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Besançon, France

François Vernotte
Observatoire de Besançon
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Abstract— A frequency counter measures the input frequency
ν averaged over a suitable time τ , versus the reference clock. Be-
side clock interpolation, modern counters improve the resolution
by averaging multiple measurements highly overlapped. In the
presence of white noise, the overlapping technique improves the
square uncertainty from σ2

ν ∝ 1/τ 2 to σ2
ν ∝ 1/τ 3. This is im-

portant because the input trigger integrates white noise over the
full instrument bandwidth, which is usually of at least 100 MHz.
Due to insufficient technical information, the general user is in-
clined to make the implicit assumption that the counter takes the
bare mean. After explaining the overlapped-average mechanism,
we prove that feeding a file of contiguous data into the formula of
the two-sample (Allan) variance σ2

y(τ ) = E{ 1
2
(yk+1 − yk)2}

gives the modified Allan variance mod σ2
y(τ ). This conclusion is

based on the mathematical reverse-engineering of the formulae
found in technical specifications. More details are available
on the web site arxiv.org, document arXiv:physics/0411227 [1].
Our purpose is to warn the experimentalists against possible
mistakes, and to encourage the manufacturers to explain what
the instruments really do.

LIST OF MAIN SYMBOLS

as in ν, time average (over the duration τ )
E statistical expectation
T period, T = 1/ν
v(t) signal (voltage), time domain
w weight function
x phase time, i.e., phase noise converted into time
y fractional frequency fluctuation, y = ẋ
ν frequency
ν00 nominal frequency (ν0 in the general literature)
σ2

y(τ) variance, Allan variance, modified Allan variance
τ measurement time

The notation used in this article is that of general literature
on phase noise and frequency stability. The reader can find an
introduction and an extensive digression in Reference [2].

I. CLASSICAL RECIPROCAL COUNTERS

Figure 1 shows the basic scheme of a reciprocal frequency
counter. The binary counter counts the number M of clock
pulses that fit in N periods of the input signal. The counter
measures the period T = 1

νc

M
N averaged on τ , and displays

the frequency ν = N
M νc. Interchanging the role of ν and νc,

the counter—no longer reciprocal—measures (and displays)
the average frequency ν. The reciprocal scheme has the
advantage of higher resolution for the following reasons.
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Fig. 1. Basic reciprocal frequency counter.
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Fig. 2. Rectangular averaging mechanism in simple frequency counters.

1) The clock frequency can be close to the maximum
toggling frequency of the technology employed. This
choice maximizes the number M of pulses counted in a
given time τ , and in turn offers the lowest quantization
uncertainty.

2) Interpolation techniques enable the measurement of a
fraction of a clock pulse (M is a rational number instead
of an integer). The interpolator works well at a clock
fixed frequency, not at the arbitrary input frequency. In
single-event measurement, the interpolation resolution
can be of 10 ps (2–2.5 mm of wavefront propagation
in a coaxial cable). An extensive digression on the
interpolation techniques is available in [3].

In the classical reciprocal counter, the uniform average over
the time interval τ is used as the estimator of the frequency
ν. The expectation of ν is

E{ν} =
∫ +∞

−∞
ν(t)wΠ(t) dt Π estimator (1)
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Fig. 3. Triangular averaging mechanism, implemented in some high-resolution frequency counters.

wΠ(t) =

{
1
τ 0 < t < τ

0 elsewhere
(2)

With reference to Fig. 2, the measurement of τ is affected
by the error x0 − xN that results from the trigger noise and
from the clock interpolator. The reference clock is assumed
ideal. The timing errors x0 and xN are independent. In fact,
x0 and xN are due to the interpolator noise, and to the noise of
the input trigger. The interpolator is restarted every time it is
used. The trigger noise spans from dc to the trigger bandwidth
B, which is at least the maximum operating frequency of the
counter. Due to the large input bandwidth (usually in excess
of 100 MHz), white noise is dominant. The autocorrelation
function of the trigger noise is a sharp pulse of duration TR ≈
1/B. Denoting with σ2

x the variance of x, the variance of τ
is 2σ2

x. Consequently, the classical variance of the fractional
frequency fluctuation is

σ2
y(τ) =

2σ2
x

τ2
. (3)

The counter output is a stream estimates, one every τ seconds.
As the measurement process takes τ , i.e., the duration of the
weight function wΠ, the estimates are independent.

II. ENHANCED-RESOLUTION RECIPROCAL COUNTERS

Looking at Fig. 2, there is a lot of unexploited information
in the zero-crossings between t0 and tn. More sophisticated
counters (Fig. 3) measure the frequency by taking a series
of n measures νi = N/τi delayed by iτ0 = iDT , where
τi = tN+iD − tiD , i ∈ {0, · · · , n − 1} is the time interval
measured from the (iD)-th to the (N + iD)-th zero crossings.
The expectation of ν is evaluated as the average

E{ν} =
1
n

n−1∑
i=0

νi where νi = N/τi . (4)

The above can be written as an integral similar to Eq. (1), but
for the weight function wΠ replaced with wΛ

E{ν} =
∫ +∞

−∞
ν(t)wΛ(t) dt Λ estimator . (5)

For τ0 � τ , wΛ approaches the triangular-shape function

wΛ(t) =




t
τ 0 < t < τ

2 − t
τ τ < t < 2τ

0 elsewhere

(6)

Nonetheless the integral (5) can only be evaluated as the sum
(4) because the time measurements take place at the zero
crossings. The measures νi are independent because the timing
errors xk , k ∈ {0, · · · , n − 1} are uncorrelated. In fact, the
interpolator is restarted every time is used, while the delay
τ0 is long as compared to the duration TR ≈ 1/B of the
autocorrelation function of the input white noise. The delay
τ0 is lower-bounded by the period T00 of the input signal and
by the conversion time of the interpolator. The latter may take
a few microseconds, which is significantly longer than 1/B.
The classical variance is

σ2
y(τ) =

1
n

2σ2
x

τ2
. (7)

At low input frequency, the delay τ0 is equal to T00, i.e., one
period. Thus D = 1, τ0 = T00, and n = N = ν00τ . Hence
Eq. (7) is rewritten as

σ2
y(τ) =

1
ν00

2σ2
x

τ3
. (8)

At high input frequency, the minimum delay τ0 is set by
the conversion time 1/νI of the interpolator, which limits the
measurement rate to νI measures per second. The number of
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overlapped measures is n = νIτ ≤ ν00τ , thus Eq. (7) becomes

σ2
y(τ) =

1
νI

2σ2
x

τ3
. (9)

The counter output is a stream of estimates, one every τ
seconds, while the measurement process takes 2τ . This means
that contiguous measures are overlapped by τ .

III. HOW TO IDENTIFY THE ESTIMATOR TYPE

It is to made clear that the enhanced resolution of the Λ-type
estimator can only be achieved with multiple measurements,
and that the measurement of a single event, like a start-stop
time interval, can not be improved in this way.

Searching through the technical information provided by
the manufacturers, one observes that the estimation problem
is generally not addressed. While in old frequency counters
(Π-type estimator), the measurement mechanism is sometimes
explained with a figure similar to Fig. 2, the explanation of the
overlapped measurements in the Λ-type estimator is not found.
As the counter provides an output value every τ seconds, the
experimentalist is led to believe that the estimation is always
of the Π type.

Due to the large input bandwidth, in actual cases white noise
is dominant. Thus the classical variance σ2

y(τ) follows either
the law 1/τ2 or the law 1/τ3. The law 1/τ2 [Eq. (3)] is a
mathematical property of the Π-type estimator; the law 1/τ3

[either Eq. (8) or Eq. (9)] is a mathematical property of the
Π-type estimator. Manufacturers usually provide formulae for
the rms error that look like

σy =
1
τ

√
2(δt)2trigger + 2(δt)2interpolator (10)

or

σy =
1

τ
√

n

√
2(δt)2trigger + 2(δt)2interpolator

n =

{
ν0τ ν00 ≤ νI

νIτ ν00 > νI

(11)

The actual formulae may differ slightly. For example the
standard deviation σy may be replaced with the “frequency
error” (δν)rms = ν00σy ; the uncertainty and the noise of
the reference νc may be included or not; the factor 2 in the
interpolator noise may appear explicitly or not. Nonetheless,
in all cases we should be able to identify a power-law of the
type σ2

y ∝ 1/τ2 or of the type σ2
y ∝ 1/τ3. For example,

the uncertainty Stanford Research Systems SR-620 [4, p. 27]
matches Eq. (10), for the internal estimator is of the Π type.
Conversely, the uncertainty Agilent Technologies 53132A [5,
pp. 3-5 to 3-8] matches Eq. (11), for the internal estimator is
of the Λ type.

IV. SAMPLE VARIANCES

The Allan variance σ2
y(τ) [6] is the expected variance of

two contiguous samples averaged over the time τ

σ2
y(τ) = E

{
1
2

[
yk+1 − yk

]2
}

. AVAR (12)

The above can be rewritten as

σ2
y(τ) = E

{[∫ +∞

−∞
y(t)wA(t) dt

]2
}

(13)

wA =



− 1√

2τ
0 < t < τ

1√
2τ

τ < t < 2τ

0 elsewhere

(14)

The modified Allan variance mod σ2
y(τ) [7], [8], [9] is

mod σ2
y(τ) = E

{
1
2

[
1
n

n−1∑
i=0

(
1
τ

∫ (i+2n)τ0

(i+n)τ0

y(t) dt +

− 1
τ

∫ (i+n)τ0

iτ0

y(t) dt

)]2
}

MVAR

(15)

with τ = nτ0. This variance was originally introduced in
the domain of optics [7] because it divides white phase noise
from flicker phase noise, which the AVAR does not. This is
often useful in fast measurements. MVAR is also related to
the sampling theorem and to the aliasing phenomenon [10],
[11] because the trigger samples the input process at a rate
1/τ0. For τ0 � τ , or equivalently for n � 1, it holds that

mod σ2
y(τ) = E

{[∫ +∞

−∞
y(t)wM (t) dt

]2
}

(16)

wM =




− 1√
2τ2 t 0 < t < τ

1√
2τ2 (2t − 3) τ < t < 2τ

− 1√
2τ2 (t − 3

)
2τ < t < 3τ

0 elsewhere

(17)

V. INTERPRETATION OF THE COUNTER DATA STREAM

Let us first remark that

wA(t) =
1√
2

[
wΠ(t − τ) − wΠ(t)

]
(18)

wM (t) =
1√
2

[
wΛ(t − τ) − wΛ(t)

]
(19)

This is easy to prove analytically by comparing Eq. (2) to
Eq. (14), and Eq. (6) to Eq. (17). A graphical proof is given
in Fig. 4. Secondly, let us point out that σ2

y(τ) [Eq. (12)] and
mod σ2

y(τ) [Eq. (16)] are formally identical but for the weight
function, which is wA(t) or wM (t). Thirdly, let us note that
wA(t) [Eq. (18)] and wM (t) [Eq. (19)] are formally identical
but for the weight function, which is wΠ(t) or wΛ(t). Joining
the above three facts, it follows that

if we feed the data stream yk from a Λ-type counter
in an algorithm intended to evaluate the Allan
variance σ2

y(τ) [Eq. (12)], the algorithm calcu-
lates exactly the modified Allan variance mod σ2

y(τ)
[Eq. (16)].
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