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Abstract—The network of time links for the computation of
TAI has always be chosen such as to allow a unique solution,
i.e. not using any redundancy. In the present situation, many
links can be computed with two or more techniques (mostly
TW and GPS) and the TW network itself is highly redundant.
In addition, the covariance matrix for the measurements from
these two may now be determined with adequate uncertainty,
so that it makes sense to use all the available information and
to compute TAI links using the available redundant network.
In the paper, we examine the formalism to be used in this aim
and the consequences of using such a procedure

 I. INTRODUCTION

The network of TAI time links has always been non-
redundant and the measurements used are considered
independent. This choice was adapted to the situation that
prevailed until the end of the 1990s when a single time
transfer technique was used, GPS with Common-view
computation, in which correlations are also difficult to
estimate. Now two main techniques are used for TAI time
links (GPS and Two Way time transfer, hereafter TW),
several types of measurements exist for each technique (e.g.
single frequency or dual frequency code, or dual frequency
code and phase for GPS), and, at least in the case of the TW
network that encompasses Europe and North America, a
nearly complete set of redundant measurements is available.
In addition, other systems are already available, or may soon
become available, such as GLONASS, GPS augmentation
systems and GALILEO. We have therefore to envision a
better use of all the data available for the computation of TAI
time links

In section II we present the formalism used to study and
compare the results obtained using different set-ups
regarding the redundancy and correlations of the time links.
In section III, we present some tests carried out using either
the whole TAI network or a sub-network. In section IV we
show that the GPS all-in-view technique facilitates the
application of the above formalism. Finally we discuss the
results in section V.

 II. FORMALISM OF THE TIME SCALE SYSTEM

In this paper we adopt the classical formalism for time
scale formation presented in [1], and we adopt its notations.
We do not consider here the mechanism of determination of
clock weight in which the weight wi is assigned to clock i
based on its estimated stability.

The computation of the ensemble time scale EAL(t) at
time t from the reading of N clocks hi(t) is obtained by
solving the system of equations

Σi(wi xi(t)) = Σi(wi h'it) (1a) 

xi(t) - xj(t) = xi,j(t) (1b) 

where xi(t) = EAL(t) - hi(t). The first equation represents the
weighting equation and the h'i(t) are a prediction of the xi(t),
obtained from the solution at the previous instant of
computation. The xi,j(t) are M measured values of differences
between two clocks. In the classical case, M = N-1 and the
system (1) is easily solved, e.g. by substitution. Here we
consider the redundant case, where M ≥ N-1. In the
following, we refer to the system (1) as the Time scale
system, and to the sub-system (1b) as the Time link system.

A.  The Time scale system
The Time scale system (1) may be presented in matrix

form:

A X = B (2)

where A is the (M+1,N) design matrix, X is the unknown
vector (N,1) and B is the measurement vector (M+1,1)
including the prediction value B1 (the right hand side of (1a)
and the M time link values Bk+1 = yk(t). For simplicity, we
adopt here the view where the clocks of a given laboratory
are aggregated into one single fictitious clock, see e.g. [2], so
that N is now the number of different laboratories to be
linked, and the M time link values between laboratories.
However the general case would easily be treated with the
present formalism.

Following the classical treatment of the least squares
estimation [3], the system is solved as
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X = (AT SB
-1 A) -1 AT SB

-1 B, (3)

where SB is the covariance matrix of the measurement vector
B. The covariance matrix SX of the vector of unknowns X is
obtained as

SX  = (AT SB
-1 A) -1. (4)

Thus the redundant time scale system may be solved
directly from (3). However we here choose to separate the
problem into two stages: In the first stage, we solve the
redundant set of M time links (1b), the time link system, to
obtain the optimal solution in the form of (N-1) time links
and their covariance matrix. In a second stage, we then solve
the (non-redundant) time scale system so obtained. The goal
of this paper is primarily to study the first stage, i.e. the
redundant time link system with consideration of the
possible correlations (full covariance matrix).

B. The redundant Time link system
Using M measured links (vector L), we want to

determine (N-1) independent links  (vector Y) and its
covariance matrix SY. In the redundant case, M ≥ N-1 and
the time link system may be written as

C Y = L (5)

where C is the (M,N-1) design matrix relating the M
measured links to the (N-1) independent ones. If the
covariance matrix of L is noted SL, the system is solved as

Y = (CT SL
-1 C) -1 CT SL

-1 L (6)

and the covariance matrix SY is

SY  = (CT SL
-1 C) -1. (7)

A similar presentation of the Time link system in matrix-
form has also been used in [4], and it is indeed necessary
when considering the general case of a redundant and
correlated system. Note that the system (5) may also be
augmented to include other parameters and possible a priori
knowledge on the links. It still may be solved with the
general scheme (6,7). This will be discussed further in
section V.

C. The procedure for using redundancy and correlation in
solving a Time scale system
As a summary, we recall here the different steps used to

solve the Time scale system:

1. We form the redundant Time link system (5) using
the vector of links L and its estimated covariance
matrix SL.

2. We solve the system and obtain the vector of non-
redundant links Y (6) and its covariance matrix SY
(7).

3. We form the Time scale system (2) where Y is used
to form B and where SY is used to form SB, the
covariance matrix of B.

4. We solve the (non-redundant) Time scale system
and obtain the vector of unknowns X (3) and its
covariance matrix SX (4).

The first two steps are applied in the next section in
different test configurations. In some of the cases presented
below, the last two steps have also been performed.

 III. TESTS ON TIME LINK SYSTEMS

We present some examples in which we use to formalism
described above to estimate

The examples are taken from existing data sets that are
used, or could be used, in the TAI computation.

A. The Europe-America Two-Way network
In the Europe-America region, eight laboratories

participating to TAI (IEN, NIST, NPL, OP, PTB, ROA,
USNO, VSL) regularly report Two-way time transfer
measurements, hereafter referred to as TW. In addition, 7 of
them (VSL excluded) provide dual-frequency GPS data,
referred to as GPS-P3.

For TAI computation, the 7 independent TW links
between PTB and the other 7 laboratories are generally used
[5]. However the set of available links consists of 27
measured TW links (out of 28 possible between 8
laboratories) and 6 GPS-P3 links computed between PTB
and the other 6 laboratories, using the Common-view
technique. It is therefore possible to compute this set of
redundant time links using the formalism above. Three cases
have been considered:

1. TWstd: The standard, non-redundant, TW link
system with 7 links, as used for TAI computation.

2. TWred: The redundant TW link system using 27
TW links.

3. TWred+P3: The redundant TW + GPS-P3 link
system with 27 TW links and 6 P3 links.

See Figure 1 for the geometric configuration of the
available links.

In these three cases, we have solved the Time link system
following the procedure in section II, obtaining the
covariance matrix SY. The non-redundant links are chosen to
be all links to PTB, and the standard uncertainties in
[UTC(PTB)-UTC(k)] are obtained as the square root of
diagonal elements of SY and are presented in Table I

TABLE I.  RESULTS OF THREE TEST COMPUTATIONS FOR THE
EUROPE-AMERICA TW NETWORK

Uncertainty (ns) in [UTC(PTB)-UTC(lab)] for Lab
Scenario

USNO NIST NPL OP IEN ROA VSL

TWstd 0.50 0.50 0.50 0.50 0.50 0.70 0.50

TWred 0.27 0.27 0.26 0.26 0.26 0.31 0.26

TWred+P3 0.24 0.25 0.23 0.23 0.23 0.28 0.24
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Figure 1.  The TW test network: TWstd (thick solid lines), TWred (all
solid lines), Twred+P3 (all solid+dashed lines)

B. The complete TAI network
The TAI network of time links is non-redundant by

design, thus one explicit choice must be made when several
techniques (usually TW and GPS) are available. The desire
to choose the best technique available in each case, together
with the geometric limitations imposed by the choice of the
Common-view computation technique for GPS, results in a
somewhat complicated geometry (see Figure 2). In this, a
few laboratories act as pivots linking two techniques or two
geographic regions, or both. These pivots are USNO, NIST,
PTB, NICT in the configuration shown.

Four time link systems have been considered:

1. TAI: The standard TAI network (8 TW and 46 GPS
links).

2. TAI_C: The standard TAI network including a
priori correlations inside each technique: All links
of the same technique which have one common
station are affected a covariance of 0.04 ns2 for TW,
0.16 ns2 for GPS-P3 and 1 ns2 for other GPS links.

3. TAI_R: The redundant network (28 TW and 52
GPS links), without a priori correlations.

4. TAI_RC: The redundant network including a priori
correlations.

In these four cases, we have solved the Time scale
system following the procedure in section II, obtaining the
covariance matrix SX. The standard uncertainties in [EAL-
UTC(k)] are obtained as the square root of diagonal elements
of SX and some are presented in Table II. They indicate the
following trends: Introducing a priori correlations inside
each technique tends to slightly increase the standard

uncertainty for pivots and to decrease it for non-pivots,
although the precise effect for each pivot will depend on the
existence and amont of correlations between the relevant
links. Using redundancy tends to decrease the standard
uncertainty of all laboratories.

TABLE II.  RESULTS OF FOUR TEST COMPUTATIONS FOR THE  TAI
NETWORK: UNCERTAINTY (ns) IN [EAL-UTC(K)]

Pivot Lab Non-pivot Lab
Scenario

USNO PTB NIST NICT IEN CH NIMT

TAI 0.50 0.47 0.66 1.21 0.68 0.83 1.57

TAI_C 0.51 0.49 0.64 1.21 0.66 0.79 1.49

TAI_R 0.43 0.43 0.46 1.20 0.46 0.81 1.56

TAI_RC 0.43 0.46 0.48 1.16 0.48 0.72 1.45

Figure 2.  The network of TAI links in April 2005

 IV. THE GPS ALL-IN-VIEW TECHNIQUE

In the All-in-view GPS time transfer [6], all GPS
measurements available from one receiver are used to
estimate the difference between the local laboratory
reference and an external reference, to which the GPS
satellite clocks are related. Assuming that this external
reference is the time reference maintained by the
International GNSS Service, noted IGST [7], each
measurement of the vector L is a value of [UTC(k)-IGST].

When estimating the covariance matrix SL we find that
the sources of uncertainty associated with the computation of
[UTC(k)-IGST] are essentially local to the laboratory k and
its environment. Factors contributing to the co-variances
between the measurements of two different laboratories are
limited to errors in the satellite ephemerides and in the model
of the link between each satellite clock and IGST. These
errors are expected to be very small [8] and their effect on
the measurement of [UTC(k)-IGST] has been shown to be
smaller than 0.1 ns [9]. Therefore, the covariance matrix SL
is essentially diagonal, the value of the diagonal terms
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depending on several factors, the most important being the
type of receiver used, the amount of multipaths and the
method of estimating the tropospheric delay. Directly
introducing this measurement vector L and associated
variance matrix SL into a time link system necessitates to
define IGST as a (N+1)th  virtual laboratory. If this is deemed
to be not desirable, it is always possible to transform the
(N,1) vector L of [UTC(k)-IGST] into the desired vector L'
(N-1,1) of [UTC(k)-UTC(l)] through a matrix Q (N-1,N)
such as

L' = Q L (8)

SL' = Q SL QT (9)

Therefore the all-in-view technique greatly facilitates the
estimation of the covariance matrix of the time link
measurements, thus the computation of results and
uncertainties in a redundant time scale system. In addition it
has been shown [6,9] that all-in-view improves the time
transfer uncertainty with respect to common-view for long
links (several thousands km) and allows direct global time
transfer without incurring such limitations as imposed by the
common-view technique.

 V. DISCUSSION OF RESULTS AND CONCLUSIONS

Using redundant measurements is a priori advantageous
because it reduces the standard uncertainty of the results and
it also provides more robustness in case when some of the
data are missing. When the redundancy is obtained from one
technique, by additional measurements taken on different
links which are geometrically dependent, the formalism
above can readily be used. However, when the redundancy is
obtained by using several techniques to compute the same
link, the question of possible biases between techniques
needs to be addressed. One possible solution is to introduce
in the time link system (5) additional parameters
corresponding to the biases of each technique together with
additional observations carrying information on these biases
such as the results of calibration measurements. However
this topic is too vast to be treated here and will be the subject
of further studies. Note that we have, so far, considered
techniques that directly provide time link values. Other
techniques, e.g. GPS carrier phase, directly provide
frequency links and achieve an uncertainty comparable to, or
better than, the techniques already mentioned [10]. Such
results could also be introduced in the time link system, e.g.
after time integration of the frequency results, but the
mechanism to do so should be further studied.

Using correlations, i.e. non-diagonal covariance matrix in
the time link system, is also a priori advantageous when
there are hints that the measurements are not independent,
e.g. when the same device is used to perform two different
measurements or when the same modeled parameter in used
to process them. The correlated system essentially provides a
better representation of the real physical system, thus more
realistic results and standard uncertainties are obtained. Here
also the topic is too vast to be treated here, however we have
shown that using the all-in-view technique allows to better
estimate the correlations in a GPS network than the
common-view technique, in addition to improving time link
uncertainties.

The TAI link network is now highly redundant, but this
capacity is not used. We have tested a framework to
introduce the available redundant measurements and to
account for the existing correlations between measurements.
Although some practical questions still need to be studied,
we think that this path would provide improved results for
TAI computation and should be pursued.
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