filter to
obtain the minimum MSEs for the FIR estimates. Figure 2 and
Table I illustrate these studies, showing that the unbiased FIR
estimates, x̂1(n), x̂2(n), and x̂3(n), and the relevant Kalman
estimates, x̂(n), ŷ(n), and ẑ(n), respectively, are consistent
with, however, some differences.

It follows from Table I that the FIR filter works accurately.
Figure 2a shows that x̂1(n) and x̂(n) track the mean value
of the GPS-measurement and that their offsets from the Rb-
measurement are coursed mostly by the GPS time uncertainty.
In this experiment, a maximum estimate error of about 60 ns
was indicated between 8th and 9th hours when a time shift in
the 1 PPS signal has occurred.

In follows (Fig. 2b) that x̂2(n) and ŷ(n) fit well the
weighted by 1/τ increments of the Rb-measurement. Even
so, there are two special ranges (dashed). In the range I,
the frequency shift of about 3 × 10−11 has occurred in the
span between 7th and 8th hours and no appreciable error is
indicated in a range of large time shifts (between 8th and 9th
hours in Fig. 2a). We associate it with the frequency shift
in SR625. In the range II, the Kalman filter demonstrates a
brightly pronounced instability caused likely by the temporary
model uncertainty, whereas the FIR estimate is still consistent.

We watch for a bit shifted trends of x̂3(n) and ẑ(n) in Fig.
2c that may be explained by some inconsistency between the
q’s and Nl. It is also seen that ẑ(n) traces much upper x̂3(n)
after about 8.7 hours. We associate it with the Kalman filter
instability, like the case of a range II in Fig. 2a.

The experiment was repeated for τ = 1 s. The results are
presented in Table II to mention that, on the whole, the picture
(Fig. 2) remains the same. The only principle point to notice
is that the Allan deviations of all estimates are reduced by a
large number of the points. The FIR and Kalman estimates
behave here closer to each other, even though the former is
still more accurate with its lower error and much lower Allan
variance.

B. Long-Term Measurements

The same crystal clock was later examined during about 2.5
days using only the unbiased FIR filter. The measurements
inherently show oscillations caused by day’s variations in
temperature and, like the previous case, all FIR estimates fit
well the Rb-measurement. Employing x̂2(n), the temperature
drift was estimated to be about 2 × 10−10 (14 to 24 ◦C) and
x̂3(n) calculates the aging rate by 〈x̂3(n)〉 = 0.4×10−10/day.

V. CONCLUSIONS

We investigated an unbiased FIR filter for the GPS-based
measurements of the TIE K-degree polynomial model of a

Fig. 2. Short-time measurement and estimation of the crystal clock
TIE model with the 3-state unbiased FIR algorithm and the 3-state
Kalman filter: (a) TIE, (b) fractional frequency offset, and (c) linear
fractional frequency drift rate.

TABLE I

AVERAGE ERROR (ERROR) AND ALLAN DEVIATION (σ) OF THE

ESTIMATE (EST) FOR 9.7 HOURS AND τ= 10 S : F IS FIR AND K IS

KALMAN. ERRORS ARE GIVEN FOR RB-MEASUREMENTS

Est x, ns y, 10−12 D, 10−16/s
error σx(10) error σy(10) error σD(10)

F 2.8313 1.3786 1.4852 0.6399 4.1660 1.0206
K 3.1295 1.3627 2.5698 0.7025 5.3121 1.3881
K-F 0.2977 1.0846 1.1461
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TABLE II

AVERAGE ERROR (ERROR) AND ALLAN DEVIATION (σ) OF THE

ESTIMATE (EST) FOR 9.7 HOURS AND τ= 1 S : F IS FIR AND K IS

KALMAN. ERRORS ARE GIVEN FOR RB-MEASUREMENTS

Est x, ns y, 10−12 D, 10−16/s
error σx(1) error σy(1) error σD(1)

F 2.8127 0.1374 1.5638 0.0641 19.147 0.1037
K 2.8965 0.3956 2.4924 0.2131 20.346 0.4315
K-F 0.0838 0.9286 1.1990

Fig. 3. Long-term measurement and estimation of the crystal clock TIE with
the 3-state unbiased FIR algorithm: (a) TIE, (b) fractional frequency offset,
and (c) linear fractional frequency drift rate.

local crystal clock. The trade-off between the 3-state unbiased
FIR algorithm and the 3-state standard Kalman algorithm has
shown their consistency. However, as it was demonstrated
experimentally, the FIR filter produces a smaller error and a
lower Allan variance for the sawtooth noise.
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