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Abstract—We show how to solve two problems of optimal
linear estimation from a finite set of phase data. Clock noise is
modeled as a stochastic process with stationary dth increments.
The covariance properties of such a process are contained in
the generalized autocovariance function (GACV). We set up two
principles for optimal estimation; these principles lead to a set of
linear equations for the regression coefficients and some auxiliary
parameters. The mean square errors of the estimators are easily
calculated. The method can be used to check the results of other
methods and to find good suboptimal estimators based on a small
subset of the available data.

I. INTRODUCTION
Suppose that the phase residual x (t) of a clock (or dif-

ference of clocks) is given at a finite set of times, T =
{t1, . . . , tn}, which don’t have to be equally spaced. We
consider two estimation targets: 1) the phase value x (t∗)
at some t∗ /∈ T ; 2) the overall “trend” coefficient of x (t).
Depending on the model for x (t) and what else is known, this
can mean the long-term average value of phase or of its dth
time derivative: frequency, drift rate, or aging rate (d = 1, 2,
or 3). For each target, we want to calculate the linear estimatorPn

i=1 aix (ti) that is optimal in the mean-square sense while
satisfying an invariance condition that will be explained below.
To carry out this program, we need a stochastic model for

x (t). The general model used here is the class of stochastic
processes with stationary dth increments, the subject of a
monograph of Yaglom [1]. These include stationary processes,
indefinite integrals of stationary processes, and all the power-
law processes familiar to the time and frequency field: flicker
PM, white FM, flicker FM, and so on. Yaglom showed how
to solve problems of optimal prediction and filtering for these
processes from their values on unbounded or bounded time
intervals. For pure power-law processes, other authors have
derived the mean square error (MSE) of the predictor that
is based on the infinite past [2]–[4]; Boulanger and Douglas
[5] calculated the MSE of two-point linear extrapolation.
Vernotte et al. [6] calculated predictors and their MSEs based
on extrapolation of least-squares linear and quadratic fits of
equally spaced finite data sets. For finite-state clock models, a
recursive optimal predictor and its MSE, based on all discrete-
time past measurements, can be calculated from a Kalman
filter [7]. The MSE of various suboptimal drift-rate estimators
has been calculated for power-law noises [8]–[11]. Here we
show how to calculate the regression coefficients ai and the
MSE of the optimal linear estimators of both targets, using

systems of linear equations that generalize the equations of
orthogonal projection for stationary x (t).

II. CLOCK NOISE MODELS
A real-valued, mean-square continuous1 stochastic process

x (t) is said to have stationary dth increments (d ≥ 1) if for
each τ the process

∆d
τx (t) =

dX
k=0

µ
d

k

¶
(−1)k x (t− kτ) (1)

is stationary. It is convenient to let SI (d) denote the class
of all such processes, and to let SI (0) denote the stationary
processes. Then SI (d) ⊂ SI (d+ 1), and we define the degree
of x (t) as the least d such that x ∈ SI (d).
Everything we know about a process x ∈ SI (d) is wrapped

up in the dth increments (1), which do not change if we add a
polynomial of degree ≤ d−1 to x (t). In this sense, a process
in SI (d) is ambiguous. Any use of these processes must take
account of this ambiguity.
For any x ∈ SI (d), Yaglom established a nonnegative

spectral density function2 Sx (f) that extends the notion of
spectral density for stationary processes. Here, we are using
the two-sided, even version: Sx (−f) = Sx (f). For d ≥ 1,
Sx (f) can diverge as f → 0 but obeys the restrictionsZ

|f |<1
f2dSx (f) df <∞,

Z
|f |>1

Sx (f) df <∞. (2)

The process also has an average trend coefficient, denoted
by cd, that can be defined as the infinite-time average of the
stationary process ∆d

1x (t):

cd = lim
t2−t1→∞

1

t2 − t1

Z t2

t1

∆d
1x (t) dt,

the limit being taken in the mean-square sense. In this treat-
ment, cd can be a random variable. We often want to get rid of
cd, and there are two ways to do it. First, if we know cd, then
we can consider the process x0 (t) = x (t)−cdtd/d!, which is
also in SI (d) but has trend coefficient zero. Second, if we don’t
know cd, then we can treat x (t) as a member of SI (d+ 1);
as such, its trend coefficient cd+1 is always zero. For example,
a stationary process with an unknown mean can be treated as

1This means that E [x (u)− x (t)]2 → 0 as u→ t.
2Actually, a measure on the punctured frequency axis f 6= 0.
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a member of SI (1). If a random walk of phase (white FM),
which is in SI (1), has an unknown slope (frequency) added
to it, we can treat it as a member of SI (2). In this way we
can get results that are invariant to the unknown trend.
Yaglom’s theory of SI (d) was based on the spectral density.

For stationary processes, we also have the autocovariance
(ACV) function

sx (t) =

Z ∞
−∞

ei2πftSx (f) df, (3)

which satisfies

sx (t− u) = Ex (t)x (u) . (4)

The estimation methods given here for SI (d) are based on
a generalized ACV (GACV) function [12][13], also written
as sx (t), that can be obtained from Sx (f) and cd by a
generalized Fourier integral as follows:

sx (t) =

Z
|f |≤1

"
ei2πft −

2d−1X
k=0

(i2πft)
k

k!

#
Sx (f) df

+

Z
|f |>1

ei2πftSx (f) df +
¡
E c2d

¢ ¡−t2¢d
(2d)!

. (5)

One may add a polynomial of degree≤ 2d−1 to sx (t) without
changing the value of any formula in which sx (t) is properly
used. With this ambiguity understood, Table I gives the GACV
for power-law components of clock noise, specified by the one-
sided spectral density of frequency, S+y (f) = 2 (2πf)

2
Sx (f).

For any stationary phase component, the GACV is the ACV.
The flicker PM entry is obtained by passing pure 1/f noise
through a moving-average filter of width τ to satisfy the
second condition in (2). The trend coefficients are zero. The
degree of a sum of noises is the maximum degree of the
summands, and the GACV of the sum of orthogonal noises is
the sum of the GACVs. By (5) we may and will assume that
the GACV is an even function: sx (−t) = sx (t).

TABLE I
GENERALIZED AUTOCOVARIANCE OF POWER-LAW NOISES

Name degree S+y (f) sx (t)

Flicker PM 1 h1f
sin2(πfτ)

(πfτ)2
h1
4π2

3
2
− ln τ , t = 0

(lowpass) − h1
4π2

ln |t| , tÀ τ

White FM 1 h0 −h0 |t|
4

Flicker FM 2 h−1f−1
h−1t2 ln |t|

2

Random walk FM 2 h−2f−2
h−2π2 |t|3

6

Flicker walk FM 3 h−3f−3 −h−3π2t4 ln |t|
6

Random run FM 3 h−4f−4 −h−4π4 |t|5
30

Now we have to say how the GACV is used. In the following
discussion, a (t) and b (t) denote functions that are zero except
on some unspecified finite set of times; by using this notation

we can freely perform and combine sums over t without
worrying about the range of the summations. Such a function
a (t) is said to satisfy the moment condition of order d [6][14]
if X

t

a (t) tj = 0, j = 0, . . . , d− 1. (6)

In other words, if x (t) in
P

t a (t)x (t) is replaced by a
polynomial p (t) of degree ≤ d − 1, the result is zero. The
coefficients of the dth increment (1) satisfy this condition. All
the covariances needed for the estimation problems can be
calculated by the following theorem.
Theorem 1: Let sx (t) be the GACV of x (t), a process

with stationary dth increments, where d ≥ 1. If a (t) and b (t)
satisfy the moment condition of order d, then

E

ÃX
t

a (t)x (t)

!ÃX
t

b (t)x (t)

!
=
X
t,u

a (t) b (u) sx (t− u) . (7)

For stationary processes, (7) follows from (4), and no
moment conditions are needed. For d ≥ 1, we are only allowed
to take the covariance of linear combinations of x (t) whose
coefficients satisfy the moment condition. According to the
theorem, we may do so as if (4) were true. In reality, sx (t)
is not an ACV, and (4) does not hold. Nevertheless, the entire
formula (7) is correct, even though the corresponding terms
of the expansions of its left and right sides are not equal.
We define Md (x) as the set of random variablesP
t a (t)x (t) whose coefficients a (t) satisfy the moment

condition of order d. Then Md (x) is a linear subspace, and
Theorem 1 tells us how to calculate the covariance of two
members of Md (x). It can be shown that any member of
Md (x) is a mean-square limit of linear combinations of dth
increments of x (t); for this reason, if cd = 0 then the members
ofMd (x) have zero expectation. We also define Md (x, T ) as
those members ofMd (x) whose coefficients are supported on
the finite set T .

III. CLOCK PREDICTION

Let x (t) have stationary dth increments. The estimation
target is x (t∗), and the estimators are of form

x̂ (t∗) =
X
t∈T

a (t)x (t) , (8)

where T = {t1, . . . , tn} with n ≥ d. (Although this problem
is called “prediction”, there is no need to insist that t∗ >
max ti.). We now have to make the problem invariant to the
ambiguity of x (t) with respect to polynomials p (t) of degree
≤ d−1. We do so by insisting that the estimation error x (t∗)−
x̂ (t∗) should not change if x (t) is replaced by x (t) + p (t).
Thus the expression

x (t∗) + p (t∗)−
X
t∈T

a (t) [x (t) + p (t)]
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should not depend on p (t). Consequently,X
t∈T

a (t) p (t) = p (t∗) (9)

for any polynomial p (t) of degree ≤ d − 1; the estimator
predicts p (t∗) perfectly from the values p (t) , t ∈ T . For
d = 2, if we add a constant phase and frequency to x (t),
the estimate x̂ (t∗) should automatically adjust itself so that
the error does not change. An equivalent statement of this
invariance condition is that

x (t∗)− x̂ (t∗) ∈Md (x) . (10)

We may also express (9) asX
t∈T

a (t) tj = tj∗, j = 0, . . . , d− 1. (11)

In matrix form, Ga = g, where

a =
£
a (t1) · · · a (tn)

¤T , (12)

G =

⎡⎢⎢⎢⎣
1 · · · 1
t1 · · · tn
...

...
td−11 · · · td−1n

⎤⎥⎥⎥⎦ , (13)

g =
£
1 t∗ · · · td−1∗

¤T
. (14)

A random variable x̂ (t∗) of form (8) that satisfies the
invariance condition is called a linear invariant estimator
(LIE) of order d of x (t∗) based on x (t) , t ∈ T . Since
n ≥ d, a LIE of order d exists, namely, the value at t∗ of the
interpolating polynomial determined by x (t1) , . . . , x (td). For
d = 2, this LIE is the linear extrapolator of x (t1) and x (t2)
to t∗, which was treated by Boulanger and Douglas [5]. Some
of the GACVs of Table I appear in their formulas. Supposing
that t1 < t2 < t∗, one can often optimize t2 − t1 to give
an MSE that is acceptably close to the minimum MSE that
one can get from LIEs based on the infinite past t ≤ t2 [4].
The linear and quadratic extrapolators discussed by Vernotte
et al. [6] are LIEs of order 2 and 3, respectively. The ACVs
tabulated in [6] are related to the GACVs used here.
Of all the order-d LIEs of x (t∗), we want the one with the

smallest MSE, called the best LIE (BLIE) of order d. The set
of LIEs, call it {LIE}, is determined by the inhomogeneous
equations (11) for a (t). The difference of any two LIEs is
a random variable

P
t∈T b (t)x (t) whose coefficients satisfy

the corresponding homogenous equations, that is, it belongs
to the linear subspace Md (x, T ). Thus, {LIE} is an affine
set, a shifted version of Md (x, T ) that does not pass through
the origin. To find the closest point of {LIE} to x (t∗) in the
mean-square sense, we drop a perpendicular from x (t∗) to
{LIE}. Thus, x̂ (t∗) has to be a member of {LIE} and also
has to satisfy the orthogonality condition

x (t∗)− x̂ (t∗) ⊥Md (x, T ) , (15)

which means that

E [x (t∗)− x̂ (t∗)]Y = 0 whenever Y ∈Md (x, T ) . (16)

Figure 1 should make the geometry clear. It can be proved
from basic facts about orthogonal projections that the BLIE
x̂ (t∗) exists and is unique.

( )*x t

( )*x̂ t

•
0

{ }LIE

( ),dM x T

Fig. 1. Geometric interpretation of the conditions for a BLIE

Let

x (T ) =
£
x (t1) · · · x (tn)

¤T
, b =

£
b1 · · · bn

¤T
.
(17)

Then (16) can be rewritten as

E
£
x (t∗)− aTx (T )

¤ h
x (T )T b

i
= 0 whenever Gb = 0.

(18)
Both factors on the left side of (18) belong to Md (x); by
Theorem 1, the expectation can be evaluated as if (4) were
true. Doing so gives the condition¡

rT − aTR
¢
b = 0 whenever Gb = 0, (19)

where r is a column vector and R a symmetric n× n matrix
formed from the GACV of x (t):

r =
£
sx (t1 − t∗) · · · sx (tn − t∗)

¤T
, (20)

R = [sx (ti − tj) : i, j = 1, . . . , n] . (21)

In turn, condition (19) says that the row vector rT − aTR is
orthogonal to all vectors b that are orthogonal to the rows of
G. Therefore, rT − aTR belongs to the row space of G, that
is, r−Ra = GTθ for some d-vector θ =

£
θ0 · · · θd−1

¤T.
We now have the system of equations

Ga = g, Ra+GTθ = r, (22)

which constitute n+ d equations in the n+ d unknowns a, θ.
They generalize the Yule-Walker equations

Ra = r (23)

for stationary x (t); in that case, R is a genuine covariance
matrix, and x̂ (t∗) is the orthogonal projection of x (t∗) on the
unrestricted subspace generated by x (t) , t ∈ T . For d ≥ 1,
R is symmetric if sx (t) is even, but usually has both positive
and negative eigenvalues.
After solving (22) for a and θ, we can calculate the mean

square error of x̂ (t∗) as follows:

MSE = E [x (t∗)− x̂ (t∗)]
2

= E
£
x (t∗)− aTx (T )

¤ h
x (t∗)− x (T )T a

i
= sx (0)− rTa− aT (r −Ra)
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by Theorem 1. Then, by (22),

MSE = sx (0)− rTa− gTθ. (24)

We mention three methods for solving (22). First, if n = d,
then G is nonsingular, and we can solve (22) for a and then for
θ. Second, if R is nonsingular3, then we can write a solution
in the following form (R−1 method):

Λ = GR−1GT,
θ = Λ−1

¡
GR−1r − g

¢
,

a = R−1
¡
r −GTθ

¢
.

Third, we can set up the system (22) as the single matrix
equation ∙

R GT

G 0

¸ ∙
a
θ

¸
=

∙
r
g

¸
, (25)

and tell Matlab4 to solve it in one operation (“brute force”
method). Although Matlab often says that the big matrix is
badly scaled or nearly singular, the solution seems to work
anyway in the cases the author has tried.
Before carrying out this solution, we should reduce the

trend coefficient to zero as explained earlier, either subtracting
the trend from x (t) if cd is known, or increasing d by 1 if
cd is unknown. Then x̂ (t∗) is unbiased for x (t∗) because
x (t∗)− x̂ (t∗) ∈ Md+1 (x), all of whose members have zero
expectation. The penalty for increasing d is a greater MSE
for the BLIE, because the set of LIEs shrinks as the order
increases.

A. Examples
1. Model: white FM, h0 = 1, d = 1, average frequency

c1 = 0, T = {0,−1, ...,−10}, t∗ = 5. We get the expected
result: x̂ (5) = x (0), MSE = 1

2h0t∗ = 2.5.
2. The same example, but with an unknown frequency

(phase slope) added. We calculate the BLIE of order 2 to get
a predictor that is invariant to the added frequency. The result
is the linear extrapolator x̂ (5) = 3

2x (0) − 1
2x (−10), with

MSE = 3.75. This is a simple demonstration of the penalty
paid for a lack of knowledge of the trend. But, as T reaches
farther and farther into the past, the estimator recovers the
unknown frequency, and the MSE tends to 1

2h0t∗.
3. Model: white FM (h0 = 2) + random walk FM (h−2 =

2.53×10−5), d = 2. Figure 2 shows normalized rms prediction
error,

√
MSE/τ , of x (t+ τ) for three predictors: a) linear

extrapolation from x (t) , x (t− τ), whose rms error is
√
2τ

times Allan deviation for τ ; b) optimal prediction based on
the entire discrete past x (t− 10n), n = 0, 1, . . ., calculated in
closed form by solving for the stationary covariance matrix of
a Kalman filter [7]; c) optimal prediction based on x (t− 10n),
n = 0, . . . , 5, calculated by the method given here.
4. Model: flicker FM, h−1 = 1, d = 2. For t∗ = 8, the

squares in figure 3 show the BLIE regression coefficients for
the 33-point prediction set T = {−32,−31, ..., 0}. Because
3The author does not know any conditions for R to be nonsingular.
4Copyright by The MathWorks, Inc.
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Fig. 2. Normalized rms error of predictors of a sum of white FM and random
walk FM.

the coefficients are small off the set {−32,−31,−1, 0}, we
also try the latter set for prediction (filled circles). Figure
4 shows

√
MSE/τ for both T sets and for t∗ = τ =

1, 2, 4, . . . , 256. The lower horizontal line is for optimal pre-
diction from the continuous past, t ≤ 0. The upper horizontal
line is for simple linear extrapolation from T = {−τ, 0} as
before. We observe only a small error penalty for using the 4-
point set instead of the 33-point set. As τ becomes large, the
linear extrapolator becomes better than the other predictors,
which see only 32 units into the past of this long-memory
process.
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Fig. 3. Regression coefficients for predicting flicker FM

IV. TREND ESTIMATION

Let x (t) have stationary dth increments (d ≥ 0), with an
unknown trend coefficient cd. Then

x (t) = cd
td

d!
+ x0 (t) , (26)

where x0 (t) has trend coefficient zero. Again there will
be invariance and orthogonality conditions to determine the
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Fig. 4. Normalized rms errors of predictors of flicker FM

optimal estimator of cd having the form

ĉd =
X
t∈T

a (t)x (t) . (27)

The invariance condition is determined by the requirement that
the estimation error cd − ĉd be unchanged if a polynomial
of degree ≤ d is added to x (t). Thus the error is invariant
to the trend cdt

d/d! itself as well as to polynomials p (t) of
degree ≤ d− 1 added tox (t). After replacing (26) by x (t) =
cdt

d/d! + x0 (t) + p (t), we obtain

cd − ĉd = cd

"
1− 1

d!

X
t∈T

a (t) td

#
−
X
t∈T

a (t) [x0 (t) + p (t)] . (28)

If cd − ĉd is invariant to cd and p (t), thenX
t∈T

a (t) tj = 0, j = 0, . . . , d− 1, (29)X
t∈T

a (t) td = d!, (30)

and the estimator gives the right answer cd if x (t) is a
polynomial of degree ≤ d. A random variable of form (27) is
said to be a LIE of cd if (29) and (30) hold. We write this in
the matrix form Ga = g again, but with different definitions
of G and g:

G =

⎡⎢⎢⎢⎣
1 · · · 1
t1 · · · tn
...

...
td1 · · · tdn

⎤⎥⎥⎥⎦ , (31)

g =
£
0 · · · 0 d!

¤T
. (32)

Assume that T has at least d + 1 points. Then a LIE of
cd exists, namely, the coefficient of td/d! in the interpolating

polynomial determined by x (t1) , . . . , x (td+1). Moreover, the
difference of any two LIEs is in the subspace Md+1 (x, T ),
the set of

P
t∈T b (t)x (t) such that b (t) satisfies the moment

condition of order d + 1. As with the prediction problem, a
LIE ĉd is the BLIE if it satisfies the orthogonality condition

cd − ĉd ⊥Md+1 (x, T ) . (33)

By (28), (29), and (30),

cd − ĉd = −
X
t∈T

a (t)x0 (t) , (34)

which belongs to Md (x0) by (29). Also, Md+1 (x, T ) =
Md+1 (x0, T ) ⊂Md (x0), because every member ofMd+1 (x)
has coefficients that kill the trend. Therefore, (33) can be
written as

E
£−aTx0 (T )¤ hx0 (T )T bi = 0 whenever Gb = 0, (35)

where x0 (T ) is a column vector like x (T ). Because both
factors in the left side of (35) belong to Md (x0), we may use
Theorem 1 for x0 (t) to evaluate this expression, giving the
condition

−aTRb = 0 whenever Gb = 0, (36)

where R is defined by (21) with sx (t) replaced by sx0 (t).
By the same argument as before, −Ra = GTθ for some
(d+ 1)-vector θ =

£
θ0 · · · θd

¤T. We arrive at the system
of equations

Ga = g, Ra+GTθ = 0, (37)

which is like (22), except that now there are n+d+1 equations
and unknowns, the definitions of G and g are different, and r
has become 0. The same solution methods are available.
By (33), ĉd is unbiased for cd because all the members of

Md+1 (x) have mean zero. By (34), Theorem 1, and (37), we
can calculate the MSE of ĉd by

MSE = E(cd − ĉd)
2
= E

£−aTx0 (T )¤ h−x0 (T )T ai
= aTRa = −gTθ = −d!θd. (38)

A. Examples

1. Model: x (t) = white FM + c1t (unknown frequency),
h0 = 1, d = 1, T = {0, 1, ..., 10}. Result: ĉ1 =
1
10 [x (10)− x (0)], MSE = 1

20 .
2. Model: x (t) = x0 (t) +

1
2c2t

2 where x0 (t) is white
FM, flicker FM, or random walk FM, T = {0, 1, ..., 10}. The
regression coefficients for ĉ2 are shown in Fig. 5. Even though
white FM is in SI(1), we have to treat it as a member of SI(2)
to extract a quadratic trend, independently of any linear trend
that may also be present. For white FM, ĉ2 is also the slope
of the least-squares linear fit to the frequency data.
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Fig. 5. Regression coefficients for estimating quadratic drift rate in the
presence of white FM, flicker FM, or random walk FM.

V. ADDITIONAL RESULTS
A. Prediction from equally spaced data
For fixed d, it takes O

¡
n3
¢
operations to solve the Yule-

Walker equations (23) (when d = 0) or their generalization
(22) by general linear equation solving methods, where n is
the number of elements in T . If T is an equally spaced set
of times, however, then R is a Toeplitz matrix. For stationary
x (t), the Levinson-Durbin algorithm [15], which is a loop on
n, calculates the regression coefficients and the MSE inO

¡
n2
¢

operations. The author has been able to extend this algorithm
to the case d ≥ 1 while keeping the O ¡n2¢ property for fixed
d. In cases that have been tried, the results of the two general
algorithms (R−1 and brute force) and the extended Levinson
algorithm agree within roundoff error.

B. Trend from symmetric data
Suppose that T is symmetric about some point, which we

assume to be zero; then −T = T . It can be shown that the
optimal trend coefficient estimator ĉd has coefficients that are
even (a (−t) = a (t)) if d is even, and odd (a (−t) = −a (t))
if d is odd. In either case one can set up equations like (37)
for a (t), t ≥ 0, and a smaller auxiliary vector θ. Thus, the
dimension n + d + 1 of the system (37) can be reduced by
approximately a factor of two.

This work was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.
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