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Abstract—We discuss the power dependence of distributed 
cavity phase errors for cylindrical TE011 cavities in laser-cooled 
atomic fountain clocks. The azimuthally symmetric phase 
variations produce a surprisingly large distributed cavity 
phase error for two 2π, 4π, and 6π pulses.  This is due to the 
correlation between the transverse variation of the Rabi 
frequency over the cavity aperture and a quadratic density 
variation of the atomic sample, along with the symmetry of the 
longitudinal phase variation in the cavity.  We show that the 
large azimuthally symmetric fields and phase shifts near the 
walls of the endcap holes produce very small errors at optimal 
power for a uniform wall resistance.  We also show the power 
variation for higher order azimuthal variations m=1, 2, and 4.  
These may be caused by fountain tilts, non-uniform detection 
of atoms, and asymmetries in the laser trapping and cooling of 
the atoms.  We demonstrate that distributed cavity phase 
errors in physical cavities may have no variation with the 
microwave power.  A combination of rigorous calculations of 
cavity losses, measurements of power dependence, the atomic 
distributions, and fountain tilts, and electrical measurements 
that show the lower limit of the cavity Q and the cavity 
symmetry, should provide stringent limits on distributed cavity 
phase errors for current atomic clocks. 

I. INTRODUCTION  
Laser-cooled atomic fountain clocks have demonstrated 

accuracies better than 10-15.  One of the potential systematic 
errors is the distributed cavity phase (DCP) error [1].  We 
developed a theoretical model for the spatial phase variations 
in TE011 cavities and analyzed the effects on the transition 
probability due to the phase variation [2][3]. Here we extend 
our study of the power dependent effects.   

In section II, we review our theoretical model.  A key 
question is whether all DCP errors exhibit significant power 
dependence.  In section III, we discuss this in detail and give 
an example of a physical cavity that produces very small 
power variations.  In section IV we present and explain the 
important physics of the power dependence for the most 
important phase variations of physical cavities with uniform 
wall losses.  A particularly interesting effect is a large 

sensitivity to azimuthally symmetric phase variations for two 
2π, 4π, and 6π pulses. 

II. REVIEW OF THE THEORETICAL FRAMEWORK 
We use the sensitivity function s(t) to analyze the effect 

of the spatial phase variations of the magnetic field.  The 
change in transition probability is [2]-[5]: 
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The phase of the field is given by φ=−tan−1[gz/(H0,z+gz)] ≈ 
−gz/H0,z where H0,z is the primary standing wave field and gz 
is the usually small secondary field that accounts for the wall 
losses of H0,z [2]. 

Our model leads to a simple expression for the change in 
transition probability.  Throughout the paper, we discuss the 
transition probability instead of the frequency shift because 
there is an important diagnostic sensitivity for integer π 
pulses for which the frequency shifts are singular.  Our 
model reduces to [3]: 
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Here r1 and r2 are the radial positions of an atoms during the 
first and second cavity traversals, θ is the tipping angle after 
passing through the cavity, δΦeff is an effective phase, b is a 
multiplier for the microwave field amplitude that gives the 
number of π/2 pulses during a cavity traversal, and v(z) is the 
atomic velocity which we treat as constant [2]. 
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Fig. 1. (a) Cavity dimensions and a wall surface resistance Rs, with a
cos(φ) dependence, that produces a small distributed cavity phase power
dependence.  Rs0 is the resistance of copper.  (b) The m=1 DCP error
(solid line) due to the wall resistance in (a) versus microwave field
amplitude b, where b=1 corresponds to two π/2 pulses.  A normalized
Ramsey fringe contrast is shown for comparison (dashed). 

We calculate the effect on a cloud of atoms by averaging 
over the density distributions on both passages through the 
microwave cavity.  Here we consider density variations of 
cos(mφ) for m=0, 1, 2, and 4.  For the upward cavity 
traversal, we take a quadratic transverse density variation for 
m=0 and, for m=1, a constant gradient, corresponding to a 
displacement of the atomic cloud or a tilt of the fountain 
[2][3][6].  For the downward passage, the ball expands 
significantly and so a uniform density distribution is a good 
approximation.  For m=2, we treat a density variation of 
n(r)=(N/πra

2)[1+α2r2/ra
2cos(2φ)] that could arise in two 

ways:  1) For the upward passage, it could be caused by 
asymmetries in the cold-atom cooling and trapping, and then 
followed by a uniform density for the downward passage.  2) 
Non-uniform detection of the atoms following the second 
passage which was preceded by a uniform density on the first 
passage. The detection non-uniformity can be rooted in the 
imaging system or the transverse (Gaussian) intensity 
distribution of the detection laser beam.  We also show the 
power dependence of the DCP error for m=4 with n(r)= 
(N/πra

2)[1+α4r2/ra
2 cos(4φ)]. 

III. CAN DISTRIBUTED CAVITY PHASE ERRORS BE 
EVALUATED WITH POWER DEPENDENT MEASUREMENTS? 

Other recent work has used phenomenological models to 
calculate DCP errors [7]-[9] and have evaluated a DCP error 
solely by measuring power dependent frequency shifts [10].  
Here, we review our analytic solution for cavities without 
endcap holes [2].  The analytic solution shows that, for the 
cavity of [7]-[10], the dominant DCP errors have no first 
order power dependence.  Therefore, without a detailed 
solution, a conclusion from a phenomenological model that 
all DCP errors have significant power dependence is 
unjustified.  Further, below we show an example of a DCP 
error with minimal power dependence for a particular 
distribution of wall losses in the cavity of [10]. From this 
example, it is clear that power dependent measurements 
cannot by themselves be used to assign limits to a DCP error.  
A combination of modeling, electrical measurements, and 
clock measurements that may include changes in the atomic 
distribution, fountain tilts, and power dependence can be 
combined to set limits on DCP errors. 

The analytic solution for a cylindrical cavity clearly 
shows how a DCP error can have no power dependence.  A 
cavity with a large radius severely suppresses the radial 
penetration of modes with high frequency longitudinal 
(vertical) variations into the center of the cavity [2].  Thus, 
the largest contributions to DCP are the p=1 modes of the 
form gz=rmcos(mφ)cos(πz/d) for m>0 [2].  This has the same 
longitudinal dependence on z as the standing wave H0z 
=cos(πz/d).  Therefore, the phase distribution in the cavity is 
Φ=rmcos(mφ) which is independent of z and produces a DCP 
error due to its cos(mφ) variation.  Every atom that enters the 
cavity experiences a field with a constant phase.  The power 
dependence is therefore simple Rabi flopping! Yet atoms 
entering at different transverse positions experience a 
different constant phase.  As an example, a fountain tilt and a 

cavity feed imbalance will lead to a DCP error.  The 
phenomenological fields used in [7][8] are not solutions for 
the actual fields in a cavity.  They treated an m=0 phase 
variation of Φ=r2z2, which is more than 100 times smaller 
than the dominant p=1 m=0 variation Φ=r2−2z2 [2].  
Therefore, after they normalize their power dependence to 1 
for b=1 [7]-[9], it does not have the correct power 
dependence for the dominant loss modes of their cavity.  
Their treatment also does not consider the effects of the holes 
in the cavity endcaps.  The holes produce locally very large 
fields with very large phase shifts and these have large 
effects on the power dependence of DCP errors as we have 
shown [3] and discuss in the rest of this paper.  In [7]-[9], 
they also do not treat the 10-20% transverse variation of the 
tipping angle over the cavity aperture.  This also has a 
dramatic effect on the power dependence [3] – below we 
explain why it leads to the largest sensitivity for some DCP 
errors for two 2π, 4π,  and  6π pulses.  

The holes in the cavity endcaps produce locally very 
large phase shifts and excite high p modes [2].  Therefore, 
does every reasonable wall loss produce the same power 
dependence?  In Fig. 1 we show a physical cavity with 
endcap holes that has a m=1 DCP error with a small power 
dependence. These additional losses may be due to 
machining imperfections or inhomogeneities in the copper.  
To arrive at this, we began by considering m=1 phase 
variations because their constant gradient produces the 
largest effect [2].  Because the sensitivity function is linear, 
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Fig. 2.  (a) Power dependence of the distributed cavity phase error (solid line) for the azimuthally symmetric, m=0, phase variation of the cavity in Fig. 1
with uniform wall losses.  The contribution from the first (second) term in  Eq. 4 is the dotted (dashed) curve. (b) The variation of the sine of the tipping
angle over the cavity aperture for a π and 2π pulse (b=2 and 4) and the non-uniform density distribution ∆n(r1) for the first cavity passage.  The average of
n(r1)sin[θ(r1)] is large and positive for b=2, 4, 6, … .  (c). The contribution to the effective phase, cos[θ(z)]g,z(z) at r=3.5 mm for b=2 and 6 (solid and
dashed).  The sum of all contributions through the cavity is nearly zero.  (d)  The same as (c) for b=4 and 8 (solid and dotted).  The sum of all contributions
is a local maximum near b=4 and 8. (e) Average of the effective phase and density for the upward (dashed) and downward (solid) cavity passages.  The
downward passage is large for b=4 and 8, as suggested by (d), and nearly zero for b=2 and 6 from (c). 

we calculate the DCP power dependence for wall losses in 
small regions throughout the cavity and then identify a 
reasonable linear combination of losses that shows a small 
power dependence.  In this example, there remains some 
small power dependence but the frequency shift for two 7π/2 
pulses is less than twice the error at optimal power.  One can 
get arbitrarily good agreement at these and higher powers by 
including more wall loss regions. Here we have only treated 
the case where m=1 terms dominate - other m terms will also 
contribute.  For example, a small contribution from a m=0 
DCP error (discussed below) will make the power 
dependence for two half-integer π pulses very nearly match 
the contrast in Fig. 1. 

The example in Fig. 1 shows that DCP errors cannot be 
evaluated by only using measurements of power dependent 
frequency shifts. The model of Fig. 1 has a DCP error of 
δν/ν=1.5×10-17 for a 2 mm offset of a laser-cooled sample 
that has a 1 cm diameter during the upward cavity passage.  
This error is small enough to give us confidence that a 
combination of rigorous calculations of cavity losses, 
measurements of power dependence, the atomic 
distributions, fountain tilts, and electrical measurements that 
show the lower limit of the cavity Q and the cavity 
symmetry, should provide adequately stringent limits on 
DCP errors for current atomic clocks. 

IV. DISCUSSION OF THE DISTRUBUTED CAVITY PHASE 
POWER DEPENDENCE FOR CAVITIES WITH ENDCAP HOLES 

The holes in the cavity endcaps, through which atoms 
enter and exit, produce a locally large field with a large 
phase shift [2][11].  Highly-peaked large phase shifts will 
generally produce large DCP errors at high power.  In Figs. 
2(a) and 3, we show the power dependent DCP population 
changes for m=0, 1, 2, and 4.  In this section we discuss the 
physics of these power dependences.  First we discuss the 
m=0 power dependence and then those for higher m. 

A. m=0 Power Dependence 
There are two especially notable behaviors in the m=0 

power dependence in Fig. 2(a).  The first is a very small DCP 
error at optimal power (b=1) and the second is the large DCP 
errors for b=4, 8, and 12, corresponding to two 2π, 4π, and 
6π pulses.  To understand the first, in Fig. 4(a), we show the 
field due to the losses gz(r,z), which is proportional to the 
phase, versus z for r=4.4 mm. Near the corner, gz(r,z) is 
nearly singular [2], as can be seen from the difference ∆gz(z) 
between gz(r,z) for r=4.99 mm and 4.4 mm in Fig. 4(a) and 
(b).  These correspond to atomic trajectories that pass 10 µm 
and 0.6 mm from the wall of the endcap aperture at ra=5 mm.  
We show the difference because it produces the radial 
variation of the effective phase in this region.  Ten microns 
from the wall, the phase shift within z=-d/2±20 µm is so 
large that it adds -27.4 µrad phase to the average phase for 
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Figure 4.  (a) The secondary field gz(z) for r=4.4 mm near the lower cavity
endcap at z=-d/2 (dashed).  The difference ∆gz(z)=gz(r=4.99mm,z)
−gz(r=4.4 mm, z) (solid) shows that gz(r,z) is large near the corner of the
endcap hole at r=5 mm and z=-d/2. The difference ∆gz(z) gives the radial
variation of the phase of the microwave field.  (b) The large losses near the
aperture of the endcap hole produce a large effective phase shift of −27.4
µrad within 20 µn of z=−d/2 for r=4.99 mm as compared to r=4.4 mm. The
contributions from the larger region in (a) almost entirely cancel the large
phase shift  in (b) so that the net effect from this region is small.   (c)  The
total effective phase shift through the cavity for the downward passage.
The variation of −0.2 to +0.6 µrad is very small compared to the effect of
the phase variations in (b). 
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Fig 3. The power dependences of distributed cavity phase errors for the
cavity in Fig. 1(a) with uniform wall losses for m=1 (solid), 2 (dashed),
and 4 (dotted).  For m=1, the population shifts are due to a 10% feed
imbalance and a linear density variation corresponding to a 2 mm offset
of a 1 cm ball (α1=0.8).  For m=2, we take a density variation
corresponding to an imaging variation of ±40% (α2=0.4). The m=4
variation is greatly magnified, corresponding to α4=50. 

the entire cavity traversal δΦeff(r2), relative to that for r=4.4 
mm. However, the regions in Fig. 4(a), z=-d/2 ± 2mm, nearly 
completely cancel the effect of the large phase shift to a very 
high degree.  The difference in the effective phase for z=-
d/2±2 mm for r=4.4 and 4.99 mm is only -1.9 µrad. 
Throughout the rest of the cavity, the phase is similar for 
r=4.99 and 4.4 mm and the details further cancel this phase 
shift as shown by the effective phase in Fig. 4(c).  Averaging 
the effective phase in Fig. 4(c) over the density distributions 
for a 1 cm ball on the upward traversal (α=-1), a 1 Hz 
transition linewidth has a frequency shift at optimal power of 
only 1×10−18 due to this nearly complete cancellation.  At 
higher powers, the population changes are equal to the 
population changes at optimal power for frequency shifts of 
order 10−15. 

We now explain the surprisingly large m=0 power 
dependence in Fig. 2(a) for b=4, 8, and 12.  This large 
sensitivity is surprising because one expects rightfully very 
little sensitivity to the phase of the field for integer π pulses.  
The variation of the Rabi frequency over the cavity aperture 
is a critical component of this large sensitivity.  The atoms 
that contribute do not in fact experience integer π pulses. 

In Eq. 2, there are two terms that contribute to this power 
dependence and we show each of these in Fig. 2(a).  The first 
term (dotted line) is small for integer π pulses (b=2,4,6, …) 
because sin[θ(r2)] is averaged over a uniform density 
distribution on the downward cavity passage.  Since sin[θ]=0 
defines integer π pulses, the first term in Eq. 2 is 0 for even 
b. 

The second term in Eq. 2, the dashed line in Fig.2(a), 
includes an average of sin[θ(r1)] for the upward cavity 
passage.  For this traversal, the density distribution of n(r1)= 
(N/πra

2)[1+α(r1
2/ra

2−½)] corresponds to the radial curvature 

that one would expect from a Gaussian ball of atoms.  The 
only non-zero contribution to a DCP error is from the ∆n(r1) 
=(N/πra

2)α(r1
2/ra

2−½) term.  This term has a positive density 
contribution at r=0 and a negative at r=ra, for α<0 as shown 
in Fig. 2(b).  At optimal power (b=1), sin[θ(r1)]≈1 so that the 
average of ∆n(r1)sin[θ(r1)] is essentially zero.   The 
transverse variation of the Rabi frequency gives a larger Rabi 
frequency at r=0 and a smaller Rabi frequency at r=ra.  
Therefore, near integer π pulses, sin[θ(r1)] reverses sign from 
r=0 to r=ra as does ∆n(r1) in Fig. 2(b).  Therefore essentially 
all contributions to the average of ∆n(r1)sin[θ(r1)] have the 
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same sign for integer π pulses, which produces a potentially 
large DCP sensitivity. 

The DCP error is much larger for b=4, 8, 12 than for b=2, 
6, 10.  This is due to the symmetry of the phase of the cavity 
field and the symmetry of cos[θ(r2,z)] in δΦeff(r2) in in Eq. 3. 
The TE011 mode is symmetric about the cavity center and 
therefore the phase of Hz is also.  For a π pulse (b=2) in Eq. 
3, cos[θ(r2,z)] is an odd function of z.  Therefore, δΦeff(r2) 
nearly vanishes since cos[θ(r2,z)]gz(z) is odd in z as shown in 
Fig. 2(c).  For b=6, 10, …, cos[θ(r2,z)]gz(z) behaves similarly 
and therefore δΦeff(r2) is small.  For b=4, 8, and 12, two 2π, 
4π, and 6π pulses, δΦeff(r2) in Eq. 3 is large because both 
gz(z) and cos[θ(z)] are even functions of z giving Fig 2(d).  
Therefore, to evaluate the DCP errors, one should also 
measure the power dependent population changes for two 2π, 
4π, 6π, … pulses.  The large sensitivity is due to the 
transverse variation of the Rabi frequency over the cavity 
aperture, its correlation with a density curvature, and the 
symmetry of the cavity phase and the sensitivity function. 

B. m=1& 2 Power Dependence 
The phase deviations that have slow variations in φ and z 

most effectively propagate to the center of the cavity [2].  
We therefore now consider azimuthal variations of cos(mφ) 
for small m of 1, 2, and 4.  The m=1 term is the largest [2] as 
it corresponds to a power imbalance from the feeds which 
causes a linear phase gradient at the center of the cavity.  If 
atoms are launched with a small offset, or if there is a tilt of 
the fountain [6], the density distribution on the upward 
passage will have a cos(φ) dependence and therefore any 
m=1 phase variation will produce a DCP error.  Because the 
second term in Eq. 2 is negligible since n(r2) on the 
downward passage will be nearly uniform, the power 
dependence has the more intuitive behavior of large 
sensitivities for odd b, two π/2, 3π/2, 5π/2, … pulses as 
shown in Fig. 3.  For this reason, the power dependences for 
m=2 and 4 also look very similar.  The power dependence 
flops sign for every increase of θ by π and grows slower than 
linear with increasing field amplitude b.  If the atomic 
sample is 1 cm diameter and 2 mm off-center, n(r1)= 
(N/πra

2)[1+α1r1/racos(φ)] with α1=0.8, a 10% feed imbalance 
and homogenous wall losses produce a frequency shift of 
2×10−16 at optimal power (b=1) for a 1 Hz linewidth. 

Two potential sources for quadrupole DCP errors are a 
non-uniform density distribution n(r1) from the laser cooling 
and trapping and secondly a non-uniform illumination or 
imaging of the atoms in the detection region.  To characterize 
the imaging, we imagine that a uniform density distribution 
after the second cavity passage is illuminated by a laser beam 
propagating in the x direction and the fluorescence is 
observed from the y direction.  If the cylindrically symmetric 
imaging system is more efficient at the center, it will have a 
detection sensitivity of 1-α′(x2+z2)/ra

2. The laser beam non-
uniformity will be of the form 1-β′(y2+z2)/ra

2.  The detected 
density then has a distribution n(r2)=(N/πra

2)[1+αr2
2/ra

2 

+α2r2
2/ra

2cos(2φ)] with α=−(α′+ β′)/2 and α2=−(α′−β′)/2. 

The non-uniform initial distribution and the non-uniform 
detection behave identically in Eqs. 2 and 3, within a 
negative sign.  We show the power dependence for α2=0.4 in 
Fig. 3 for a cavity with 2 feeds [12]-[14]. At optimal power, 
the frequency shift is 2×10-16 for a 1 Hz linewidth.   

V. SUMMARY 
We have analyzed a variety of distributed cavity phase 

errors as a function of microwave field amplitude.  The 
azimuthally symmetric (m=0) phase variations produce an 
unexpectedly large DCP errors for two 2π, 4π, and 6π pulses.  
This is due to the correlation between the transverse variation 
of the Rabi frequency over the cavity aperture and the 
quadratic density variation of the atomic sample, along with 
the symmetry of the longitudinal phase variation in the 
cavity.  The large fields and phase shifts near the wall of the 
endcap hole has an effect which is very well cancelled at 
optimal power.  Nonetheless, it may be prudent to exclude 
the atoms that pass through the region of large fields with 
large phase shifts.  Eliminating 1 to 5% of the atoms with an 
aperture elsewhere in the fountain may dramatically reduce 
the maximum phase shift experienced by any atom. We 
show the power variation for higher order azimuthal 
variations m=1, 2, and 4.  These may be caused by fountain 
tilts, non-uniform detection of atoms, and asymmetries in the 
laser trapping and cooling of the atoms.  We demonstrate 
that DCP errors in physical cavities may have no variation 
with the microwave power.  A combination of rigorous 
calculations of cavity losses, measurements of power 
dependence, the atomic distributions, and fountain tilts, and 
electrical measurements that show the lower limit of the 
cavity Q and the cavity symmetry, should provide stringent 
limits on DCP errors for current atomic clocks. 
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