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Abstract

The unbiased FIR filter is investigated to estimate the time interval error (TIE) K-D polynomial
model of a local clock in GPS-based timekeeping in the presence of uniformly distributed sawtooth noise.
An estimation algorithm is proposed and applied to the GPS-based TIE measurements of a crystal clock
without using the sawtooth correction. Based upon this, we show that the TIE estimates fit actual values
with an uncertainty of the GPS time. It is also demonstrated that estimates of the fractional frequency
offset fit the measurements with the frequency shifts present in the reference rubidium source and the 1
PPS signal of a GPS receiver used.

INTRODUCTION

Fast and accurate estimation and steering of a local clock performance is still a key problem in GPS-based
timekeeping. Here, the time interval error (TIE) between the GPS time and the local clock time is measured
in the presence of noise induced by the GPS timing receiver. The TIE is then estimated and the feedback
system causes the local clock to track the GPS time. The standard deviation of the noise using commercially
available receivers is about 30 ns, can reach 10-20 ns [1], and may be improved by removal of systematic errors
to no less than 3-5 ns [1,2]. Having such a large noise, the measured data cannot be used straightforwardly
for locking, and a TIE tracking filter is applied. To obtain filtering in an optimum way, a TIE model of a
local clock must be known for the filter memory. Such a model was proposed in [4] as a third degree (3-D)
Taylor polynomial and is now basic in timekeeping, being practically proved. In the discrete time, the model
may be written as

x(n) = x0 + y0∆n +
D

2
∆2n2 + w(n, τ), (1)

where n = 0, 1, ...; ∆ = tn − tn−1 is a sample time; tn is a discrete time; x0 is an initial time error; y0 is an
initial fractional frequency offset of a local clock from the reference frequency; D is an initial linear fractional
frequency drift rate; and w(n, τ) is a random component caused by the oscillator colored Gaussian noise and
environmental influences. In GPS-based measurements, (1) is observed via the mixture

ξ(n) = x(n) + v(n), (2)

in which v(n) is a noisy component induced at receiver (the noise of a measurement set is usually negligible).
It is also typical for GPS-based measurements that the noise mean square values relate as 〈w2(n, τ)〉 <<
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〈v2(n)〉. Therefore, w(n, τ) may be neglected in the averaging procedure (it cannot be discarded in the
Kalman filter).

In modern receivers, such as the Motorola M12+ (see [3]), and SynPaQ III GPS Sensor, a random variable
v(n) is uniformly distributed owing to a principle of the 1 PPS (one pulse per second) signal formation.
Figure 1a shows a typical sawtooth structure of v(n) in a short time; that is the modulo 2σmax Brownian
TIE associated with a phase of a receiver local oscillator, where σmax is the error bound (in SynPaQ III, it
is about 50 ns). In long-term measurements, v(n) exhibits nonstationary excursions (Figure 1b) caused by
uncertainties of a GPS time at receiver (see [5]) with different satellite sets in a view. If a single-channel
receiver is used, the excursions have a day’s periodicity [5]. With multichannel receivers, they are typically
nonperiodic (Figure 1b). In the latter case, a long-term noise histogram evolves, by increasing the data, from
uniform to normal and vn may be approximated by a mean-zero, 〈v(n)〉 = 0, stationary Gaussian noise. If
the sawtooth correction is used, then the noise v(n) becomes near Gaussian in a short time.

To estimate optimally x0, y0, and D for different clocks (atomic and crystals), assuming the Gaussian
nature of v(n) with a known variance σ2

v , several filtering algorithms have been examined over a couple of
decades. For the state space equivalent of (1), the problem was formulated by Allan and Barnes in [6] to
apply Kalman filtering. Several solutions were then given in [7-9]. Thereafter, various Kalman algorithms
were examined by the authors in [10-14] for different estimation purposes. These and other applications
of Kalman filters to time scales were recently outlined in [15]. The problem with the Kalman filter arises
when noise is non-Gaussian, as in Figure 1, for example. To overcome this, advanced Kalman algorithms
were proposed in [16,17], being, however, not yet adopted for time scales. Alternatively, finite impulse
response (FIR) filters are used that allow for noise of an arbitrary distribution. In contrast to the infinite
impulse response (IIR) structures (including Kalman filters), FIR structures have inherent properties, such
as a bounded input/bounded output (BIBO) stability and robustness against temporary model uncertainties
and round-off errors [20]. They may be used independently or combined with Kalman filters [12,19]. A
general optimal FIR filtering algorithm with embedded unbiasedness for state space models was recently
proposed in [21]. Especially for GPS-based timekeeping and a linear TIE model, an unbiased FIR filter was
designed and studied in [22]. In this paper, we investigate a new unbiased FIR filter and filtering algorithm
intended for real-time estimation of the TIE K-D polynomial model in the presence of noise of an arbitrary
symmetric distribution.

THE TIE POLYNOMIAL MODEL

In view of 〈w2
n〉 << 〈v2

n〉, the noise-free and time-invariant TIE model projects ahead on a horizon of N
points from the start point n = 0 with the K-D Taylor polynomial

x1(n) =
K∑

p=0

xp+1
∆pnp

p!
= x1(0) + x2(0)∆n +

x3(n)
2

∆2n2 +
x4(n)

6
∆3n3..., (3)

By extending the time derivatives of x1(n) to the Taylor series, the clock model and its observation (2)
become, respectively,

λ(n) = B(n)λ(0), (4)

ξ(n) = Cλ(n) + v(n), (5)

where λ(n) = [x1(n)x2(n)...xK+1(n)]T is a vector [(K + 1)×1] of clock functions with the components
approximately calculated for l > 1, l ∈ [0, K], by

xl(n) =
1
∆

[xl−1(n)− xl−1(n− 1)], (6)
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and a transition matrix [(K + 1)× (K + 1)] is

B(n) =




1 ∆n ∆2n2/2 ... (∆n)K/K!
0 1 ∆n ... (∆n)K−1/(K − 1)!
0 0 1 ... (∆n)K−2/(K − 2)!
... ... ... ... ...
0 0 0 ... 1




. (7)

The most common situation that may be assumed in timekeeping is when all or several clock states are
observable, by (5), via M (independent or dependent) measurements in presence of correlated or uncorrelated
noises. Then the observation vector is ξ(n) = [ξ1(n)ξ2(n)...ξM (n)]T and

C =




c11 0 ... 0 ... 0
0 c22 ... 0 ... 0
... ... ... ... ... 0
0 0 ... cMM ... 0


 (8)

is the measurement matrix [M × (K + 1)] with, typically, unit components. Finally, in view of Figure 1,
the noise vector v(n) = [v1(n)v2(n)...vM (n)]T contains correlated or uncorrelated components that are not
obligatory Gaussian. In the following, we will assume that the TIE model (4) has K + 1 states and is
observable via (5) in presence of sawtooth noise (Figure 1a) of unknown structure (Figure 1b) caused by
GPS time uncertainty. We will also assume that M = K + 1, C is an identity matrix, and the noise v(n) is
mean zero, 〈v(n)〉 = 0, and symmetrically distributed with known covariance 〈vT(n)v(n)〉.

AN UNBIASED FIR FILTER

Utilizing N points of the nearest past, the FIR estimate λ̂(n) = [x̂1(n)x̂2(n)...x̂K+1(n)]T at n-th point is
given by, for M = K + 1,

λ̂(n) =
N−1∑

i=0

H(i)ξ(n− i) (9)

= q(n)Γ, (10)

= d(n)Γ + r(n)Γ, (11)

where the matrix [(K + 1)× (K + 1] of unknown FIRs is

H(i) =




hK(i) 0 ... 0
0 hK−1(i) ... 0
... ... ... ...
0 0 ... h0(i)


 , (12)

in which the l-th FIR has inherent properties: hl(i) =
{

hl(i), 0 ≤ i ≤ N − 1
0, otherwise and

∑N−1
i=0 hl(i) = 1. The

estimates vector and its deterministic and random constituents, all of [(K + 1)×N ], are, respectively,

q(n) = [H(0)ξ(n) H(1)ξ(n− 1) ... H(N − 1)ξ(n−N + 1)] (13)

d(n) = [H(0)Cλ(n) H(1)Cλ(n− 1) ... H(N − 1)Cλ(n−N + 1)], (14)

r(n) = [H(0)v(n) H(1)v(n− 1) ... H(N − 1)v(n−N + 1)], (15)
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and an auxiliary unit matrix (N × 1) is Γ = [1 1 ...1]T . The mean square error (MSE) of λ̂(n) is

J(n) = 〈[λ(n)− λ̂(n)]T [λ(n)− λ̂(n)]〉 = [λ(n)− d(n)Γ]T [λ(n)− d(n)Γ] + 〈[r(n)Γ]T [r(n)Γ]〉, (16)

in which the estimate bias and variance are, respectively,

bias[λ̂(n)] = λ(n)− d(n)Γ, (17)

var[λ̂(n)] = 〈[r(n)Γ]T [r(n)Γ]〉. (18)

Generic Coefficients for the FIR of an Unbiased Filter

The necessary and sufficient condition for the unbiased estimate follows straightforwardly from (17); that is,

λ(n) = d(n)Γ, (19)

providing the rule to derive FIRs for the clock states, namely:



x1(n)
x2(n)
...
xK+1(n)


 =




WT
Kλ1(n)

WT
K−1λ2(n)

...
WT

0 λK+1(n)


 , (20)

where
Wl = [hl(0)hl(1)...hl(N − 1)]T , (21)

λK+1−l(n) =




xK+1−l(n)
xK+1−l(n− 1)
...
xK+1−l(n−N + 1)


 . (22)

For the clock (K + 1− l)-th state, (20) thus yields a relation

xK+1−l(n) = WT
l λK+1−l(n). (23)

By invoking (6) and then expressing the components in (20) with the l-D polynomial, by (3), we arrive at
the unbiasedness (or deadbeat) constraint

FWl = G, (24)

in which G = [1 0 ... 0]T is of [(l + 1)× 1] and

F =




1 1 1 ... 1
0 1 2 ... N − 1
0 1 22 ... (N − 1)2

... ... ... ... ...
0 1 2l ... (N − 1)l




. (25)

We notice that the constraint (24) is inherent for any other unbiased estimators, e.g., for the minimum
variance unbiased (MVU) and best linear unbiased estimator (BLUE). Now, the components in (21) may
also be substituted by the l-D polynomial (that is what Kalman claims for optimal filtering)

hl(i) =
l∑

j=0

ajli
j , (26)
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where ajl are still unknown coefficients. Embedded (26), the constraint (24) becomes

DA = G, (27)

where the FIR coefficients matrix is A = [a0la1l...all]T , and an auxiliary quadratic matrix [(l + 1)× (l + 1)]
is given by

D =




d0 d1 d2 ... dl

d1 d2 d3 ... dl+1

d2 d3 d4 ... dl+2

... ... ... ... ...
dl dl+1 dl+2 ... d2l




, (28)

where the generic component dm =
N−1∑
i=0

im, m ∈ [0, 2l], is determined by the Bernoulli polynomials (Ap-

pendix A). An analytic solution of (27) yields the generic coefficients for (26)

ajl = (−1)j M(j+1)1

|D| , (29)

in which |D| and M(j+1)1 are the determinant and minor of (26), respectively. Determined ajl and hl(n),
the unbiased FIR estimate of the clock (K + 1− l)-th state is given to be

x̂K+1−l(n) =
N−1∑

i=0

hl(i)ξK+1−l(n− i) (30)

= WT
l ΞK+1−l(n), (31)

where

ΞK+1−l(n) =




ξK+1−l(n)
ξK+1−l(n− 1)
...
ξK+1−l(n−N + 1)


 . (32)

Estimate Noise

The estimate noise variance (18) may now be rewritten as

var[λ̂(n)] = 〈[r(n)Γ]T [r(n)Γ]〉 =
K∑

k=0

WT
K−kRk+1(n)WK−k, (33)

Rl(n) =




Rl(n, n) Rl(n, n− 1) ... Rl(n, n−N + 1)
Rl(n− 1, n) Rl(n− 1, n− 1) ... Rl(n− 1, n−N + 1)
... ... ... ...
Rl(n−N + 1, n) Rl(n−N + 1, n− 1) ... Rl(n−N + 1, n−N + 1)


 . (34)

where the autocorrelation matrix Rl(n) is specified by (33) with a generic component Rl(i, j) = 〈vl(i)vl(j)〉,
i, j ∈ [n, n−N + 1]. Accordingly, the estimate variance associated with the estimate (31) calculates

σ2
K+1−l(n) = WT

l RK+1−l(n)Wl. (35)

It is important that, by large N , the sawtooth noise becomes delta-correlated. This degenerates (34) to the
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diagonal form with the components Rl(i, i) = σ2
vl and (35) is written as

σ2
K+1−l = σ2

v(K+1−l)W
T
l Wl, (36)

where σ2
v(K+1−l) is a variance of the noise perturbing the (K + 1− l)-th clock state.

Let us note that, in different algorithms, the components of the noise vector v(n) may be caused by different
or equal physical sources. Thus, they may demonstrate different powers of correlation and dependence.

APPLICATIONS TO THE CLOCK TIE POLYNOMIAL MODEL

In applications, K in (3) is identified for the filter memory on a horizon [0, N − 1]) by the clock precision.
Typically, it is assumed that (3) fits cesium and hydrogen maser clocks with K ∈ [0, 1], and crystal and
rubidium clocks with K ∈ [1, 2]. However, K = 3 may be required for low-precision crystal clocks. Below
we give the unbiased FIRs for all these cases.

Low-Order FIRs for the Optimally Unbiased Filters

Setting l = 0, 1, 2, 3 and using the coefficient dm (Appendix), we first calculate the FIR coefficients (29).
Then the relevant FIRs (26) may readily be written as

h0(i) =
1
N

, (37)

h1(i) =
2(2N − 1)− 6i

N(N + 1)
, (38)

h2(i) =
3(3N2 − 3N + 2)− 18(2N − 1)i + 30i2

N(N + 1)(N + 2)
, (39)

h3(i) =
8(2N3 − 3N2 + 7N − 3)− 20(6N2 − 6N + 5)i

N(N + 1)(N + 2)(N + 3)

+
120(2N − 1)i2 − 140i3

N(N + 1)(N + 2)(N + 3)
. (40)

The constant FIR (37) corresponds to simple averaging and is optimal in a sense of minimum produced
noise. This FIR is practically proved to be reasonable in GPS-based common view measurements [5]. The
linear FIR (38) was also derived in [22] by using linear regression to compensate a bias of simple averaging.
This filter demonstrates an intermediate error between the 2-D and 3-D Kalman filters in application to
the crystal and rubidium clocks [24]. Its kernel starts with a maximum h2(0) = 2(2N−1)

N(N+1)

∣∣∣
N>>1

∼= 4
N > 0

and goes to a minimum h2(N − 1) = − 2(N−2)
N(N+1)

∣∣∣
N>>1

∼= − 2
N < 0, having zero at n0 = 2N−1

3 . Its special

peculiarity is r = lim
N→∞

h2(0)
h2(N−1) = −2 that allows one to synthesize a FIR, by saving r = −2 for arbitrary

N . It may be shown that the FIR synthesized in such a way is equal to that derived in [23] for the 1-step
linear prediction on a horizon [1, N ].
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Noise Power Gains

The noise power gain corresponding to the l-D FIR is specified, by (36), to be gl(N) = σ2
K+1−l/σ2

v(K+1−l) =
WT

l Wl. Its values associated with (37)-(40) are given below, respectively,

g0(N) =
1
N

, (41)

g1(N) =
2(2N − 1)
N(N + 1)

, (42)

g2(N) =
3(3N2 − 3N + 2)(N2 + 3N + 2)

N(N + 1)2(N + 2)2
, (43)

g3(N) =
8(2N3 − 3N2 + 7N − 3)
N(N + 1)(N + 2)(N + 3)

. (44)

Relations (41)-(44) manifest that unbiasedness is achieved at an increase of noise. Indeed, the curves for
l > 0 trace above the lower bound 1/

√
N associated with simple averaging (l = 0) that produces minimum

noise (among all filters). It also follows that, by large N > 100, the noise gain is performed approximately
by

√
gl(N) ∼= (l + 1)/

√
N and, thus, traces below the upper bound; that is,

√
gl(N) ≤

{
(l + 1)/

√
N, N ≥ (l + 1)2

1, N < (l + 1)2.
(45)

ESTIMATING THE TIE MODEL WITH A SINGLE GPS
TIMING RECEIVER

We now consider the most widely used practical case when the measurement ξ1(n) of a TIE x1(n) is obtained
with a single multichannel GPS timing receiver and the sawtooth correction is not used. An estimation
algorithm is shown in Figure 2 for the K-D polynomial TIE model (3). The first clock state estimate x̂1(n)
is provided with hK(n) by (30) at a horizon [0, NK − 1]. The observation ξ2(n) for the second state x2(n) is
then formed, using (6), as a discrete time derivative of x̂1(n). Accordingly, x̂2(n) is achieved with hK−1(n)
at a horizon [0, NK−1−1]. Inherently, the first accurate value of x̂2(n) appears at (NK +NK−1−2)th point.
Finally, the last state estimate x̂K+1(n) is calculated with h0(n) at a horizon [0, N0 − 1] using ξK+1(n) that
is formed in the same manner as ξ2(n). The first correct value of x̂K+1(n) appears at (NK + NK−1 + ... +
N0 −K − 1)th point.

Below, as an example of application, we use this algorithm to estimate the TIE model of a crystal clock
embedded to the Stanford Frequency Counter SR620. The measurement is done with SynPaQ III and SR620
for ∆ = 1 s (GPS-measurement). Simultaneously, to get a reference noiseless trend, the TIE of the same
crystal clock is measured, by SR625, for the rubidium clock (Rb-measurement). Initial time and frequency
shifts between two measurements are then eliminated statistically and transition to ∆ = 10 s is provided
by the data thinning in time. A horizon length Nl for each FIR filter is set to obtain the estimates with
minimum MSEs.
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Several-Hour Measurement and Estimation

In this experiment, a short-term measurement of the TIE has been done during several hours. The TIE model
was then identified in the sense of a minimum MSE to be quadratic. Accordingly, we set K = 2, estimate
three clock states, and compare the results for the Rb-measurement. Figure 3 illustrates the estimates x̂1(n)
and x̂2(n). We notice that, inherently, a several-hour measurement does not allow for a proper estimate of
the third clock state x̂3(n). It is neatly seen (Figure 3a) that the estimate of TIE x̂1(n) follows the mean
value of the GPS-measurement and that its offset from the Rb-measurement is caused mostly by the GPS
time uncertainty. A maximum estimate error of about 60 ns has appeared in the time span between the 8th
and 9th hours when a time shift in the IPPS signal was fixed. Figure 3b shows that the estimate x̂2(n) of the
fractional frequency offset fits well the first time derivative of the Rb-measurement. However, in contrast
to (Figure 3a), here the frequency shift of about 3 × 10−11 has occurred in the span between the 7th and
8th hours and no appreciable error has been fixed in the range of large time shift (between the 8th and 9th
hours).

Long-Term Measurement and Estimation

In this experiment, we watched for the same crystal clock over about 2.5 days. The measurements are
inherently fixed oscillations associated with a day’s variation in temperature (Figure 4a). We notice that,
like the previous case, x̂1(n) fits the reference Rb-measurement with the error caused by the GPS time
uncertainty. The estimate x̂2(n) tracks the mean value of the first time derivative of x̂1(n) (Figure 4b).
Finally, x̂2(n) fits well the first time derivative of the Rb-measurement (Figure 4c). And, again, a 2.5-day
measurement does not allow for estimating x̂3(n) with a sufficient accuracy.

CONCLUSION

In this paper, we studied an optimally unbiased FIR filter of the TIE polynomial model of a local clock. In
contrast to the standard Kalman filter, the proposed solution does not require the TIE measured process
to be Gaussian and does not involve any knowledge about noise in the algorithm. Therefore, the algorithm
seems to be simpler for engineering applications. The filter is asymptotically optimal, since a variance of the
produced noise reduces as a reciprocal of the horizon length N . Let us add that timekeeping operates typically
with large horizons, N >> 1. An application of the proposed algorithm to the GPS-based measurement
of a crystal clock showed that the estimate of TIE x̂1 fits actual values with an uncertainty of the GPS
time. Therefore, such a filter may also be employed as an estimator of the GPS time uncertainty in hybrid
structures. The estimate of the fractional frequency offset x̂2 fits the reference Rb-measurement with high
accuracy that is limited by frequency shifts in the 1 PPS signal of the GPS receiver and in the reference
signal. Thus, such timing receivers may efficiently be used in remote measurements of frequency offsets of
local oscillators instead of expensive quantum sources.

APPENDIX: THE COEFFICIENTS OF MATRIX (25)

The coefficients for (28) are calculated by

dm =
N−1∑

i=0

im =
1

m + 1
[Bm+1(N)−Bm+1] ,
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where Bn(x) is the Bernoulli polynomial and Bn = Bn(0) is the Bernoulli coefficient. For low orders, Bn(x)
may be found in reference books. For high orders, the following recurrent relation is valid:

Bn(x) = n

∫
Bn−1(x)dx + Bn.

Several low order coefficients dm are given below

d0 = N, d1 =
N(N − 1)

2
, d2 =

N(N − 1)(2N − 1)
6

, d3 =
N2(N − 1)2

4
,

d4 =
N(N − 1)(2N − 1)(3N2 − 3N − 1)

30
, d5 =

N2(N − 1)2(2N2 − 2N − 1)
12

,

d6 =
N(N − 1)(2N − 1)(3N4 − 6N3 + 3N + 1)

42
.

For a large horizon, N >> 1, the coefficients dm may be calculated by dm|N>>1
∼= Nm+1

m+1 .
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Figure 1: Typical TIE sawtooth noise structure induced by a GPS timing sensor SynPaQ III: (a) short-term,
1 s measurements and (b) long-term, 10 s measurements with a day’s data shifted by 200 ns.

Figure 2: Structure of the unbiased FIR filtering algorithm for the K-D TIE polynomial model observable
with a single GPS timing receiver.
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Figure 3: Short-time measurement and estimation of the crystal clock TIE model without the sawtooth
correction: (a) GPS-measurement of the TIE (points), Rb-measurement of the TIE (dotted), and quadratic
unbiased FIR estimate of TIE x̂1(n) (solid); (b) Rb-measurement of the fractional frequency offset (points)
and its GPS-based linear unbiased FIR estimate x̂2(n) (solid) (Note: the scale here in 10−11)

.
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Figure 4: Long-term measurement and estimation of the crystal clock TIE without the sawtooth correction:
(a) GPS-measurement (points), Rb-measurement (dotted), and quadratic unbiased FIR estimate of TIE
x̂1(n) (solid); (b) observation ξ2(n) (light) and linear unbiased FIR estimate of the fractional frequency
offset x̂2(n) (bold) (Note: the scale here in 10−10) ; (c) Rb-measurement (light) and estimate x̂2(n) (solid)
(Note: the scale here in 10−10).
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