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Abstract 
 

The Allan variance is a well-known estimator of frequency stability and is often used to 
classify a time series into one of the standard clock noise types.  By identifying the power-law 
model for clock noise with its long-memory equivalent, the Allan variance can also serve as an 
estimate for the long-memory parameter.  Although the Allan variance is not a maximum 
likelihood estimator, it can be used with regression techniques that employ minimum variance 
estimates.  This work describes the analytic basis for using the Allan variance to estimate the 
memory parameter, and performance of several Allan-variance-based estimators is illustrated 
via simulation study.  Maximum likelihood estimation is also discussed, and the performance of 
maximum-likelihood estimators is contrasted with that of the Allan-variance-based estimators. 

 
 

INTRODUCTION 

 
This paper is intended to provide a synopsis of useful techniques for estimating the long-memory 
parameter with specific emphasis on Allan-variance-based techniques.  The ideas described below are not 
new, although many of them may be new to the timing community.  The intent is to provide some insight 
into these estimators, ample references, and an indication of the performance of these estimators via 
simulation studies – the hope being that the practitioner can then utilize these techniques as appropriate.  
 
We begin with a brief introduction of long-memory processes and discuss why estimation of the long-
memory parameter may be of interest to timekeepers.  We then describe several techniques for estimation 
of this parameter that are found in the literature, and focus on two Allan-variance-based techniques. 
Finally, simulation studies are described that illustrate the performance of several of these estimators. 
 
 
LONG-MEMORY  PROCESSES 
 
A class of time series processes known as long-memory or fractionally integrated processes (see, for 
example, [1]) have been used to describe the persistent correlation structures seen in fields such as 
hydrology, finance, astronomy, and timekeeping.  These processes exhibit significantly large correlations 
between measurements separated by long time intervals, hence the name long-memory processes.  The 
memory of these processes is characterized by a single parameter, d.  )(tY , a long-memory process with 
time index t, is denoted by )(~)( dItY  to indicate that it is the result of the fractional-integration of 

white noise of order d.  The power spectral density of such a process is given by 
d

Y fcfS 2~)( −
 for 
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small frequencies, f.  That is, Y is a “power law” process.  The slowly decaying autocorrelation function in 
terms of lag, h  (for stationary processes where Stirling’s approximation holds), can be approximated by 

)(/)1(~)( 12 ddhh d Γ−Γ−ρ  as h tends to infinity, where )(xΓ satisfies )!1()( −=Γ xx .  It is this form 
of the autocorrelation function that has provided much of the impetus for estimating d, as we will discuss 
in the next section. 
 
In this work, we are interested in estimating the long-memory parameter.  In timekeeping applications, we 
may wish to estimate d in order to describe the correlation structure of a time series for several reasons. 
For instance, it may be necessary to characterize clock behavior by identifying the autocorrelation 
structure as consistent with one of the standard noise types (white, flicker, random walk, etc.) or more 
generally by the value of d itself.1  Or, we may want to separate autocorrelated noise from polynomial 
trend – perhaps by means of a prewhitening filter that employs an estimate of d.  We may also wish to 
make predictions of future clock behavior via a statistical model (e.g., an ARFIMA (p,d,q) model; see [1]).  
 
In the next section, we begin our discussion by outlining some available estimation techniques for d.  We 
describe several techniques that make use of the Allan variance, a well-known estimator of frequency 
stability.  We describe the analytical mechanism for these approaches and highlight the associated 
benefits and pitfalls.  Monte Carlo simulation results are presented for several cases of interest.  We 
conclude with recommendations regarding the use of the Allan variance as an estimator of the long-
memory parameter. 
 
 
ESTIMATORS  OF  THE  LONG-MEMORY  PARAMETER 
 
There is a rich history2 of estimation of d.  Historically, these estimators were heuristic in nature with 
their graphic and analytic forms sometimes arising from the context of the applied problem.  More 
recently, statistically optimal techniques for estimating d have emerged such as those based upon 
maximizing the likelihood function.  We discuss several of those techniques below and put the Allan 
variance into context with other statistical approaches for estimating d. 
 
GRAPHICAL  TECHNIQUES 
 
Graphical techniques have long served as an intuitive approach to estimation of d due to their visual 
nature.  Hurst [2] developed the R/S statistic to aid hydrologists in making predictions of the flow of the 
Nile River.  Based on dividing the range of adjusted cumulative sums by a measure of the variability of 
the process, the R/S statistic approximates a straight line with slope d+½ when plotted on a log-scale 
against lag.  The correlogram [3] also allows estimation of d via a graphical technique.  By plotting the 

                                                 
1 Recall that the following identifications can be made: 

 
Noise Type: White PM Flicker PM White FM Flicker FM Random Walk FM 

α  -2 -1 0 1 2 
d -1 -1/2 0 1/2 1 

 
where d is not limited to these five values but can be any real number in the range 0),,1( ≠∞− d .  Thus, d can 
describe noise types “between” those typically considered and can be regarded as a way to classify the correlation 
properties of a process. 
 
2 The discussion here is by no means a complete listing of estimation techniques for the long-memory parameter. 
For more, see [4]. 
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correlation function against lag on a log-log scale, d can be found by noticing that the slope is 
approximately equal to 2d-1.  A similar technique, the variogram, arose in geostatistics for analysis of 
spatial processes [4].  And the periodogram (an asymptotically unbiased estimate of the power spectral 
density) can be used with spectral-domain regression [5] to yield an estimate of d.  In fact, there is an 
abundance of graphical techniques [4] that estimate d by approximating the slope in a linear relationship 
between some function of the variance and some description of lag  – the Allan variance plot is one such 
technique. 
 
THE  ALLAN  VARIANCE  AS  AN  ESTIMATOR  OF  THE  LONG-MEMORY  PARAMETER 
 
Timing professionals are well aware of the graphical nature of the Allan Variance plot (a.k.a. sigma-tau 
plot).  Here, we discuss two approaches for using the Allan variance (AVAR) to estimate the memory 
parameter.  First, we begin with time-domain regression on traditionally computed AVAR estimates; then 
we discuss the use of the wavelet representation of the AVAR. 
 
Time-Domain  Regression 
 
The basis for using AVAR to estimate the memory parameter in the time domain hinges upon the 
following property of long-memory processes [6, 4]: 
  

12~)( −d
YAVAR ττ   for 2

1
2

3 <<− d  and ∞→τ , 
 

where τ  is averaging length and Y is, as usual, fractional frequency deviation.  Therefore, an estimator 
for d may be found by computing the slope of the line between τlog and log AVAR for sufficiently large 
τ .  This slope may be estimated by regression.  It is important to note, however, that this relationship 
holds only when τ is sufficiently large.3  But how large is large enough?  This question has plagued many 
of the heuristic estimators (see, for example, the discussions of the “bandwidth parameter” [5, 7]), since 
choosing an inadequate lower bound for τ  could result in estimates of d that are severely biased.  Abry 
[8] suggests, when determining the lower cut-off for τ , to visually inspect a plot of confidence intervals 
(not simply points) for a linear relationship.  The regression should exclude values of τ that are not large 
enough to support a linear relationship. 
 
But determining the lower cutoff for τ  is not the only difficulty when conducting time-domain regression 
to estimate d.  Practitioners know well that AVAR estimates at high averaging lengths are substantially 
noisier than AVAR estimates for low- and mid-range τ .  Therefore, we would expect AVAR-based 
estimates of d to be quite imprecise if we base these estimates on large values of τ .  To alleviate this 
problem, we can assign more weight to the more precise AVAR estimates (at smaller τ ) and less weight 
to the imprecise AVAR estimates (at larger τ ). 
 
Thus, we define an AVAR time-domain regression estimator for d as follows:  
 

)1(ˆ
12

1 += bdTR  
 

where 1b  is the coefficient of logτ  (i.e., the slope term) in the weighted linear regression of log AVAR by 
logτ .  This estimator is subscripted by TR to indicate that it is a Time-domain Regression estimator.  The 
regression weights are defined by ))(var(log/1 ii AVARw τ= .  Determining ))(var(log iAVAR τ is the 

                                                 
3 Note that large τ  is equivalent to low frequency. 
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most difficult aspect of the estimation process.  Since our goal is to estimate the memory parameter, we 
cannot make use of the standard formulas [9] for estimating the variability of AVAR, since these formulas 
differ by noise-type (e.g., white, flicker, etc.) and hence require the noise-type to be known a priori, 
which is certainly not the case when trying to estimate d.  Thus, one is forced to estimate the weights 
directly using maximum likelihood or iterative least squares techniques (see [10], Chapter 7), or is 
relegated to the use of unweighted regression – the resulting estimates will still be unbiased, but no longer 
have the minimum variance property.  We will return to the discussion of estimation of weights and the 
lower cutoff for τ  in the results section below. 
 
Wavelet  Regression 
 
The second AVAR-based estimator of d leverages the wavelet representation of AVAR.  As shown in [11], 
the AVAR is equivalent to the wavelet variance when the Haar mother wavelet is used.  It is also known 
[12, 8], irrespective of the choice of mother wavelet, that the wavelet variance, WVAR, satisfies 

)12(2~ −djWVAR , where j is the wavelet-level and WVAR is the estimate of the variance of the wavelet 
coefficients.  Thus, employing the Haar wavelet, we have 
 

cdjAVAR +− )12(~log . 
 
Therefore, the following is also an estimator for d: 
 

)1(ˆ
12

1 += bdWR  
 
where 1b  is the coefficient of j (i.e., the slope term) in the weighted linear regression of log AVAR by j. 
This estimator is subscripted by WR to indicate that it is a Wavelet Regression estimator.  The weights 
may be estimated directly, may be ignored to pursue unweighted regression, or may be based upon the 
variance of log WVAR.  Percival [13] gives equations for confidence intervals for WVAR, the half-widths 
of which may serve as the basis for weights.  For long-memory processes, the range of j for which the 
above relationship holds must be determined prior to estimation.  Along the lines of the time-domain 
regression procedure, a lower cutoff must be established via visual inspection. 
 
The use of weighted linear regression in both estimation techniques above overcomes the problem of 
unequal error variance at different levels of the independent variable.  In this situation, the weighted linear 
regression technique is known to yield minimum-variance estimates of the regression coefficients (which 
is not the case with unweighted linear regression). 
 
MAXIMUM  LIKELIHOOD  TECHNIQUES 
 
Maximum likelihood estimation is an analytic technique that seeks to identify the value of the parameters 
for which the observed sample is the most likely.  This is achieved by maximizing the likelihood 
function4 with respect to the parameters.  In the timekeeping context, taking the fractional frequency 
deviations to be long-memory with parameter d, i.e., )(~)( dItY , it is reasonable to assume that 
Gaussian errors with mean 0 and variance 2σ are appropriate.  It can easily be shown that the resultant 
likelihood function is  
                                                 
4 The likelihood function, )|( xL θ , for parameter θ  and sample vector x, can be found by simply writing the 
probability distribution function, )|( θxf , and viewing the parameter as the free variable and the sample values as 
fixed.  That is, )|()|( θθ xfxL = . 
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where n is the sample size and dΨ2σ  is the covariance matrix of Y which has the following form: 
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The MLE is then found by maximization of the likelihood function (or, equivalently, the log of the 
likelihood function) with respect to the two parameters.  In this case, maximization with respect to 2σ  
can be achieved analytically, and the resultant estimator can be substituted into )|,( 2 YdL σ .  The 
reduced log-likelihood function then becomes 
 

)log(det')|(log 2
11

dd YYcYdL Ψ−Ψ−= − . 
 

However, due to the complexity of the matrix dΨ , maximization cannot be performed analytically.  
Thus, the MLE must be obtained via a numerical search over d.  Although this technique appears to be 
computationally daunting, several approximate maximum likelihood techniques are available in both the 
time domain and spectral domain to speed estimation.  In fact, software aids such as the R-language 
package [14] for computing approximate maximum likelihood estimates are readily available5 such that 
practitioners do not need to engage in the details.  
 
Recent work with wavelets (see, for example, [15]) has produced yet another class of estimators of the 
long-memory parameter.  Wavelet-based maximum likelihood techniques [12, 16] produce results that are 
similar to results from true MLE estimation.  Instead of the fractional frequency process itself, these 
techniques use the wavelet-transform representation of the process that often has a covariance matrix of 
simpler form than the original process – often approximately diagonal.  Thus, maximum likelihood 
estimation calculations (requiring inversion of the covariance matrix) are also simplified.  
 
For the purposes of further discussion, we define the following notation: TMd̂  for the Time-domain MLE 

and WMd̂  for the Wavelet MLE.  We now discuss the performance of the four estimators of d defined 
above by describing the results of a Monte Carlo simulation study. 
 
 
SIMULATION  RESULTS 
 
A series of simulations were conducted to illustrate the behavior of AVAR and maximum-likelihood 
estimates of d.  Five-hundred datasets, each of length 4096, were analyzed for each of four different 
values of d (0, 0.04, 0.14, 0.24).  Thus, for each value of d, there are 500 estimates, id̂ , i=1, 2, … 500 for 
each estimation technique.  Since results were similar across levels of d, we will present only the results 
for d=0.24, a noise-type that is just shy of Flicker FM.  Figure 1 displays the distribution of the 500 

                                                 
5 See http://www.r-project.org. 
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estimates when the true value of d was fixed at 0.24 (as denoted by the red horizontal line).  For each 
estimation technique, a boxplot6 is shown which describes both the location (i.e., bias) and the spread 
(i.e., variance) of the estimates.  Moving from left to right, the boxes represent the performance of each of 
the estimators: WMTMWRTR dddd ˆ,ˆ,ˆ,ˆ . 
 
It is clear from Figure 1 that the two MLE techniques on the right produce estimates that more faithfully 
reflect the true value of d – both in terms of bias and variance.  However, all four techniques produce 
estimates that are reasonably symmetrically distributed and, to varying degrees, can be expected to deliver 
an estimate of d that is close to truth.  The following describes the details for computation for each of the 
four techniques. 

TR WR TM WM

0.
15

0.
20

0.
25

0.
30

0.
35

 
Figure 1 

                                                 
6 In a boxplot, the horizontal line on the interior of each box indicates the median, which is a robust estimator of 
central tendency.  The top and bottom lines of the box represent the third and first quartiles respectively; thus, the 
central 50% of the observations lie within the box, and the height of the box represents the interquartile range.  The 
interquartile range indicates the dispersion of the observations around the median and, thus, provides an indication 
of the spread of the distribution.  The vertical “whiskers” protruding from the box extend to include all observations 
within 1.5 times the interquartile range.  Any observations outside this range are denoted by open circles, and can be 
thought of as belonging to the tails of the distribution.  The vertical axis represents the values of the estimates of the 
long-memory parameter. 
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The time-domain regression estimate, TRd̂ , was formed as described in the preceding section, except that 
the weights were estimated empirically as part of the overall simulation study.  Additionally, the first 
several weights were set to zero to avoid ill-advised weighting of lags (τ ) that do not satisfy the 
asymptotic relationship between AVAR and d, i.e., lags that are not “sufficiently large.”  It should be noted 
that the identification of “sufficiently large” τ is not a well-defined process.  Abry’s suggestion that the 
cutoff for τ be defined by including “all points whose confidence intervals support a line” failed in these 
simulations by admitting all values of τ , which yielded significantly biased results.  Thus, we abandoned 
this technique and estimated the cutoff based on minimizing the mean squared error – an approach that 
can only be attempted during simulation studies.  Thus, the results in Figure 1 should be regarded as a 
“best case scenario” for performance of the time-domain regression estimator.  The fuzzy nature of the 
“sufficiently large” cutoff is a significant disadvantage to the time-domain regression approach.  Figure 2 
repeats the boxplots from Figure 1 (in black) and displays, in light blue, the boxplot that more accurately 
reflects the performance of the time-domain regression estimator in practice – formed without regard to 
cutoffs or weights.  Although it yields more variable results with increased bias, we found this 
conservative approach to be less risky and much less time-intensive than using techniques for weights and 
cutoffs given in the literature. 
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Figure 2 
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The wavelet regression estimate, WRd̂ , was, again, formed as described in the preceding section, except 
that the weights were estimated empirically as part of the overall simulation study.  After painful hours of 
experimenting with various weighting schemes based on confidence intervals for the WVAR [8], results 
were found to be misleading, often resulting in significantly biased results.  Additionally, we abandoned 
ineffective and often-misleading graphical techniques (“visual inspection”) for identifying the lower 
cutoff for j.  Instead, the cutoff was estimated by minimizing the mean squared error – a luxury only 
available to us due to the nature of simulation studies.  Therefore, the results in Figure 1 should be 
regarded as “best case scenario” results for the wavelet regression technique.  Figure 2 displays, in light 
blue, the boxplot that more accurately reflects the performance of the wavelet regression estimator in 
practice when estimates are formed without regard to cutoffs or weights.  Although this conservative 
approach yields significantly noisy and biased results, we observed much more bias in results when 
weights were mis-specified.  Since appropriate weights are unknown to the practitioner in general, mis-
specification is a distinct possibility and brings with it the potential for significant errors in estimating d. 
 

 
Table 1 

 
Mean Squared Error 

TR WR TM WM 
.0027 .0290 .00016 .00024

 
 
The time-domain maximum likelihood estimator, TMd̂ , was obtained using the “fracdiff” package in the 

R language which uses an approximate MLE approach.  The wavelet MLE estimator, WMd̂ , was obtained 
using the “waveslim” package in the R language.  The Daubechies level 4 wavelet was employed.  We 
can see that the performance of the two maximum likelihood techniques is similar.  Both result in low 
mean-squared-error (as shown in Table 1) as a result of their small bias and low variability.  Additionally, 
the MLE approaches, being available in readily accessible software, are easy to implement, run quickly, 
and are well documented.  There is no need for visual inspection to determine lower cutoffs and no need 
for complex weighting schemes.  
 
 
CONCLUSIONS 
 
The AVAR estimates of d are both based on regression techniques.  The time-domain version is based on a 
well-understood relationship between the AVAR and the memory-parameter (although historically stated 
in terms of α  not d).  The intuitive nature of these estimators (particularly the time-domain estimator) is 
attractive – graphical analysis, formalized via regression, yields the estimate of d.  There are, however, 
two significant drawbacks to these AVAR-based approaches.  First, estimation of the “sufficiently large” 
cutoff is troublesome.  Despite much attention in the literature, an automated mechanism for identification 
of the appropriate cutoff is elusive.  Techniques are ad hoc, time- and labor-intensive, and may, in the 
end, deliver misleading results.  Secondly, due to the unequal error variances, weighted regression must 
be used to deliver minimum-variance estimates.  But the appropriate weights are not known in general 
and, thus, must be estimated.  Although this is not an insurmountable problem, it does add an additional 
layer of complexity to the regression techniques. 
 
The maximum likelihood estimators are, on the other hand, easy to implement and produce outstanding 
results.  In fact, the time-domain MLE for d is known [17] to converge almost surely to the true value of 
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d.  In general, maximum-likelihood techniques are widely used and often produce minimum-variance 
estimates.  Yet timekeeping practitioners may be reluctant to employ these techniques due to their slightly 
less intuitive (i.e., non-graphical) nature.  We hypothesize, however, that once the small investment is 
made to explore the MLE and the available software, timekeepers will recognize the utility of this 
approach.  Given the sound basis for MLE techniques and the superior performance of these estimators, 
we strongly recommend their use over AVAR-based approaches. 
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