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Abstract 

In this paper, we investigate one of the possibilities to adapt an unbiased moving average 
(MA) filter cfinite impulse response [FIRIjZter) to the slope of time error function. The lin- 
ear regression coefficient is used as a statistical estimator of sample slope. We evaluate the 
error of the slope estimate and present two options for the adapting coefficient determination. 
To examine them, we generate the time error noisy signal with linear trend and estimate it 
with a simple MA, the optimally unbiased MA, and the two adapted fiiers. The particular er- 
rors of the filters, namely bias, RMSD, RMSE and maximal error are then compared. Finally 
we mark special features of the linear-regression-based adaptation. 

INTRODUCTION 
Fast and extremely accurate “on-line” GPS-based estimating of time errors in timekeeping is probably the 
noblest example of the optimal filtering application in Time and Frequency. Estimation deals here with 
the time error function of local clock, which demonstrates some special features, which are: 

Its deterministic model seems to be quadratic at least, since it is formed with an initial constant error 
(xo), an initial frequency offset of local oscillator for the reference one (yo), and a linear aging compo- 
nent (D) of local oscillator. 
Its noise fits well white Gaussian noise (note: the more noise is whitened, the more accurate linear 
optimal estimate is achieved). 

Such properties of the time error function allow applying the linear optimal filtering theory (linear Kal- 
man filtering) straightforward to recent studies [l] have showed that for the sake of accuracy, it is not 
enough just to use the three-space-state Kalman filter totally matched with the above-mentioned clock 
time model. The known computation problem here is noise produced by the state space discrete time 
Kalman filter (the more states, the more noise). On the other hand, both the realizable Wiener and the 
simple moving average (MA) filters inherently produce the bias for the nonstationary processes. 

In our report [2], we show that of the filters with the same time constant an optimally unbiased MA filter 
(finite impulse response [FIR] filter) produces noise lower then the three-state Kalman with rather the 
same bias. However, the noise is bigger than that of the simple MA. Knowing that a simple MA pro- 
duces the lowest possible noise among all the filters [3] and zero-bias for the stationary process (yo = 0 
and D = 0), we then wonder if it is possible to adapt the filter [2] to the slope of the time error function? 
In other words, can we design the unbiased MAfilter with the same smallest noise as that of a simple 
MA? The answer, unfortunately, is not exhaustively positive. 
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In this report we examine one of the possibilities to reduce the estimate error using a linear regression 
coefficient as an estimator of a time error slope. We work out the adapted filter with two possible adapt- 
ing coefficients and study it for the generated noisy time error process with a linear deterministic trend. 

ADAPTATION OF THE OPTIMALLY UNBIASED MA FILTER 

Given the optimally unbiased MA Filter [2] 

where N is a number of the points in the average, 6,  is observation, and in is estimate of the time error 
x,,. Present the filter (1) in a form of 

where k, in this case is unity, and the weighted function is 

3(N - 1)  - 6i , O l i l N - 1  
9 (3) 

L 0, otherwise 

Now analyze this form (2). Since an observation on the averaging interval of N points exhibits the sta- 
tionary nature and a simple MA is best here in a sense of LMS, then, to get the same minimal mean- 
square error (MSE) for the filter (2), the coefficient should be taken as k, = 0 to get from (2) a simple MA 
filter, this is 

On the contrary,,once the observation 6, is a brightly pronounced nonstationary process, then the opti- 
mally unbiased MA solution ( 1 )  is preferable and the coefficient then is k, = 1 to get ( 1 )  from (2). 

Taking unto consideration the matter of fact that a sample slope b, of the actual time error x,, function 
characterizes its nonstationarity, we show that an adaptation task reduces, in fact, to determination of the 
dependence k,  (b, ) . 

AN ANALYSIS OF FILTERING ERRORS 

In our previous report [l], we estimated the time error modeled as [4] 

D 
2 

x,, =x, ,+yoAn+-A2n2+wx, , ,  
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where n = 0, 1, ..., A = t ,  -t,,-l is sample time, t ,  is current discrete time, and wxfl ( t )  is random time 
error deviation component. We then showed that, for the same time constant, the estimate error of the 
three filters, namely a simple MA, the 2nd order Wiener, and the 3-state Kalman differ, depending on the 
signal nonstationarity. We have also shown that, depending on yo, the application range for all three fil- 
ters may be separated in the following way: 

Simple MA is most accurate for 0 I yo  < 5 ,  
2" Order Wienerfilter is most accurate for 5 I yo  < r2, 
3-State Kalmanfilter is most accurate for r2 I y o ,  

where reference values rl and r2 are defined in by 

where 0: is variance of the observation noise, 8 is the same time constant of each filter, a1 is coefficient 
dependent on impulse response of the Wiener filter, and ol.2 is coefficient dependent on impulse response 
of the Wiener and Kalman filters. Yet at and Q either depends on the estimate error criterion. Let us 
mark here that theoretical determination of al and Q is in fact a not trivial task, since one first must 
evaluate the discrete time error of each filter for the given time constant. Experiment also provides the 
result in the routine way [l]. 

We now would like to use the same approach to determine the separating coordinate (6) for the simple 
MA (4) and unbiased MA (1) filters. In a linear case of (3, this is D = 0; a simple MA produces the bias 
bias,,, = 0 . 5 ~ ~ 8  and the variance = 0: / N . Under the same condition, the unbiased MA filter [2] 
for 1 << N produces zero bias and the variance o:MA = 40: /N . Examining an equality of the MSEs of 
both filters, this is 

we determine the coordinate 

where a E 0.0577 is used if one works in ns/hours and y ,  G 0.01604 if in parts of 
that if lyol < r , then a simple MA is best, and once r 5 / y o [ ,  then the unbiased MA must be applied. 

It is clear now 

Of course, if we know yo implicitly, then the filter (2) adapted under the aforementioned criterion (8) is 
best in a sense of minimal MSE independently on the time error function. However, we do not know it 
and should estimate yo in some approximate way. The sample n-th frequency offset yon of time error func- 
tion is in fact its slope, which is readily estimated stochastically by the regression coefficient 

where both a sample covariance of the observation and time and a sample time variance are determined in 
[2] for the model (5) in the forms of, respectively, 
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N2 -1 
12 

oil = A2 ___ 

Then transformation of (9) with account of (10) and (1 1) yields 

Now define the error of the time error slope estimate for the linear case (5) of xo =0,  
= yoA(n - i) + w ~ - ~  and = io, and get 

that easily transforms to 

Since the noise w, is white by definition, then it follows from (14) that the average error E{ E ,  } = 0 ,  and 
the error variance is given by 

Again, since noise is white then, by definition, ~ { w , w , )  = 

transfers to , 

. It means that o”yn = o: and (15) 

2 2 12 
oy =on A’N(N~ -1) 

If we take into account now that 0 = A(N - 1) and A e< z for 1<< N,  then RMSE of (16) transforms to the 
same formula like the case of the coordinate r (4), namely 

It means that regression produces appreciable RMS error of the slope estimate, which equals to the esti- 
mate of a coordinate r. 

ADAPTATION STRATEGY 

We now can consider how to describe the coefficient k , l ( ~ o l l )  for (2). The first case is we just think that 
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Actually, this is an ideal case of the slope estimated with negligible error. Since, according to (12), the 
error is rather big, then we may introduce an additional weight for (18) to smooth the estimate. To form 
this weight, let us assume the coefficient k,, ( Yo,,) to be changing linearly in some range rl < r < rz around 
r. The second case then appears in a form 

0, if FO,, < 5 
if r, 5 (19) + Foil ~ 

1 if r2 $0" 

5 r2 
1 

r2 - r1 r2 - 5  

and, if to take r, = r - G y  and r2 = r + G ~ ,  where oy is provided by (17), we get the alternative coeffi- 
cient for (2). 

SIMULATION 

In this section we examine the adapted filter (2) with two above-defined coefficients (18) and (19). Pur- 
suing the aim, we simulate the discrete time error process (5) with xo = 0, yo = var, D = 0, A = 100 sec, 
(3, = 40 ns, and 8 = 6 hours (N = 216). We then calculate the reference point (8); this is r = 0.436~10''~. 
Because frequency offset yo strongly influences the estimate error, we change it around the reference 
point from 0 to 2 .0~10- '~ ,  watching in this way the filter's adaptive facilities. 

To compare the results, we define the estimate error as follows 

where x,; = yoAn is simulated deterministic trend of a time error, in is estimate of a time error. We then 
evaluate (20) for a number M of estimates by the particular sample errors such as bias A? = E{&,, }, vari- 

ance 0,2 = ,!?{(E,, - A?)2} ,  root-mean-square deviation (RMSD) oe = E, RMS error (RMSE) 

E,, = ,/= = ,/-, and maximal error E ,  = max(E,( . 

Figure 1 shows the bias produced by each filter along with the ideal adaptation curve. As it had been ex- 
pected, a simple MA (4) produces the biggest bias and the optimally unbiased filter (1) is best with its 
almost zero bias. The dotted line shows here the ideal case of adaptation, because for yo I r we would 
like the filter to be a simple MA and for r < yo the optimally unbiased MA. Because the error (17), we 
expect as well that the ideal case cannot be reached and, in fact, both adapted filters demonstrate strongly 
smoothed lines. Yet, the coefficient k'produces a bit smaller bias than that achieved with k". We then 
conclude that in terms of bias, the optimally unbiased filter (1) remains best for an arbitrary offset yo . 

Figure 2 sketches the RMS deviations of the estimate noise. In contrast to bias, here a simple MA is best 
with its lowest constant noise; the unbiased filter generates almost two times bigger noise, so the ideal 
adaptation case looks like a step function at the point of r (dotted line). As well as in a bias case, here 
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both adapted curves are also smoothed, so that only in the range of yo I r the adapted filters generate 
noise lower than the unbiased filter does. In the range r < yo the adaptation is no superior. The conclu- 
sion is the linear-regression-based adaptation is not so efficient with respect to the estimate noise. 

Figure 3 shows RMS error of each filter. Again, as well as in the case of RMSD (Figure 3), we see here 
that the errors of the adapted filters in the range yo I r are smaller than that produced by the optimally 
unbiased filter. In the range r < yo,  however, both adapted filters are worst. 

Figure 4 exhibits curves for the maximal estimate errors. Despite the error of the second adaptation, case 
(19) is smaller than that of the unbiased filter in the range left of the point r; we also come to the conclu- 
sion that effectiveness of the adaptation is poor. It is because in the range right of the point r, the error of 
each adapted filter is even bigger than that of the unbiased filter. 

CONCLUDING REMARKS 

We have examined in this report one of the possibilities to improve the optimally unbiased filter by adap- 
tation to the time error function slope. The idea was to introduce for the filter an additional adapting coef- 
ficient k dependent on the function slope, so that for the stationary process (yo = 0) we assume k = 0, and 
for the brightly nonstationary process (r  << yo) we suppose k = 1. Then we estimated the slope by the 
regression coefficient, evaluated the slope estimate error, worked out the adaptation strategy (18) and 
(19), and examined the filters for the noisy time error function with linear trend. The conclusions are fol- 
lowing: 

In terms of bias, the adapted filters are not superior to the optimally unbiased MA filter. 
In terms of RMSE and Maximal error, adaptation produces noise smaller in a range yo I r and big- 
ger in a range r < yo.  

The general conclusion is the linear regression based approach to the filter adaptation exhibits poor effec- 
tiveness, and other ways to estimate the slope with more high accuracy are needed. 
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Figure 1. Bias produced by the simple MA, optimally unbiased MA, and adapted MA filter for the dis- 
crete time error linear process (1) with xo = 0, yo = var, D = 0, A = 100 sec, on = 40 ns, and 8 = 6 hours 
( N  = 216). 
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Figure 2. RMSD of the simple MA, optimally unbiased MA, and adapted MA filter for the discrete time 
error linear process (1) with xo = 0, yo = var, D = 0, A = 100 sec, on = 40 ns, and 8 = 6 hours ( N  = 216). 
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Figure 3. RMSE of the simple MA, optimally unbiased MA, and adapted MA filter for the discrete time 
error linear process (1) with x0 = 0, yo = var, D = 0, A = 100 sec, 0, = 40 ns, and 8 = 6 hours (N = 216). 
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Figure 4. Maximal error of the simple MA, optimally unbiased MA, and adapted MA filter for the dis- 
crete time error linear process (1) with xo = 0, yo = var, D = 0, A = 100 sec, (3, = 40 ns, and 8 = 6 hours 
(N = 216). 
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