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Abstract 

The three-cornered hat is a procedare for extracting the stabilities of three 
clocks when the only available information is the time or frequency 
differences between the clocks. To our knowledge, there has been no method 
of determining a confidence interval for such a stability estimate. In this 
paper, we present a method for determining the number of degrees of freedom 
of the estimate, which allows the assignment of a confidence interval to a 
three-cornered-hat stability estimate. 

INTRODUCTION 
The basic question that this paper will address is how to assign a confidence interval to a three-cornered- 
hat estimate for the stability of a clock. Assigning a confidence interval requires knowledge of the 
number of degrees of freedom of the estimate. While there exist empirical formulas for the (in general, 
fractional) number of degrees of freedom for an overlapping estimation of the Allan deviation, the authors 
know of no equivalent result for an estimate from a three-cornered hat. We present an analytic expression 
for the fraction of degrees of freedom that are lost through application of the three-cornered hat, which 
will allow the assignment of confidence intervals. In addition, we verify our analytic expression through 
the use of numerical simulations. 

STABILITY METRICS 
The timing community uses a variety of stability metrics for the characterization of frequency standards, 
clocks, and oscillators (these terms will be used interchangeably here). We will limit our discussion to 
the Allan deviation [l]. The Allan deviation is the average of the neighboring frequency differences that 
have been averaged for a given length of time T.  The formal definition is: 

where 5, is the fractional frequency averaged over an interval z, and the angled brackets indicate an 
average over all time. The factor of 1/2 is included to replicate the RMS for a white frequency data. For 
the remainder of the paper, we will suppress the subscript y in the Allan deviation and use the subscript to 
indicate a clock or time series label. This convention will be used for both the RMS and the Allan 
deviation. 

It should be noted that if the Allan deviation is to be interpreted as the stability of a single clock or 
oscillator, a trusted (much more stable) reference is needed. In this case, one measures phase or 
frequency differences between the device under test and the trusted reference. In this situation, one can 
neglect the noise contribution from the reference and assign the noise in the measurements to the device 
under test. 
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DEGREES OF FREEDOM 
When given a data set of phase or frequency measurements, one can estimate the stability of the oscillator 
by using Equation (1). An important next step is the evaluation of the confidence interval of the 
estimated Allan deviation. This question is addressed in a paper by Howe, Allan, and Barnes [2], where 
the authors arrive at empirical formulas for the number of degrees of freedom for an estimate of the Allan 
deviation. The empirical formulas require knowledge of the number of samples in the data set, the 
averaging interval, and the dominant noise type at that averaging interval. 

’ 

Once the number of degrees of freedom are known, a confidence interval can be assigned by referring to 
the integrated Chi-Squared distribution for that number of degrees of freedom. 

THE THREE-CORNERED HAT 
It is often the case that one must measure a clock or oscillator without the luxury of a trusted, superior 
reference. In this case, a common technique is to use phase or frequency measurements between three (or 
more) oscillators in a procedure commonly referred to in the timing community as a three-cornered hat 
(TCH). 

The first step in the TCH procedure is to take a time series corresponding to the difference between each 
possible clock pair combination and form an estimate of the Allan deviation for each of the three time 
series ql using Equation (1). If one assumes that there are no correlations between the time series of the 
individual clocks (the “bare” clock, measured against a mythical perfect reference), one can form an 
estimate of each clocks frequency stability as follows: 

The subscripts i, j ,  and k refer to the three clocks. 

THE GRUBBS ESTIMATOR 
It turns out that the idea of the TCH estimate predates its use in the timing and clock community. An 
earlier work is that of Grubbs [3]. In’that paper, Grubbs investigated the combination of three or more 
measurements in an effort to characterize uncertainties in the measured quantities and the measurement 
systems. The work dealt with Gaussian noise and used the RMS as the measure of the measurement 
uncertainties. 

DEGREES OF FREEDOM FOR THE GRUBBS ESTIMATE 
The work of Grubbs included investigations into the variance of the measurement uncertainty estimates. 
The calculations of these variances made heavy use of the fact that higher moments of a Gaussian 
distribution are determined by only the mean and RMS of the distribution. The resulting variance of the 
variance estimate is: 

where n is the number of samples in the data set. It is clear that the variance of any estimate is larger than 
the variance if that estimate could have been made by measuring against a perfect reference. In addition, 
the variance of the estimate depends on the estimated stabilities of the two other processes. 
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DEGREES OF FREEDOM IN A THREE-CORNERED HAT 
The form of Equation (3) suggests that one can use it along with the higher moments of the Gaussian 
distribution for clock i to arrive at the ratio of the number of degrees of freedom between the TCH 
estimate and the “bare” estimate of clock i. This ratio, which we are suggesting for use in the TCH with 
the Allan deviation. is: 

Gamma is the fraction of the number of degrees of freedom that are left after the TCH procedure for clock 
i when one estimates its stability in the presence of two other clocks. The procedure for calculating a 
confidence interval for a TCH clock estimate is then a fairly simple extension of the current methods for a 
single clock. The first step is to perform a TCH and then estimate the dominant noise type for that 
averaging interval [5]. With information about the noise type, the user must then use the results of Howe, 
Allan, and Barnes [2] to calculate the number of degrees of freedom for the situation if the estimate had 
been made with respect to a perfect reference. The resulting number of degrees of freedom are then 
multiplied by Gamma (Equation 4) for that clock estimate at that averaging time. The confidence interval 
can then be assigned using standard methods of comparison to the integrated Chi-Squared distribution for 
that number of remaining degrees of freedom. 

SIMULATIONS 
In an attempt to verify Equation 4, and to illustrate several common Allan deviation estimation situations, 
we performed several simulations using synthesized clock data. 

DESCRIPTION 
Each experiment consisted of 1,000 realizations of a TCH procedure on three synthesized clock data sets. 
Each synthesized clock time series was 1,025 data points in length and represented a pure power-law 
noise (white phase, flicker phase, white frequency, flicker frequency, or random-walk frequency 
modulation). The data sets were generated using the algorithms of Kasdin and Walker [4]. 

For each realization, the Allan deviation was estimated. The clock data sets were differenced and a TCH 
was performed. The results were recorded for all 1,000 realizations of each experiment. The number of 
degrees of freedom were estimated for each averaging interval for the “bare” clocks (original data sets), 
as well as the TCH estimates for each clock. Each experiment was repeated for all five common power- 
law noise types. 

As expected, the results for the “bare” clocks replicated the results of Howe, Allan, and Barnes [Z]. 

RESULTS FOR THREE CLOCKS OF SIMILAR STABILITY 

A common application of the TCH involves three clocks with (supposedly) similar stabilities. The results 
of one set of simulations for this situation are shown in Figure 1. The upper portion of the figure shows 
the number of degrees of freedom for the stability estimates of both the “bare” clocks and the TCH 
estimates. The lower portion of the figure shows the ratio of the number of degrees of freedom. This 
ratio should be Gamma from Equation (4), with all of the stabilities being equal. In this case,- Gamma is 
expected to be 215, which is shown as the heavy line in the lower portion of the figure. 
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is exactly the estimates where the number of remaining degrees of freedom falls below 10 that the 
predictions of Equation (4) are degraded in Figures 1 and 2. 

AN INTERESTING ANALYTIC CASE 
It is interesting to look at one additional case that arises in clock measurements. The situation is when 
one wishes to estimate the stability of a clock with two others that are less stable. The factor gamma for 
this situation can be found for the case when the two other clocks are a factor of N less stable 
(0, = 0, = No,). Gamma follows from Equation (4), and is 

2 r=  
2 + 2 ~ , + ~ ~ ‘  

Equation (5) highlights the need for designing experiments with long data collection times when one is 
estimating an oscillator’s stability with lower quality references. 

CONCLUSION 
We have supplied an expression for the loss in the number of degrees of freedom suffered by performing 
a three-cornered-hat estimation of a clock’s Allan deviation. This expression allows the assignment of 
confidence intervals for the resulting stability estimates. We have also illustrated the applicability and 
ranges of validity for this expression and the three-cornered-hat estimates themselves. 
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