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Abstract

A new approach to atomic clock classification has been enabled by the application of long-
memory, or fractionally integrated, noise constructs. While the spectral properties of the long-
memory noises are consistent with the historical 1/fα approach, they also allow a range of estima-
tion strategies, in both spectral and time domains, for the classification of atomic clock behavior.
These fractionally integrated noises are analyzed and applied to atomic timescales in this re-
search, with particular emphasis on a prewhitening technique using fractional differencing which
allows the separation of clock noise autocorrelation from clock rate and drift. Results from simu-
lation studies show the utility of the fractional differencing approach both for simple fractionally
integrated processes, and more complex processes which are more characteristic of atomic clock
noise.

FRACTIONALLY INTEGRATED NOISE

The class of so-called long-memory or fractionally integrated processes can be used to describe the corre-
lations seen in data from fields such as physics, chemistry, astronomy, and other sciences. Long-memory
processes exhibit autocorrelation functions which decay to zero at a much slower rate than the typical au-
toregressive moving average (ARMA) process. Early work with a family of fractional Gaussian processes
developed expressly to describe properties witnessed in physical systems (including the 1/fα noises) exhibits
such long memory [1]. The well-known ARMA processes can be generalized [2] to accommodate long-term
persistence, while allowing the short-term correlations to be described by an ARMA process. These fraction-
ally integrated ARMA processes are often abbreviated ARFIMA(p, d, q), where d is the fractional-integration
or long-memory parameter, and p and q describe the orders of the AR and MA components respectively.
When p = q = 0, the process is termed a fractionally integrated process, or I(d) process, of order d. A de-
scription of the fractionally integrated processes can be found in [3] and applications to atomic timekeeping
using I(d) noises are found in [4] and [5]. Although brief definitions are given here, the reader is referred to
the above for a complete treatment.

A discrete time fractionally integrated process, Yt ∼ I(d), of order d, is defined by

Yt = ∇−dZt = (1−B)−dZt =
∞∑

j=0

ψjZt−j (1)

where Zt is a normally distributed sequence of independent, identically distributed random variables with
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zero mean and variance σ2, B is the backshift operator, and ψj = Γ(j + d)/(Γ(d)Γ(j + 1)), with d ∈
(−∞, 1/2), d 6= 0,−1,−2, .... As usual, the Gamma function is defined by Γ(x) =

∫∞
0

tx−1e−tdt if x > 0 and
is analytically continued to the negative real axis by Γ(x+1) = xΓ(x) with poles at x = 0,−1,−2, .... These
I(d) processes are called fractionally integrated due to their construction by summing an uncorrelated noise
process, Zt. Consistent with the integration idea, I(d) processes can also be viewed as a series that, when
differenced d times, results in a white noise process. This relationship is given by:

Zt = ∇dYt = (1−B)dYt =
∞∑

j=0

πjYt−j (2)

where πj = Γ(j−d)/(Γ(j +1)Γ(−d)). Here, πj can be derived by viewing (1−B)d by means of the binomial
expansion. A similar derivation yields the expression for ψj .

The above forms the basis for the statistical treatment of long-memory processes, and can be found, for
example, in [2],[6] and [7]. This construct is the discrete time analogue to the fractional Gaussian noise in
[1].

The power spectral density (PSD) for a fractionally integrated process, Y , is given by

SY (ω) =
σ2

2π|4 sin2(ω/2)|d , |ω| ≤ π, (3)

≈ σ2

2π|ω|2d
, |ω| ≤ δ < π, (4)

where δ defines an interval of low frequencies such that the small angle approximation sin(x) ≈ x holds,
and σ2 is the variance of the white noise process in (1). The PSD can be derived (see, for example, [7]) by
treating Yt as a linear filter on white noise.

For stationary I(d) processes, the correlation between elements Yt and Yt+h for lag h is defined as follows
[7]. The autocovariance function of an I(d) process as in (1) with −1/2 < d < 1/2 is given by

γ(h) =
(−1)hΓ(1− 2d)σ2

Γ(h− d + 1)Γ(1− h− d)
, h = 0, 1, 2, 3, ... (5)

Thus, the memory of a stationary I(d) process can be described simply as a function of the memory param-
eter, d, and lag, h. It is known [2] that a long-memory process, Y ∼ I(d), is stationary for −1/2 < d < 1/2,
and that [5] the kth difference (for integer k), denoted ∇kY , is a fractionally integrated process of order
d− k, namely ∇kY ∼ I(d− k).

Power-law noises, i.e. 1/fα noises, are so-named due to the shape of their power spectral density. Similarly
for long-memory processes, an indicator of long-term persistence is the shape of the spectral density of
these processes as f → 0. Like the 1/fα processes, I(d) processes exhibit a power-law PSD shape near zero
frequency, namely SY (f) ∼ 1/fα. The I(1/2) process is identified [2] with the flicker process having spectral
density 1/f . Similarly, the I(d) models for other 1/fα noise processes can be identified by choosing d = α/2,
as seen in Table 1, where Y is in the fractional frequency domain. A proof of this relationship between α
and d is available in [8]. Therefore, by employing the fractionally integrated noise construct, the traditional
clock model can now be restated.
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THE I(d) ATOMIC CLOCK MODEL

Consider a sequence of observations of the phase differences between an atomic clock and a reference clock.
Let Y be the corresponding process in the fractional frequency domain. A new representation of the clock
model, written in matrix notation, is

Y = Xβ + ε, ε =
k∑

i=1

εi, εi ∼ I(di), εi ⊥ εj , (6)

where Y = (y(t1), y(t2), ..., y(tn))′ is the vector of observations, X is the design matrix, β is the vector of
parameters, and ε is the vector of additive noise with independent components, εi. Here, the n×2 matrix X
with rows (1, ti) and the 2× 1 parameter vector, β′ = (b0, b1), corresponds to a linear model. The additive
noise process, ε(t), is modeled as a sum of k independent fractionally integrated noises with, potentially,
k different distributions. For tractability, it is assumed that each εi has a Normal distribution, namely
N(0,Σi = σi

2Ψdi
).

Table 1: Identification of α and d

Noise Type α in d in
SY (f) ∼ 1/fα Y ∼ I(d)

White Phase −2 −1
Flicker Phase −1 −1/2
White Frequency 0 0
Flicker Frequency 1 1/2
Random Walk Frequency 2 1

ESTIMATION

Estimation of a linear trend in the presence of additive noise, a classic problem in statistics, is most frequently
approached by a least-squares technique. The most prevalent such technique, ordinary least squares (OLS),
is only optimal when the additive noise is serially uncorrelated. When the additive noise is serially correlated,
the estimated OLS regression coefficients, β̂, are still unbiased, but no longer have the minimum variance
property, and may be quite inefficient. Additionally, the estimates of both σ2 and the variance of β̂ may
seriously underestimate the true variances; therefore, confidence intervals and results of hypothesis tests for
β are no longer reliable. Given that the clock model is not limited to uncorrelated additive noise, application
of OLS must be made with great care.

The remainder of this work describes a prewhitening process which allows the application of the OLS
technique even in the presence of the long-memory correlations typical of atomic clock measurements. By
modeling and removing these strong correlations, a residual process which is uncorrelated (white) can be
obtained. It is shown below that the prewhitening process removes only the noise autocorrelation, and does
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not perturb the underlying deterministic structure (clock rate and drift) that needs to be estimated. The
subsequent application of OLS is not only appropriate (since the input noise process is uncorrelated) but
also yields the best estimators of clock rate and drift in both a maximum-likelihood and mean-squared-error
sense. The prewhitening approach described below is applicable to both stationary and non-stationary noise
processes.

PREWHITENING

Recall the filter given in the definition of fractional integration (1) and consider forming an inverse filter.
The operation opposite fractional integration is termed fractional differencing. Define the fractional dif-
ference of a discrete data set as follows. For a finite data set Y1, Y2, ..., Yn, its dth fractional difference is
the set ∇dY1,∇dY2, ...,∇dYn where each ∇dYt is given by ∇dYt =

∑k
j=1 πjYt−j =

∑k
j=1 Γ(j − d)/(Γ(j +

1)Γ(−d))Yt−j , where k is a suitably chosen constant. It can be determined via simulation studies which
value of k is adequate for the removal of long-memory structure in synthetic data. It is easily seen that the
fractional difference operator applied to model (1) prewhitens the noise process when d is correctly chosen. In
general, however, d is unknown. Numerical procedures, such as the Hildreth-Lu technique [9], are available
for estimating d via a search over several possible prewhitening filters. An often-used criterion for selecting
the best prewhitening filter is that of minimizing the sum of the squared errors. In the present application,
however, the goal is to identify a data transformation that results in white additive noise; thus, the criterion
for selecting the best prewhitening filter focuses upon minimizing the intradependence of the additive noise
process. The best prewhitening filter, P , as a function of d, is given by:

Pd = argmin(
∑

h>0

γ̂2
e (h)) (7)

where e are the residuals obtained from OLS applied to the fractionally differenced data (with respect to d),
and γ̂2

e (h) is the sample autocovariance function of the residuals. Here, Pd is chosen such that the difference
between the autocovariance of the OLS residuals and the autocovariance of white noise (i.e., 0) is minimized
across all non-zero lags. Simulation studies [5] reveal that d can be reliably estimated by this minimization
technique. It is held that the estimated value of d shall not fluctuate with time.

Fractional differencing, as in (2), is an exact inverse of fractional integration only in the case of a single I(d)
noise. The fractional difference prewhitening approach proposed above is an approximate technique useful
for removing long-memory structure in the case of the composite I(di) clock model. It is also the case that
the fractional difference transformation can be decoupled from the underlying linear function. That is, when
Y = Xβ + ε is transformed via ∇dY = ∇d(Xβ + ε), ∇d acts upon Xβ + ε in a predictable way which can
be undone to reveal β in the original units [5]. Consider the data set Y = (y1, y2, ..., yn)′, which is linearly
related to the time vector (t1, t2, ..., tn)′ by




y1

y2
...

yn


 = m




t1
t2
...
tn


 +




b
b
...
b


 +




ε1
ε2
...

εn


 . (8)

Fractionally differencing both sides yields

476



34th Annual Precise Time and Time Interval (PTTI) Meeting

∇d




y1

y2
...

yn


 = m∇d




t1
t2
...
tn


 +∇d




b
b
...
b


 +∇d




ε1
ε2
...

εn


 (9)

which effectively prewhitens the ε process while preserving the slope, m. The intercept, b, is, however,
perturbed since ∇db = b

∑k
j=0 πj , which requires a simple division to recover the original intercept, b. Thus,

the fractional differencing transformation does not interfere with the estimation of clock rate and drift, as
both can be recovered after employing the transformation.

Simulation studies show that the value of the fractional differencing parameter, d, can be reliably estimated
via the fractional difference transformation described above, with minimal bias and scatter. Table 2 shows
the results of 500 simulations for each of five values of d. The average value of d̂, maximum deviation from
the true value, and standard deviation of d̂ are shown. In all cases, the minimization procedure searched
for d̂ in the range (-1,1). It can be seen that a slight tendency to underestimate d exists. However, the bias
is not large and is likely preferable to a tendency to overestimate d. Nonetheless, bias reduction techniques
could be investigated in future research.

Table 2: Estimation of the Memory Parameter, d

True d Average d̂ Max |d̂− d| Standard Deviation of d̂
.01 .01 .12 .02
.11 .08 .14 .05
.21 .19 .13 .04
.31 .29 .15 .04
.41 .39 .19 .04

WHITENESS OF RESIDUALS

The true test of the performance of the prewhitening transformation is the extent to which the residual
process is uncorrelated. Simulation studies were conducted in two cases to test the whiteness of the residuals.
First, simple I(d) processes were prewhitened and, second, a sum of two I(di) processes was prewhitened
using a single d̂ in the fractional difference transformation. The results are discussed below.

In the first set of simulations for simple I(d) noise, 500 simulations were run to estimate d and prewhiten
the data. In order to determine if the prewhitened data are indeed white, one may use the property that
the asymptotic distribution of the sample autocorrelation function, ρ̂(h), tends to the Normal distribution
with mean 0 and variance 1/n as the number of points in the data set, n, tends to infinity. That is,

ρ̂(h) → N(0, 1/n). (10)

Therefore, by comparing the sample autocorrelation function to the 95% confidence limits from the Normal
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distribution, one can test for whiteness of the prewhitened data set. In simulation studies, application of
this technique resulted in the conclusion that the data were successfully prewhitened approximately 85% of
the time. This is, unfortunately, less than the 95% expected by chance, indicating that improvements can
still be made to the prewhitening algorithm. Nonetheless, the procedure yields white noise in the majority
of cases and is certainly superior to no prewhitening.

In the simulations when the input process is a sum of two I(di) processes, the results are again encouraging.
White noise is obtained in approximately 81% of the cases; thus, the fractional differencing transformation
has successfully prewhitened the data a majority of the time. It is worth noting that in the case of a
sum of fractionally integrated processes (as in clock noise), the fractional difference transformation is not
analytically an exact inverse filter. It is by virtue of the minimization of the autocorrelation structure that
the transformation yields white noise. And although the use of fractional difference prewhitening is simply
a convenient approximate technique in this case, the results are quite good and provide a means for OLS
estimation of clock rate and drift when no such estimation is otherwise available.

CONCLUSIONS

The fractional difference prewhitening transformation has been proven through simulation studies to be
a viable technique when the process noise is long-memory in nature. It is also useful as an approximate
technique when the additive noise is comprised of a sum of long-memory processes. Estimates of the memory
parameter, d, are found to be reliable and the prewhitened process is verified to be “white” in a large
majority of the cases simulated. Therefore, the application of ordinary least squares is justified and the
resulting confidence intervals for the regression coefficients are reliable, allowing the application of standard
hypothesis testing and/or statistical process monitoring techniques.
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QUESTIONS  AND  ANSWERS 
 
STEVEN HUTSELL (Second Space Operations Squadron):  Excellent work, Lara, as always.  
I had a question on what your thoughts were in terms of applications.  Do you see that this is 
more applicable towards batch processing, or recursive real-time processing systems, or both? 
 
LARA SCHMIDT:  I have it experimentally set up where it runs automatically, and right now I 
have it set up to help me identify breakpoints in where you might suspect a model change over 
this region to another region for a single clock.  I am still evaluating that, and we are looking into 
it.  But eventually I hope this can run automatically.  It is just a matter of finding the memory 
parameter that is appropriate, and you can run that iteratively or you can fix it and have it always 
use the same grammar.   
  
JUDAH LEVINE (National Institute of Standards and Technology):  How do you tell the 
difference between the fractionally pre-whitened data and a time series that’s really just not 
stationary? 
 
SCHMIDT:  Yes, that is a hard call.  When you look at the autocorrelation function itself, as I 
put up early in the talk, if you are using a short-memory process, and that is what you mindset is 
for modeling, it looks like a nonstationary short-memory process.  So you have to know 
something about the kind of time series you are dealing with and, since we are assuming it is the 
power law noise spectrum, that we could have nonstationarity or stationarity; you just have to go 
with the shape of the autocorrelation function.  
 
DAVE HOWE (NIST):  Lara, have you looked at the effects of periodicities?  Because I think 
that goes to the question that Judah was asking. 
 
SCHMIDT:  Right.  No, I have not simulated any periodic data.  All of my data have just been 
long-memory, short-memory, or white. 
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