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Abstract

This work gives an algorithm for computing the degrees of freedom of estimators

of Allan and Hadamard variances, including their modified versions. A consistent

approach is used throughout.

1 INTRODUCTION

This work gives an algorithm by which one can compute error bars for measurements of frequency
stability variances in the presence of power-law phase noises. These stability variances fall into two
categories: unmodified variances, which use dth differences of phase samples for d = 2 (Allan) or
3 (Hadamard), and modified variances, which use dth differences of averaged phase samples. The
corresponding sampling functions that act on phase and frequency are shown in [1]. Each variance
is defined as a scaling factor times the expected value of the squared differences. Unbiased estimates
of this variance are computed from available phase data by taking time averages of the squared
differences. The usual choices for the estimation stride (the time step) are the sample period τ0

and the averaging period τ , a multiple of τ0. These give, respectively, the overlapped estimator
(OE) and nonoverlapped estimator (NOE) of the stability variance (although “nonoverlapped” is
a misnomer; there is always some overlap between summands).

The new algorithm, which computes the equivalent degrees of freedom (edf) of a variance estimator,
can replace several ones currently in use with a single, complete, and consistent method. Specifically,
this algorithm covers the OE and NOE of the unmodified and modified Allan and Hadamard
variances for all common noise types (−4 ≤ α ≤ 2) at all applicable sample sizes and averaging
factors. Previously, for the NOE of Allan and Hadamard variances, 1-sigma confidence limits were
generally set by scaling the measured deviation by a noise-dependent factor Kα/

√
M , where M is

the number of summands ([2-6]. For the OE of Allan variance, empirical edf approximations ([7-
10]) were generally used along with chi-squared statistics; non-empirical methods for both Allan
variance estimators were also published ([11-14]). Although an edf computation for the OE of
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modified Allan (and time) variance was first given in [15], the simpler approach of [16] was gen-
erally used; an alternative unpublished approach using the Hadamard edf formed the basis of the
new algorithm. As an example of the application of the new algorithm, the Stable32 program for
frequency stability analysis [17] has adopted it (since Version 1.41) instead of the multiple algo-
rithms previously used for setting confidence limits and error bars.

We wish to maintain a clear distinction between a stability variance and its estimators; in particular,
we treat both the OE and the NOE of each variance. Even though the OE usually has lower
uncertainty than the NOE, the NOE is convenient when phase data are processed in real time or
read sequentially from a file. Indeed, the TSC 5110A Time Interval Analyzer [18], in its “averaging”
mode, computes an NOE of modified Allan variance.

The goal of the new algorithm is not closed formulas, but fast numerical results whose accuracy is
adequate for the purpose at hand. All the calculations are based on the same theoretical principles,
with no empirical formulas. For each τ , one must choose a dominant phase-noise power law,
Sx (f) ∼ Cfα−2, where α ∈ {2, 1, 0,−1,−2,−3,−4} (white PM to random run FM); see [19] for a
method of power-law identification. The phase noise is assumed to be approximately bandlimited
to the Nyquist frequency 1/ (2τ0).

Not covered are effects of trend removal, drift removal for Allan variance in particular; the dth phase
differences are assumed to have zero mean. One can use Hadamard variance to obtain stability
results that are invariant to linear frequency drift. Special long-term stability statistics, such as
total Allan variance [20], total Hadamard variance [19], and Theo1 [21], are not covered; these
require their own treatments.

2 THEORY OF OPERATION

Although the presentation of the algorithm is self-contained, we give a brief account of the theory
behind it. The algorithm’s output is the equivalent degrees of freedom (edf) of an unbiased estimator
V of a stability variance σ2 = EV . Define

ν = edf V =
2 (EV )2

varV
=

2σ4

varV
. (1)

It has been observed empirically (but not exhaustively) for these estimators that
(
ν/σ2

)
V has ap-

proximately a χ2
ν distribution. Thus, having computed ν and observed V , one can obtain confidence

intervals of form νV/x2 ≤ σ2 ≤ νV/x1 from χ2
ν levels x1 < x2 [7].

The model for phase x (t) is the τ0-difference of a pure power-law process:

x (t) = ∆τ0w (t) , (2)

where w (t) is a continuous-time process with spectral density Cfα−4 for all f > 0, and ∆ is the
backward difference operator. Then Sx (f) is asymptotically proportional to fα−2 as f → 0 and
has approximate bandwidth 1/ (2τ0); this is the first reason for using w (t).

Now let

z (t) = ∆d
τ∆εw (t) , (3)
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where ε = τ0 or τ . For ε = τ0 we have z (t) = ∆d
τx (t), which leads to an unmodified variance. For

ε = τ = mτ0 we observe from (2) that

∆τw (t) = w (t)− w (t−mτ0) =
m−1∑

n=0

∆τ0w (t− nτ0) =
m−1∑

n=0

x (t− nτ0) = mx̄ (t) ,

where x̄ (t) is a discrete-time average of m samples of x. In this case, z (t) = m∆d
τ x̄ (t), which

leads to a modified variance [16]; this is the second reason for using w (t). In either case we as-
sume that z (t) is a stationary zero-mean Gaussian process with autocovariance (ACV) function
sz (t) = Ez (u + t) z (u).

Ignoring the conventional scaling factors, we define the stability variance and its estimator by

σ2 = Ez2 (t) , V =
1
M

M∑

n=1

z2 (nδ) , (4)

where the stride δ is τ0 for the OE and τ for the NOE. The number of terms M depends on the
estimator type and the number of data. We have EV = σ2 = sz (0). Then cov

[
z2 (t) , z2 (u)

]
=

2s2
z (u− t), and

varV =
2

M2

M∑

n1,n2=1

s2
z ((n2 − n1) δ) . (5)

The definition (1), after substitution of (5), simplifies to

1
edf V

=
1
M


1 +

2
s2
z (0)

M−1∑

j=1

(
1− j

M

)
s2
z (jδ)


 . (6)

The ACV sz (t) is obtained from (3) by applying a difference operator of order 2d + 2 to the
generalized autocovariance (GACV) sw (t) of the power-law process w (t) [13,16]:

sz (t) = (∆τ∆−τ )
d ∆ε∆−εsw (t) .

The function sw (t) is given below for each α.

3 ALGORITHMS FOR EDF CALCULATION

Our purpose is to obtain practical numerical approximations of (6). We give two versions of the
algorithm: the simplified version merely truncates the sum in the exact formula; the full version
maintains the number of summation terms below a presassigned threshold and avoids catastrophic
roundoff errors. They have the same inputs, output, function definitions, and initial step. Some
explanation of the approximations is given in the Appendix. Because the results are invariant to
time scaling, we may set τ = 1, τ0 = 1/m.

All arithmetic is to be carried out in double-precision floating point. Operations that give signed
integers are the floor function bxc (greatest integer that is ≤ x) and ceiling function dxe = −b−xc
(least integer that is ≥ x).
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3.1 Inputs

α = frequency noise exponent
α = 2, 1, 0,−1,−2,−3,−4
Noise type = WHPM, FLPM, WHFM, FLFM, RWFM, FWFM, RRFM

d = order of phase difference
d = 1: first-difference variance (included for completeness)
d=2: Allanvariance

d = 3: Hadamard variance
Restriction: α + 2d > 1
m = averaging factor τ/τ0, positive integer
F = filter factor

F = 1: modified variance
F = m: unmodified variance

S = stride factor (estimator stride = τ/S)
S = 1: nonoverlapped estimator
S = m: overlapped estimator

N = number of phase data with sample period τ0

3.2 Output

edf = equivalent degrees of freedom of the variance estimator

3.3 Constant and function definitions

Set an integer constant Jmax (used only in the full version); we suggest Jmax = 100.

The formal arguments of the following functions have the same names as the input arguments of
the main algorithm.

1. Define the function sw (t, α) as follows:

α 2 1 0 −1 −2 −3 −4
sw (t, α) − |t| t2 ln |t| |t|3 −t4 ln |t| − |t|5 t6 ln |t| |t|7 . (7)

The entries with ln |t| must evaluate to 0 when t = 0.

2. Define the function

sx (t, F, α) = F 2∆1/F ∆−1/F sw (t, α)

= F 2

[
2sw (t, α)− sw

(
t− 1

F
, α

)
− sw

(
t +

1
F

, α

)]
, (8)

sx (t,∞, α) = sw (t, α + 2) , −4 ≤ α ≤ 0.

3. Define the function

sz (t, F, α, d) = (∆1∆−1)
d sx (t, F, α) , d = 1, 2, 3; (9)
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that is (with dependence on F and α suppressed on the right sides),

sz (t, F, α, 1) = 2sx (t)− sx (t− 1)− sx (t + 1) ,

sz (t, F, α, 2) = 6sx (t)− 4sx (t− 1)− 4sx (t + 1) + sx (t− 2) + sx (t + 2) ,

sz (t, F, α, 3) = 20sx (t)− 15sx (t− 1)− 15sx (t + 1)
+ 6sx (t− 2) + 6sx (t + 2)− sx (t− 3)− sx (t + 3) .

4. Define the function

BasicSum (J,M, S, F, α, d) = s2
z (0, F, α, d) +

(
1− J

M

)
s2
z

(
J

S
, F, α, d

)

+ 2
J−1∑

j=1

(
1− j

M

)
s2
z

(
j

S
, F, α, d

)
. (10)

3.4 Initial steps for both versions

1. Compute M , the number of summands in the estimator, as follows:

L =
m

F
+ md (an integer),

M = 1 +
⌊

S (N − L)
m

⌋
(11)

if N ≥ L, otherwise there are not enough data. Remark: L is the length of the filter applied to the
phase samples.

2. Let

J = min (M, (d + 1)S) . (12)

3.5 Main procedure, simplified version

This is just one step:

1
edf

=
1

s2
z (0, F, α, d) M

BasicSum (J,M, S, F, α, d) . (13)

To check the effect of the truncation, one can also try a larger value of J , say min (M, 6S).

3.6 Main procedure, full version

Let r =
M

S
.

There are four cases. The calculations use coefficients from three numerical tables.
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3.6.1 Case 1. Modified variances: F = 1, all α

This case also applies to unmodified variances when F = m = 1.
If J ≤ Jmax

1
edf

=
1

s2
z (0, 1, α, d) M

BasicSum (J,M, S, 1, α, d)

Else if J > Jmax and r ≥ d + 1, take a0,a1 from Table 1; then

1
edf

=
1
r

(
a0 − a1

r

)

Else let m′ =
Jmax

r
(not necessarily an integer); then

1
edf

=
1

s2
z (0, 1, α, d) Jmax

BasicSum
(
Jmax, Jmax,m

′, 1, α, d
)

3.6.2 Case 2. Unmodified variances, WHFM to RRFM: F = m, α ≤ 0

If J ≤ Jmax

If m (d + 1) ≤ Jmax then let m′ = m else let m′ = ∞. Then

1
edf

=
1

s2
z (0,m′, α, d) M

BasicSum
(
J,M, S, m′, α, d

)

Else if J > Jmax and r ≥ d + 1, take a0,a1 from Table 2; then

1
edf

=
1
r

(
a0 − a1

r

)

Else let m′ =
Jmax

r
(not necessarily an integer); then

1
edf

=
1

s2
z (0,∞, α, d) Jmax

BasicSum
(
Jmax, Jmax,m

′,∞, α, d
)

3.6.3 Case 3. Unmodified variances, FLPM: F = m, α = 1

If J ≤ Jmax

1
edf

=
1

s2
z (0,m, 1, d) M

BasicSum (J,M, S,m, 1, d) .

Remark: For this case, m must be less than about 106 to avoid roundoff error.
Else if J > Jmax and r ≥ d + 1, take a0,a1 from Table 2 (α = 1), b0, b1 from Table 3; then

1
edf

=
1

(b0 + b1 ln m)2 r

(
a0 − a1

r

)

Else let m′ =
Jmax

r
(not necessarily an integer); then

1
edf

=
1

(b0 + b1 ln m)2 Jmax

BasicSum
(
Jmax, Jmax,m

′,m′, 1, d
)
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3.6.4 Case 4. Unmodified variances, WHPM: F = m, α = 2

This calculation is exact, and can be expressed in closed form. In these formulas,
(

n

k

)
denotes the

binomial coefficient
n!

k! (n− k)!
.

Let K = dre.
If K ≤ d

1
edf

=
1
M


1 +

2(
2d

d

)2

K−1∑

k=1

(
1− k

r

)(
2d

d− k

)2




Else

1
edf

=
1
M

(
a0 − a1

r

)
,

where

a0 =

(
4d

2d

)

(
2d

d

)2 , a1 =
d

2
,

also given in Table 2 (α = 2).

3.7 Tables

Table 1. Coefficients for modified variances.

d = 1 d = 2 d = 3
α a0 a1 a0 a1 a0 a1

2 2
3

1
3

7
9

1
2

22
25

2
3

1 0.840 0.345 0.997 0.616 1.141 0.843
0 1.079 0.368 1.033 0.607 1.184 0.848

−1 1.048 0.534 1.180 0.816
−2 1.302 0.535 1.175 0.777
−3 1.194 0.703
−4 1.489 0.702
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Table 2. Coefficients for unmodified variances.

d = 1 d = 2 d = 3
α a0 a1 a0 a1 a0 a1

2 3
2

1
2

35
18 1 231

100
3
2

1 78.6 25.2 790. 410. 9950. 6520.
0 2

3
1
6

2
3

1
3

7
9

1
2

−1 0.852 0.375 0.997 0.617
−2 1.079 0.368 1.033 0.607
−3 1.053 0.553
−4 1.302 0.535

Table 3. Coefficients for logarithmic denominator, unmodified variances, FLFM (α = 1).

d = 1 d = 2 d = 3
b0 b1 b0 b1 b0 b1

6 4 15.23 12 47.8 40

4 EXAMPLES

First, we must point out that the new edf values differ somewhat from older ones because of our
choice of phase noise model. Previously (for α < −1) the phase was generally assumed to have
a pure fα−2 spectrum; here, the phase is modeled as the first difference of an fα−4 process. For
example, consider overlapped Allan variance, white FM, 1025 phase data. The old results are from
[14] (close to those of [7].

τ/τ0 1 2 4 8 16 32 64 128 256 512
old edf 682 584 354 186.3 93.4 45.8 21.8 9.83 4.01 1
new edf 801 554 314 170.0 88.5 44.4 21.8 9.83 4.00 1

The old and new results are in practical agreement at the larger values of τ , where the results
matter more. By allowing this mild discrepancy, we were able to make the algorithm simpler and
more uniform.

Figures 1 and 2 (at the end of the paper) show examples of edf, computed by the new algorithm,
as a function of noise type and of variance type with other parameters fixed.

5 CONCLUSION

The stability variances considered here can all be put into the same form, namely, the mean-
square average of the output of a finite-difference filter acting, not on the phase samples, but on
their cumulative sums. With this insight, we have been able to make an algorithm for computing
the equivalent degrees of freedom of variance measurements. It covers all the commonly used
variances and estimators, and then some. There is now a single unified source for these uncertainty
calculations instead of the many papers that each cover only one variance and perhaps only one
estimator of it. Complete pseudocode for the new algorithm is given here; software is available on
request [23].
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6 APPENDIX: EXPLANATIONS OF APPROXIMATIONS

As is, (6) is unfit for numerical computation. We find empirically that s2
z (t) tends rapidly to zero

as t increases beyond d. For the accuracy needed here (a few percent), there is no point in allowing
j/S to be more than d + 1. Indeed, for sufficiently large t the calculation of s2

z (t) blows up from
roundoff error, even in double precision, because linear combinations of large sw values are taken
to get small sz values. At the very least, one should truncate the sum at j = (d + 1)S, as in the
simplified version of the algorithm.
The full version of the algorithm uses the following general strategy. If J ≤ Jmax we do the
summation (6). When J > Jmax there are two cases. First, if M ≥ (d + 1)S then S = m ≥
Jmax/ (d + 1) >> 1. We truncate the sum at (d + 1)S and approximate it by an integral; this gives

1
edf Vd

≈ 2
r

∫ d+1

0

(
1− t

r

)
s2
z (t) dt

=
1
r

(
a0 − a1

r

)
,

where

r =
M

S
, a0 = 2

∫ d+1

0
s2
z (t) dt, a1 = 2

∫ d+1

0
s2
z (t) tdt.

These coefficients can be evaluated in advance. Second, if M < (d + 1)S then we do another
summation in which J is reduced from M to Jmax and S is reduced proportionately from m.

The extra term for j = J in BasicSum makes the sum a trapezoidal approximation to the integral,
whether or not the sum is truncated.

This method works straightforwardly for Case 1; indeed, in this setting the modified variances are
simpler than the unmodified ones. In Case 2, when m is large we compute sz (t) using the limiting
form sx (t,∞), which is actually −s′′w (t). This means that we are treating x (t) as w′ (t), the process
w (t) being differentiable in the mean-square sense.

The most troublesome case is the overlapped estimators of the unmodified variances for flicker PM.
As S = m →∞, sz (t) approaches a function with logarithmic singularities. The factor b0 + b1 ln m
is an asymptotic form of sz (0). It would be possible (though inconvenient) to add another large-m
subcase as in Case 2, but one does not expect flicker PM to be the dominant noise type when m is
large.

Case 4 is constructed by knowing that the phase samples are accurately uncorrelated when w (t)
is a Wiener process. The simplified computation (13) is correct, but wasteful, because sz (t) is a
linear combination of hat-shaped peaks of width 2/m.
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Figure 1. Edf vs. averaging factor with power-law noise type as a parameter: Allan variance,
overlapped estimator, 100 phase samples.

Figure 2. Edf vs. averaging factor for three stability variances: overlapped estimator, white FM,
100 phase samples.
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QUESTIONS  AND  ANSWERS 
 
DON PERCIVAL (University of Washington):  Your algorithm, your recipe handles the integer power 
laws.  How hard would it be to include something like the power law of minus five-thirds, which would make 
people in the atmospheric turbulence community very happy. 
 
CHUCK GREENHALL:  It would not be difficult to do a specific extra power.  It would be more work to 
include a whole continuous range.  The algorithm is split up into four cases for purposes of numerical 
computation.  So it would be a modest computation. 
 
MARC WEISS (National Institute of Standards and Technology):  I guess I missed it, but it sounds like 
you need to know the power law before you can get the confidence. 
 
GREENHALL: That is correct. 
 
WEISS: So how do you suggest doing that? 
 
GREENHALL: Well, a couple years ago there was a paper in which both of us were co-authors, and it 
actually published the method being in the Stable software.  Bill and I have a paper coming up at EFTF in 
which we have developed a simpler and better method involving the lag-1 autocorrelation. 
 
DEMETRIOS MATSAKIS (U.S. Naval Observatory):  Maybe a better way to phrase the other question 
was:  what percentage of the error is due to the error bars?  You have a certain contribution because you do 
not know how to fit your power law.  So how much does it raise your error? 
 
GREENHALL:  Well, I don’t know.  We were pulling ourselves up by our bootstraps here, and you’re 
probably most conservative to assume the more red power law if you are uncertain about it.  That is the best 
thing I can say. 
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