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Abstract 

Improvements in GPS motivate attention to some small relativistic effects 
which have long been known, but have previously been too small to be explicitly 
considered. For SV clocks, these include frequency changes due to orbit adjust- 
ments, and effects due to the earth’s oblateness. For example between 25 July 
and 10 October 2000, SV43 occupied a transfer orbit while it was moved f rom slot 
F5 to  slot F3. The fractional frequency change associated with a change da in 
the semi-major axis a ( in  meters) can be estimated as 9.429 x 10-”da. This yields 
a prediction of -1.77 x for  the fractional frequency change of the SV43 clock 
which occurred 25 July 2000. This relativistic effect has been pointed out and 
measured by Epstein, Fine, and Stoll[4]. O n  October 10, 2000 the fractional fre- 
quency change should have been -1-1.75 x 1 0 - l ~ .  Also, the earth’s oblateness causes 
a periodic fractional frequency shij-t with period of almost 6 hours and amplitude 
0.695 x These effects will be discussed with the help of Lagrange’s planetary 
perturbation equations. 

INTRODUCTION 
The importance of relativistic contributions to atomic clock frequency shifts in the 
Global Positioning System (GPS) has been recognized from the early design stages of 
the GPS. Five distinct relativistic effects are incorporated into the System Specification 
Document, ICD-GPS-200 [l]. These are: the effect of the earth’s mass on gravitational 
frequency shifts of atomic reference clocks fixed on the earth’s surface relative to clocks 
at infinity; the effect of earth’s oblate mass distribution on gravitational frequency 
shifts of atomic clocks fixed on the earth’s surface; second-order Doppler shifts of 
clocks fixed on the earth’s surface due to  the earth rotation; gravitational frequency 
shifts of clocks in GPS satellites due to the earth’s mass; and second-order Doppler 
shifts of clocks in GPS satellites due to their motion through an Earth-Centered Inertial 
(ECI) Frame. The combination of second-order Doppler and gravitational frequency 
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shifts for a clock in a GPS satellite leads to  the following expression for the fractional 
frequency shift of a satellite clock relative to  a reference clock fixed on the earth’s 
geoid [2]: 

(1) 
6f 1 v 2  GM @o 
f 2 c2 rc2 c2 

where v is the satellite speed in a local ECI reference frame, GM is the product of the 
Newtonian gravitational constant G and the earth’s mass M ,  c is the defined speed 
of light, and Qo is the effective gravitational potential on the earth’s rotating geoid. 
The term @po includes contributions from both monopole and quadrupole moments of 
the earth’s mass distribution, and the effective centripetal potential in an earth-fixed 
reference frame such as WGS-84, due to  the earth’s rotation. For reference we quote 
here the value for Qo[2]: 

- = _---  -- - 

1 [1+ &/2] - -a2a2 = -6.9692842 x @po GM - = -- 
c2 alc2 2c2 e I 

where a1 is the earth’s equatorial radius, J2 is the quadrupole moment coefficient of 
the earth, and Re is the angular rotational speed of the earth. 

If the GPS satellite orbit can be approximated by a Keplerian orbit of semi-major axis 
a, then at an instant when the distance of the clock from the earth’s center of mass is 
r ,  this leads to  the following expression for the fraction frequency shift of Eq. (1): 

-=---- 
f (3) 

Eq. (3) is derived by making use of the conservation of total energy (per unit mass) 
of the satellite, which leads to  an expression for v2 in terms of G M / r  and G M / a  which 
can be substituted into Eq. (1): 

The first two terms in Eq. (3) give rise to the “factory frequency offset,” which is 
applied to  GPS clocks before launch in order to make them beat at a rate equal to 
that of reference clocks on the earth’s surface. The last term in Eq. (3) is very small 
when the orbit eccentricity e is small; when integrated over time, these terms give 
rise to  the so-called ‘e sin E” effect or “eccentricity effect.” In most of the following 
discussion, we shall assume that eccentricity is very small. 

Clearly, from Eq. (3), if the semi-major axis should change by an amount 6a due to 
an orbit adjustment, the satellite clock will experience a fractional frequency change 

Sf 3GM6a 
- +- f 2c2a2 ‘ 

_ -  ( 5 )  

The factor 3/2 in this expression arises from the combined effect of second-order 
Doppler and gravitational frequency shifts. If the semi-major axis increases, the satel- 
lite will be higher in the earth’s gravitational potential and will be gravitationally 
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blue-shifted more, while at the same time the satellite velocity will be reduced, reduc- 
ing the size of the second-order Doppler shift (which is generally a red shift). The net 
effect would make a positive contribution to the fractional frequency shift. 

It has long been known that orbit adjustments are associated with satellite clock 
frequency shifts [3], but nothing has been documented and no reliable measurements 
of such shifts have previously been made. Recently Marvin Epstein, Joseph Fine, 
and Eric Stoll [4] of ITT have evaluated the frequency shift of SV43 arising from a 
trajectory change applied to this satellite on 25 July 2000. The purpose of this orbit 
adjustment was to  move the satellite from slot F5 to  slot F3. A drift orbit extending 
from 25 July 2000 to  10 October 2000 was used to accomplish this move [6]. Epstein, 
Fine, and Stoll have reported that associated with the “delta-v burn” on 25 July 2000 
there was a frequency shift of the rubidium clock on board SV43 of amount 

(6) 
Sf 
f 
- = -1.85 x (measured). 

Epstein et d[4] suggested that the above frequency shift is relativistic in origin, and 
used NIMA precise ephemerides to  estimate the frequency shift arising from second- 
order Doppler and gravitational potential differences. They calculated separately the 
second-order Doppler and gravitational frequency shifts due to the orbit change. The 
NIMA precise ephemerides are expressed in the WGS-84 coordinate frame, which is 
earth-fixed. If used without removing the underlying earth rotation, the velocity would 
be erroneous. They, therefore, transformed the NIMA precise ephemerides to  an earth- 
centered inertial frame by accounting for a (uniform) earth rotation rate. 

The semi-major axes before and after the orbit change were calculated by taking the 
average of the maximum and minimum radial distances. Speeds were calculated using 
a Keplerian orbit model. They [4] arrived at the following numerical values of position 
and velocity: 

07/22/00 : a = 2.656139556 x lo7 m.; v = 3.873947951 x lo3 m/s. (7) 
07/30/00 : a = 2.654267359 x lo7 m.; (8 )  v = 3.875239113 x lo3 m/s. 

Since the semi-major axis decreased, the frequency shift should be negative. 
prediction [4] made for the frequency shift, which is based on Eq. (l), was then: 

The 

(9) Sf 
f - = -1.734 x 

which is to  be compared with the measured value, Eq. 
compelling evidence that the observed frequency shift is indeed a relativistic effect. 

(6). There is, thus, fairly 

LAGRANGE PERTURBATION THEORY 

Perturbations of GPS orbits due to the earth’s quadrupole mass distribution are a 
significant fraction of the change in semi-major axis associated with the orbit change 
discussed above. This raises a question whether it is sufficiently accurate to use a 
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Keplerian orbit to describe GPS satellite orbits, and estimate the semi-major axis 
change as though the orbit were Keplerian. The purpose of the present calculation is 
to investigate this question. Also, it is of interest to investigate directly the effect of 
the earth’s quadrupole moment on the frequency of GPS satellite clocks. Previously, 
such effects have been neglected. However, the effect may be worth considering as 
GPS clock performance continues to  improve. 

To see how large such quadrupole effects may be, the Appendix [5] quotes the perturba- 
tions on the semi-major axis a of a Keplerian satellite arising from earth’s quadrupole 
moment. For the semi-major axis, if the eccentricity is very small the dominant contri- 
bution has a period twice the orbital period and has amplitude 3J2a: sin2 iol(2ao) x 1658 m. 
The following values for the constants are used here: 

Jz = 1.0826267 x GM = 3.986004415 x 1014m3/ sec’; a1 = 6.3781363 x lo6 m; RE = 7.291151467 x 

where a0 and al are the orbit semi-major axis and the earth’s equatorial radius, re- 
spectively, and RE is the earth’s rotational angular velocity. 

The oscillation in the semi-major axis would significantly affect calculations of the 
semi-major axis at any particular time. This suggests that Eq. (4) needs to  be exam- 
ined carefully in light of the periodic perturbations on the semi-major axis. Therefore 
in this paper we develop an approximate description of a satellite orbit, of small ec- 
centricity, taking into account the earth’s quadrupole moment to  first order. Terms of 
order J2 x e will be neglected. This problem is non-trivial because the perturbations 
themselves (see for example, the equations for mean anomaly and altitude of perigee) 
have factors 1/e which blow up as the eccentricity approaches zero. This problem is a 
mathematical one, not a physical one. It simply means that the observable quantities- 
such as coordinates and velocities-need to be calculated in such a way that finite values 
are obtained. Orbital elements which blow up are unobservable. 

sec-l; a0 = 2.65641046 x lo7 m, 

CONSERVATION OF ENERGY 

The gravitational potential of a satellite at position (z,y,z) in equatorial ECI coordi- 
nates in the model under consideration here is 

GM 
r V(s ,y ,z )  = -- 

Since the force is conservative in this model (solar radiation pressure, thrust, etc. are 
not considered), the kinetic plus potential energy is conserved. Let 6 be the energy per 
unit mass of an orbiting mass point. Then 

02 u2 GM 
2 E = constant = - + V(~,y,z) = - 2 r  - - + V’(X, Y, .Z) 

where V‘(z, y, z )  is the perturbing potential due to the earth’s quadrupole potential. 

It is shown in textbooks [6] that, with the help of Lagrange’s planetary perturbation 
theory, the conservation of energy condition can be put in the form 
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where a is the perturbed (osculating) semi-major axis, given by Eq. 
Appendix. In other words, for the perturbed orbit, 

(A.6) in the 

u2 G M  G M  
2 r  
---=-- 

2a 

On the other hand, the net fractional frequency shift relative to  a clock at rest at 
infinity is determined by the second-order Doppler shift (a redshift) and a gravitational 
redshift. The total relativistic fractional frequency shift is 

The conservation of energy condition can be used to  express the second-order Doppler 
shift in terms of the potential. Since in this paper we are interested in fractional 
frequency changes caused by changing the orbit, it will make no difference if the cal- 
culations use a clock at rest at infinity as a reference rather than a clock at rest on the 
earth’s surface. The reference potential cancels out to the required order of accuracy. 

Therefore, from perturbation theory we need expressions for the square of the velocity, 
for the radius r ,  and for the perturbing potential. We now proceed to derive these 
expressions. 

PERTURBATION EQUATIONS 
First we list some facts about an unperturbed Keplerian orbit. The eccentric anomaly 
E is to be calculated by solving the equation 

E - e sin E = M = no(t - t o )  (15) 

where M is the “mean anomaly” and to is the time of passage past perigee, and 

Then the perturbed radial distance r and true anomaly f of the satellite are obtained 
from 

r = a(1 - ecos E )  (17) 

cos E - e 
1 - ecosE’ 

sin E 
cosf = sin f = d i - 3  - e cos E . 

The observable x,g, z-coordinates of the satellite are then calculated from the following 
equations: 
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z = r(cosRcos(f + w )  - cosisinRsin(f + w ) )  (19) 

T/ = r(sin R cos(f + w )  + cos i cos R sin(f + w) ) .  (20) 

z = r(sinisin(f + w ) )  (21) 

where w is the angle of the ascending line of nodes, i is the inclination, and w is the 
altitude of perigee. 

By differentiation with respect to  time, or by using the conservation of energy equation, 
one obtains the following expression for the square of the velocity: 

v2 G M l + e c o s E  
2 2a 1 - e c o s E  
-= -  

In these expressions v2 and r-l are observable quantities. The combination ecos E, where 
E is the eccentric anomaly, occurs in both of these expressions. To derive expressions 
for v2 and r - l  in the perturbed orbits, expressions for the perturbed elements a, e, E 
are to  be substituted into the righthand sides. Therefore, we need the combination 
ecosE in the limit of small eccentricity. 

Calculation of Perturbed Eccentricity 
To leading order, from the Appendix we have for the perturbed eccentricity the fol- 
lowing expression: 

1 1 7 
4 12 cos f + - sin2 i,o cos(2wo + f )  + - sin2 io cos(2w0 + 3f) . (23) 

Calculation of Perturbed Eccentric Anomaly 
The eccentric anomaly is calculated from the equation 

E = M + esin E (24) 

with perturbed values for M and e. Expanding to  first order in e gives the following 
expression for cos E: 

cos E = cos M - e sin A4 sin E (25) 

and multiplying by e, 

e cos E = ecos M - e2 sin M sin E M e cos M 
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We shall neglect higher order terms in e. Referring now to the perturbed expression 
for mean anomaly M in the Appendix, we write 

M = MO +AM/eo. (27) 

where we indicate explicitly the terms in e;'; that is, the quantity MO contains all 
terms which do not blow up as e -+ 0, and AM/eo contains all the other terms. From 
the Appendix, we have to leading order 

and so for very small eccentricity, 

e cos E = e cos Mo - AM sin Mo . (29) 

Then after accounting for contributions from the perturbed eccentricity and the per- 
turbed mean anomaly, after a few lines of algebra we obtain for ecos E 

sin2 io cos 2(wo + f ) .  3J2a: ( 1 - -sin2io ) + - 5 2 :  e cos E = eo cos Eo + - 2ai 

where the first term is the unperturbed part. 

The perturbation is a constant, plus a term with twice the orbital period. 

Calculation of the Perturbation in Semi-major Axis 
From the Appendix, the leading terms in the perturbation of the semi-major axis are 

Calculation of the Perturbation in Radius 
We are now in position to compute the perturbation in the radius. From the expression 
for T ,  we have after combining terms 

r=ao( l  -eocosEo)+Aa-A(ecosE)  
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Calculation of the Perturbation in the Velocity Squared 
The above results, after substituting into Eq. (18), yield the expression 

Calculation of the Perturbation in GM/r  
The above expression for the perturbed r yields the following for the monopole contri- 
bution to the gravitational potential: 

Calculation of the Approximate Value of the Perturbing Potential 
Since the perturbing potential contains the small factor J2, to  leading order we may 
substitute unperturbed values for r and z into V ' ( z , y , z )  which yields the expression 

Conservation of Energy 
It is now very easy to  check conservation of energy. Adding kinetic energy per unit 
mass, to two contributions to the potential energy, gives 

This verifies that the perturbation theory gives a constant energy. The extra term 
in the above equation, with J2 in it, can be neglected. This is because the nominal 
inclination of GPS orbits is such that the factor (1 - 3 sin2 i 0 /2 )  is essentially zero. 

Thus numerical calculations of the total energy per unit mass should give us the value 
of ao. 

Calculation of Fractional Frequency Shift 
The fractional 
energy, except 
The result is 

frequency shift calculation is very similar to the calculation of the 
the the second-order Doppler term contributes with a negative sign. 

Af v2 G M + V '  
f 2c2 c2r c2 
_ -  _ _ - - -  - 
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The first term, when combined with the reference potential at the earth’s geoid gives 
rise to the “factory frequency offset.” The third term can be neglected, as pointed out 
above. The last term has an amplitude 

GM Jza: sin2 io 
ai c2 

= 6.95 x 10-l~ 

which may be large enough to  consider when calculating frequency shifts produced by 
orbit changes. Therefore, this contribution may have to be considered in the determi- 
nation of the semi-major axis. 

The result suggests the following method of computing the fractional frequency shift: 
Averaging the shift over one orbit, the periodic term will average down to a negligible 
value. The second term is negligible. So if one has a good estimate for the nominal 
semi-major axis parameter, the term -3GM/2aoc2 gives the average fractional frequency 
shift. On the other hand, the average energy per unit mass is given by E = -GM/2ao. 
Therefore, the precise ephemerides, specified in an ECI frame, can be used to compute 
the average value for E ,  then the average fractional frequency shift will be 

Af 
f 
- = 3 ~ 1 ~ ~ .  (39) 

The periodic term in Eq. (33) is of a form similar to that which gives rise to  the ec- 
centricity correction, which is applied by GPS receivers. Considering only the periodic 
term, the additional time elapsed on the orbiting clock will be given by 

1 6 tJz  = / dt [- a;c2 cos(2wo + 2nt) GMJ2a; sin2 io 
path 

where to a sufficient approximation we have replaced the quantity 2 f  in the integrand 
by 2n = 2 d m ;  n is the approximate mean motion of GPS satellites. Upon integrat- 
ing and dropping the constant of integration (assuming as usual that such constant 
time offsets are lumped with other contributions) gives the periodic relativistic effect 
on the elapsed time of the SV clock due to earth’s quadrupole moment: 

The correction which should be applied by the receiver is the negative of this expression 

6t J2 (correction) = sin(2wo + 2nt) .  
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The phase of this correction is zero when the satellite passes through the earth’s 
equatorial plane going northwards. 

If not accounted for, this effect on the SV clock time would give rise to  a peak-to-peak 
periodic navigational error in position of approximately 2c x St, = 1.07 cm. 

These effects were considered by Ashby and Spilker ([2], pp. 685-6861), but in that work 
the effect of the earth’s quadrupole moment on the term GM/r was not considered; 
the present paper supersedes that work. 

NUMERICAL CALCULATIONS 
Precise ephemerides were obtained for SV43 from the Jet Propulsion Laboratories Web 
site ftp://sideshow.jpl. nasa.gov/pub/200O/orbits. These are expressed in the 52000 ECI 
frame. Computer code was written to compute the average value of e for one day and 
thence the fractional frequency shift relative to infinity before and after each orbit 
change. The following results were obtained: 

07/22/00 : a = 2.65611575 x lo7 f 69 m. 

07/30/00 : a = 2.65423597 x lo3 f 188 m. 

10/07/00 : a = 2.65418742 x lo7 f 95 m. 

10/12/00 : a = 2.65606323 x lo7 f 58 m. 

Therefore, the fractional frequency change produced by the orbit change of July 25 is 
calculated to be 

- Af = -1.77 10-13, (36) f 

which agrees with the measured value to within about 3.3%. 
fractional frequency shift on October 10, should have been 

We predict that the 

This shift has not yet been measured. 

On 9 March 2001, SV54’s orbit was changed by a delta-v burn. Using the above 
procedures, we can calculate the fractional frequency change produced in the onboard 
clocks. We find 

03/07/01 : a = 2.65597188 x lo7 f 140 m. 

03/11/01 : a = 2.65359261 x lo7 f 108 m. 

Using Eq. (5) yields the following prediction for the fractional frequency change of 
SV54 on 9 March 2001: 
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Af - = +2.24 1 0 - l ~  f 0.02 x 1 0 - l ~  
f 

The quoted uncertainty is due to  the combined uncertainties from the determination 
of the energy per unit mass before and after the orbit change. 

CONCLUSIONS 
We note that the values of semi-major axis reported by Epstein et al.. differ from 
the values obtained by averaging as outlined above, by 200-300 m. This difference 
arises because of the different methods of calculation. In the present calculation, an 
attempt was made to account for the effect of the earth’s quadrupole moment on the 
Keplerian orbit. It was not necessary to  compute the orbit eccentricity. Agreement 
with measurement of the fractional frequency shift was only a few percent better than 
that obtained by differencing the maximum and minimum radii. 

This approximate treatment of the orbit makes no attempt to  consider perturbations 
that are non-gravitational in nature-e.g., solar radiation pressure. The work was an 
investigation of the approximate effect of the earth’s quadrupole moment on the GPS 
satellite orbits, for the purpose of (possibly) accurate calculations of the fractional 
frequency shifts which result from orbit changes. 

As a general conclusion, the fractional frequency shift can be estimated to very good 
accuracy from the expression for the “factory frequency offset .” 

Sf 3GM6a -=+-. f 2c2a2 

REFERENCES 
[l] “GPS Interface Control Document, ” ICD-GPS-200, Revision C*, 25 September 1997 

(ARINC Research Corporation). 

[2] B. Parkinson and J. Spilker (eds.), 1996, “Global Positioning System: The- 
ory and Applications” (American Institute of Aeronautics and Astronautics), I, 
Chapter 18, pp. 676 ff. 

[3] W. Feess, private communication. 

[4] M. Epstein, J. Fine, and E. Stoll, 2001, “Study of SVN43 Clock from 06/18/00 to 
12/30/00”(preprint, 24 May 24 2001). 

[5] “Nawstar Analysis Update No.  54-1,” U.S. Naval Research Laboratory, 30 May 2001. 
[6] P. Fitzpatrick, 1970, Principles of Celestial Mechanics(Academic Press, New 

York), pp. 315-318; F. Geyling and H. Westerman, 1971, Orbital Mechanics 
(Addison-Wesley, Reading, Massachusetts), pp. 170 ff. 

5 19 



APPENDIX 
This Appendix quotes for convenience the results of first-order Lagrangian perturba- 
tion theory for a Keplerian orbit perturbed by a mass quadrupole centered at the 
origin [6]. The osculating elements are: semi-major axis a ,  eccentricity e, inclination 
i, longitude of the ascending node R, altitude of perigee w ,  and mean anomaly M .  La- 
grange’s planetary perturbation equations describe how these six elements change in 
time under the influence of a perturbation. In the present case, the perturbation is 
due to  the earth’s quadrupole mass distribution, 

where GM is the product of the Newtonian gravitational constant and the earth’s mass, 
Jz is the earth’s quadrupole moment coefficient, r is the satellite’s radial distance from 
the earth’s center of mass, and (x,y,z) are the satellite coordinates in an earth-fixed 
inertial reference frame with z-axis parallel to the earth’s symmetry axis. 

When these perturbed orbital elements are given, the eccentric anomaly E is to be 
calculated by solving the equation 

E - esin E = M ( A 4  

and then the perturbed radial distance r and true anomaly f of the satellite are ob- 
tained from 

r = a(1 - ecosE) (A.3) 

cosE-e sin E 
1 - ecosE’  cos f = sir1 f = JC-3 - e E . 

The observable x, 9) z-coordinates of the satellite are then calculated from the following 
equations: 

x = r(cosRcos(f + w )  - coszsinRsin(f + w ) )  

D =  r (s inRcos(f+w) +cosicosRsin(f+w)) .  (A.5) 

z = r(sin i sin( f + w ) )  

The following expressions give the perturbed orbital elements correct to first order in 
the perturbation. 
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(A.6) 
e3 +$ 12 (1 - sin2 io) cos3f + 16 sin2 io cos(2wo - f )  

+qeo( l+  ei/4) sin2 io cos(2wo + f )  + -(1+ 3ei/2) sin2 20 cos(2wo + 2f) 
3 1 

2 

I 9 3 e: +Em( 1 + e 3 4 )  sin2 io cos(2wO + 3f) + -e: sin2 20 cos(2wO + 4f) + - sin2 io cos(2wO + 5f) . 8 16 

e = K , +  J2a' 
2 4 ( 1  - e;)2 [ (1 + e:/4) (1 - i sin2 20) cos f + (1 - .i sin2 io) cos 2 j  

4 1 +& (1 - i sin2 io) cos3f + - sin2 io cos(2wO - f) + -(I + 11e;/4) sin2 io cos(2wO + f) 

+-eo sin2 io cos(2wo + 2f) + -(7 + 17ei/4) sin2 io cos(2wo + 3f) 

12 16 4 

5 1 
4 12 (A.7) 

(A.lO) 
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The perturbed mean anomaly is 

+eo (1 - sin2 io) sin 2 f  + - 1 - - sin2 i o  sin 3f 2 12 i: ) 
1 1 
4 12 - - (1  + 3eg/2) sin2 i o  sin(2wo + f) + - (7 - e5/4) sin2 i o  sin( 2w0 + 3f)  

3 1 
8 16 +-eo sin2 i o  sin(2wo + 4f)  + -e: sin2 i o  sin(2wo + 5f)J 

where 

n,. = [ - ~ E ] ~ / ~ / G M  

and E is the conserved energy per unit mass, given by 

Constants such 
conditions. 

GM v 2  
r 2  & =  -- + - + vyz, y, 2) 

(A.ll)  

(A.12) 

(A.13) 

as K,, K,, etc., are constants of integration determined by the initial 
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QUESTIONS AND ANSWERS 

VICTOR REINHARDT (Boeing Satellite Systems): Can you put up that next to the last slide that had the 
number of picoseconds change due to the varying term? I just missed the slides of that. So that was about 
24 picoseconds. 

NEIL ASHBY: Twenty-four picoseconds. 

REINHARDT: Okay, thank you. 

EDOARDO DETOMA (Alenia Aerospazio): If I remember well, at the beginning, the GPS inclination was 
64.3 degrees or something like that, not 55. And 64.3 inclination is the 0,l term of the series expansion of 
the simulation - I believe it was not incidental; I believe it was done on purpose. 

ASHBY: I think that zeroes out the procession of the modal line. 

DETOMA: Yes, but probably more than that. There is a paper which was published, I believe, in '57 or 
'58 in which the term for 64.3 is clearly pinpointed. 

ASHBY: Yes. But the banishing of this particular term does not zero out any secular terms. I don't know 
what the reason was. The 55. 

DETOMA: At a certain point, the constellation was reduced to 18 satellites. If you look at the literature 
around '86, '87, you find they change the number of satellites from 24 to 18. And this was probably due to 
budgetary reasons. And if you reduce the number of satellites, you must reduce the inclination to maintain 
the filling factor of the constellation. 

DEMETRIOS MATSAKIS (U.S. Naval Observatory): I would like to just confirm that a little bit. It is a 
rumor, but I was told by Colonel Armour years ago that the reason for the inclination was budget. It cost 
more to have a higher inclination. 

TOM McCASKILL (U.S. Naval Research Laboratory): Going way back to around 1968-1969, whenever 
Roger Easton, Jim Buisson, Don Lynch, and myself did the constellation study, we looked at about 107 
different constellation configurations. And we calculated a lot of quantities, and it turned out our 
calculation and that you could minimize the dilution precision with an inclination of 53 degrees. And later 
on, with the Block I's, it went up to 63. And there was a study done by Aerospace and the Air Force, and 
they finally settled on 55. And there could have been some launch considerations; however, if you look at 
zerodegree inclination for the constellation, there is a mathematical singularity, and if you go up to 90 
degrees, like Transit, you have too many satellites at the pole. So it is really a balancing operation that gives 
you the best dilution of precision on a worldwide basis. 
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