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Abstract— In a previous paper [4] we have introduced the
concept of dynamic Allan variance, an extension of the classical
Allan variance that is commonly used to evaluate the stability
of atomic clocks. The Allan variance assumes the stationarity of
the (increment of the) clock error signal, a condition that is valid
for ideal clocks only. For real clocks one has to pay attention in
the evaluation of the clock stability, because even for short time
intervals the clock can exhibit a nonstationary behavior. Possible
reasons for the lack of stationarity are sudden breakdowns, or, in
the long term, clock ageing. Even cyclostationary behaviors can
be observed due to daily or seasonal variation of temperature,
humidity and other physical quantities that have a direct influ-
ence on the clock behavior. The main purpose of the Dynamic
Allan variance is to describe the variation in time of the clock
stability. In this paper we give a mathematical definition of this
quantity. We apply our method to simulated data and to real data
coming from a Rubidium clock. The results are very interesting,
and they show that the proposed method can track and reveal
in a clear and intuitive manner the changes in the behavior of
atomic clock data.

I. INTRODUCTION

Atomic clocks and oscillators can vary their behavior with
time, due to sudden failures, aging, change in physical quanti-
ties that can influence the clock stability, such as temperature
and humidity. It is therefore important to introduce a repre-
sentation that can take into account the time-varying nature
of the stability of an oscillator. We have recently proposed
a new quantity, the dynamic Allan variance (DAVAR), that
is a representation of the instantaneous stability of an atomic
clock [4]. In that paper we gave a definition of the dynamic
Allan variance and then a practical way to estimate it from
experimental data. We have found out that the definition
and the estimator are actually different in nature! That is,
they correspond to different definitions of dynamic Allan
variance. This has suggested the idea that there is no unique
definition of instantaneous stability, but that there are instead
a variety of different ways of defining such concept. This
multiplicity of definitions is already well known in time-
frequency analysis [2], a field that characterizes signals with
time-varying frequencies.

A discussion of the two definitions of dynamic Allan
variance will be presented in a forthcoming paper. In this paper
we concentrate on the most intuitive definition of dynamic
Allan variance, which basically consists in sliding the Allan

variance on the random process that one wants to analyze.
In Sect. II we review the concept and notation for the Allan
variance. In Sect. III we define the sliding DAVAR and we
also give a practical formulation of a possible estimator. The
results are very interesting, and they are presented in Sect. IV
for simulated data and in Sect. V for experimental data.

II. THE ALLAN VARIANCE

Consider the common model for a signal generated by a
reference oscillator1

u(t) = (U0 + ε(t)) sin(2πν0t + φ(t)) (1)

An ideal oscillator would have ε(t) ≡ φ(t) ≡ 0, but in
reality what happens is that both the nominal amplitude U0

and frequency ν0 are affected by random fluctuations, ε(t)
and φ(t). It becomes hence fundamental to characterize the
stability of the reference signal, and especially its deviation
from the desired frequency value ν0, since the amplitude
deviation ε(t) is usually negligible. The Allan variance [1]
is the standard tool for the estimation of the stability of an
oscillator. Before reviewing its definition, let’s remember the
definition of the instantaneous frequency of the oscillator

ν(t) = ν0 +
1
2π

dφ(t)
dt

(2)

The quantity that is usually adopted is the fractional frequency
deviation

y(t) =
ν(t) − ν0

ν0
(3)

that is a (dimensionless) relative deviation from the nominal
frequency ν0. Another important quantity is the relative phase
deviation x(t), that satisfies

y(t) =
dx(t)

dt
(4)

Due to their fluctuating nature, the phase and frequency offset
are modelled as stochastic processes. The Allan variance is
a measure of the variation in time of y(t) over different

1We use bold letters for random quantities.
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observation intervals τ The general Allan variance is the time
average of the N -sample variance

σ2
y(N, T, τ ) =

〈
1

N − 1

N∑

k=1

(
ȳk −

N∑

l=1

ȳl

)2〉
(5)

where N is the number of samples of y(t), T = tk − tk−1 is
the distance between two consecutive measurements ȳk, ȳk−1,
and τ is the observation interval that generates the k-th
measurement

ȳk = ȳ(tk) =
1
τ

∫ tk

tk−τ

y(t)dt =
x(tk) − x(tk − τ )

τ
(6)

A special case is the 2-sample Allan variance, without dead-
time, that is obtained when N = 2 and T = τ

σ2
y(τ ) =

1
2
〈
∆(tk+1, τ )2

〉
(7)

where
∆(tk, τ ) = ȳtk+τ − ȳtk (8)

The time average 〈.〉 of Eq. (5) and Eq. (7) requires an
infinite number of samples. This implies that the stationarity
of ∆(tk+1, τ ) is necessary for the averaging - and hence the
variance - to converge in general.

Stationarity of a random variable means that its statistics
is invariant in time and hence does not depend on the time
instant t. In case of clock noises, the stationarity of the quantity
∆(tk+1, τ ) is ensured for white frequency and random walk
frequency noises, but other types of noises or sudden change
in the behavior do not necessarily ensure the stationarity of
∆(tk+1, τ ).

If we consider continuous measurements, analogous contin-
uous quantities are

∆(t, τ ) = hτ (t) ∗ y(t) (9)

=
∫ +∞

−∞
hτ (t − t′)y(t′)dt′ (10)

where the star sign indicates convolution and hτ (t) is the Allan
window defined as

hτ (t) =
{

− 1
τ 0 ≤ t < τ

1
τ −τ ≤ t < 0 (11)

III. THE DYNAMIC ALLAN VARIANCE

The most natural way to define the instantaneous stability
of a random process x(t) (representing the clock phase or
frequency deviation, or in general any stochastic process) is
to slide the Allan variance on the data. That is, to do the
following things:

1) Obtain the signal xT (t) by truncating the original signal
x(t) in an interval of duration T .

2) Estimate the Allan variance σ̂2
y(t, τ ) of xT (t).

3) Repeat from step 1 by truncating a different piece of
signal x(t).

The quantity σ̂y(t, τ ) can be interpreted as the instantaneous
stability of the process x(t). Its meaning is the average
stability of x(t) in the interval T . When we slide the interval

and we select another part of the signal, if x(t) is nonstationary
we will find in general a different stability. The collection of
the deviations σ̂y(t, τ ) is a representation of the instantaneous
stability of the clock. Our definition of the dynamic Allan
variance follows this simple concept. In particular, we will
now derive the dynamic Allan variance for the continuous time
case, and we will then examine a possible estimator of it.

A. Definition

We start with the random process y(t′), that is the frequency
deviation. We truncate the frequency deviation on the interval
t − T/2 ≤ t′ ≤ t + T/2

yT (t′) = y(t′)PT (t − t′) (12)

where PT (t) is the rectangular window defined as

PT (t) =
{

1, |t| ≤ T/2
0, elsewhere

(13)

We now build the increment process ∆(t, t′, τ ) by convolving
yT (t′) with the Allan window hτ (t)

∆(t, t′, τ ) =
∫

hτ (t′ − t′′)yT (t′′)dt′′

To avoid problems with the boundary of the window, we set

t − (T/2 − τ ) ≤ t′ ≤ t + (T/2 − τ ) (14)

0 < τ ≤ τM (15)

The value τM can be chosen for example as

τM = bT/3c (16)

where bc denotes the integer part rounded towards −∞. We
then average in time the squared increment, to obtain an
estimate of the sliding dynamic Allan variance

σ2
y(t, τ ) =

1
2
〈
∆2(t, t′, τ )

〉
(17)

=
1

2T

∫ t+T/2−τ

t−T/2+τ

∆2(t, t′, τ )dt′ (18)

This quantity is still a stochastic process. Therefore we define
the sliding dynamic Allan variance, or DAVAR, to be the
expectation value of this quantity

σ2
y(t, τ ) = E[σ2

y(t, τ )] (19)

=
1
2
E
[〈

∆2(t, t′, τ )
〉]

(20)

The sliding Allan variance is now defined as a deterministic
quantity for any t and τ values within the chosen range.

We can rewrite the DAVAR as a function of the phase offset
x(t). Because of Eq. (4), the increment from Eq. (6) can be
written as

∆(t, t′, τ ) =
1
τ

∫ t′+τ

t′
yT (t′′)dt′′ − 1

τ

∫ t′

t′−τ

yT (t′′)dt′′ (21)

=
1
τ

[xT (t′ + τ ) − 2xT (t′) + xT (t′ − τ )] (22)
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and hence

σ2
y(t, τ ) =

1
2τ2T

×
∫ t+T/2−τ

t−T/2+τ

E
[
(xT (t′ + τ ) − 2xT (t′) + xT (t′ − τ ))2

]
dt′

(23)

with
0 < τ ≤ τM (24)

which is the desired form.

B. Estimator

The dynamic Allan variance has been defined in Eq. (23) for
the continuous time case. One may ask whether it is possible
to estimate these quantities from experimental data. The way
the dynamic Allan variance has been defined leads directly to
the formulation of a continuous time estimator. The estimator
is

σ̂2
y(t, τ ) =

1
2τ2T

×
∫ t+T/2−τ

t−T/2+τ

(xT (t′ + τ ) − 2xT (t′) + xT (t′ − τ ))2 dt′ (25)

We immediately see that

σ2
y(t, τ ) = E

[
σ̂2

y(t, τ )
]

(26)

and hence the estimator is unbiased. With a single data
sequence we can estimate only one sample of dynamic Allan
variance σ̂2

y(t, τ ) and this single sample in the estimate of the
theoretical DAVAR.

IV. ANALYSIS OF SIMULATED DATA

In order to check the validity of our method, we have
applied the dynamic Allan variance to a set of simulated
nonstationary data. In particular we have considered three
basic cases:

1) White noise with a “jump”. A random phase process
x(t) is built by using the following model

x(t) = σ(t)w(t) (27)

where w(t) is a white noise with unit variance and σ(t)
is a function of time that takes two values

σ(t) =
{

σ1, t ≤ t0
σ2, t > t0

(28)

2) White noise with a “bump”. A random phase x(t) is
generated using the same model of point 1 above, where
the time-varying variance σ(t) is now given by

σ(t) =





σ1, t ≤ t1
σ2, t1 < t ≤ t2
σ1, t > t2

(29)

3) Two noises in sequence. The random phase x(t) is given
by the sequence of data obtained from a white noise
(white PM noise) for the first half and then a Wiener

10
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1

10
2

10
−2

10
−1

10
0

τ

σ(
τ)

Fig. 1. The Allan deviation of the random white phase x(t) as defined in
Eq. (27) and Eq. (28).

process corresponding to a white FM noise in the second
half.

For each case we show the Allan variance, the definition
of the DAVAR from Eq. (23), numerically estimated over a
large number of realizations, and its estimated value from Eq.
(25), estimated over a single data sample. The results are very
interesting. For the first two cases, the DAVAR in Fig. 2 and
Fig. 5 is able to track the change in the variance in a very clear
way. We point out that the steep changes in the DAVAR values
happen at time instants that are also related to the length T
of the analysis window. In particular, the shortest the window,
the sooner the variation will be tracked. Unfortunately one
cannot reduce the window length T at will, because with a
short window, the amount of data is reduced and therefore the
quality of the estimate is very poor giving a large uncertainty
of the DAVAR estimate. The DAVAR estimates, shown in
Fig. 3 and Fig. 6 respectively, demonstrate that the quality
of the estimates is inversely proportional to T . There is hence
a trade-off between the window length T and the quality of
the estimate. It is interesting to point out that the classical
Allan variance, shown in Fig. 1 and Fig. 4, cannot track the
nonstationarity in the random signal and would erroneously
point out an average stationary behavior for the whole period.

For the third case, the DAVAR is again able to highlight
the change in slope of the random phase x(t), as shown in
Fig. 8. The estimator is represented in Fig. 9. Again the Allan
variance, shown in Fig. 7, does not point out the change from
white noise to the Wiener process affecting x(t).

V. ANALYSIS OF EXPERIMENTAL DATA

We have studied measures from a Rubidium clock. We
applied an algorithm (see the Conclusion) that estimates the
sliding DAVAR from a single set of data, and the result is
shown in Fig. 10 (the dynamic Allan deviation, defined as
the square root of the DAVAR, is represented). The DAVAR
alerts that the signal is nonstationary. In particular some long
term noises seem to appear twice and immediately disappear.
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Fig. 2. The dynamic Allan deviation of the random phase x(t) as defined
in Eq. (27) and Eq. (28).
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Fig. 3. The estimate of the dynamic Allan deviation of the random phase
x(t) as defined in Eq. (27) and Eq. (28).

Such a behavior may be due to a frequency jump which is
interpreted as the insurgence of a long term noise. A complete
characterization of the DAVAR as a tool to identify and clas-
sify nonstationary behaviors is currently under investigation.
A possible application of the DAVAR is also reported in [3].

VI. CONCLUSION

We have analyzed the definition of the dynamic Allan vari-
ance, a tool useful to track nonstationarities in clock behavior,
and we have proposed a sound mathematical definition for
both the theoretical DAVAR and its estimator.

Many variations in the dynamic Allan variance estimate
are due to random fluctuations and are not a direct proof of
nonstationarity. We are currently working at defining surfaces
of confidence that can be used in association with the DAVAR
surface in order to establish the presence of anomalous
changes.

To encourage the use and test of the proposed DAVAR we
have prepared a free Matlab code that can be downloaded
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Fig. 4. The Allan deviation of the random phase x(t) as defined in Eq. (27)
and Eq. (29).
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Fig. 5. The dynamic Allan deviation of the random phase x(t) as defined
in Eq. (27) and Eq. (29).

from www.ien.it/tf/ts/clock behavior.shtml.
Any comment from users is welcome.
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Fig. 6. The estimate of the dynamic Allan deviation of the random phase
x(t) as defined in Eq. (27) and Eq. (28).
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Fig. 7. The Allan devaition of a random phase x(t) that is made by the
sequence of a white noise (white PM noise) and a Wiener process (white FM
noise).
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Fig. 8. The dynamic Allan deviation of a random phase x(t) that is made by
the sequence of a white noise (white PM noise) and a Wiener process (white
FM noise).
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Fig. 9. The estimate of the dynamic Allan deviation of a random phase x(t)
that is made by the sequence of a white noise (white PM noise) and a Wiener
process (white FM noise).

Fig. 10. Dynamic Allan deviation of experimental data coming from a
Rubidium clock. Notice the nonstationary behavior of the signal.
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