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Abstract 

In this paper, we examine one of the possible approaches to design an optimally unbiased 
moving average (MA) filter intended for the time error online estimating and synchronization 
in timekeeping. The approach is based on the slowly changing nature of a time error gener- 
ated by the local clock and has led to a simple formula for the optimally unbiased MA filter, 
which does not require any a priori knowledge about the time error process. When filtering 
the various GPS-based time error processes, we found out that, of the filters with the same 
time constant, the designed m e r  demonstrates an error intermediate between the three-state 
and two-state Kalman @em. The filter has been examined for numerically simulated data 
and some practical situations of the GPS-based time errors generated with the crystal and ru- 
bidium oscillators. 

INTRODUCTION 
It is well known that timekeeping mainly solves two principal tasks, namely: estimating the time error of 
a local clock using the reference timing signals (of Global Positioning System (GPS) usually) and its 
elimination with the synchronization loop. In both cases, the “on-line” estimating and steering plays a 
key role, since one wants to use accurate time right now without a time delay. Thus, both the time error 
estimating and clock control must inevitably be provided in real time. Certainly, optimal linear stochastic 
estimation theory, named Kalman filtering theory [l], solves the both tasks straightforwardly. Even so, 
the answer is not so explicit in terms of the mean-error (bias) and variance (noise). The alternative ap- 
proach, called moving averaging (MA), is still used in test and measurement [2], since of all the possible 
linear filters that could be used, including the Kalman, a simple MA produces the lowest noise [3], which 
is the input noise reduced by the square-root of the number of points N in the average. The problem here 
is the easily visible estimate bias caused by nonstationarity, unlike the Kalman case [4], the absence of 
which would make the simple MA the best. 

The average bias is readily reduced in nonparametric regression estimation with the use of the weighting 
function, called a kernel, in statistics [5,6] and series analysis [7]. The kernel is normally a non-negative- 
valued function symmetric about zero, and its smooth is simply a weighted average of all data points [3]. 
The point is, however, the weight relates to the center of the averaging process; the result appears usually 
with a delay of half an averaging interval, so this is not real-time estimation. The identification theory [SI 
solves this problem through the proper coefficients utilized in the Auto-Regressive-Moving-Average 
model of the process. The coefficients may be readily identified based on the Kalman identification algo- 
rithm. 
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Normally, to know the tradeoff, we must examine each filter for the time error model identified by the 
finite polynomial [9] 

(1) D 2 2  

2 
x , = x ~ + ~ ~ L \ ~ + - A ~  +w,, 

where n = 0, 1, ... ; A = t ,  -t,r-I is sample time; t ,  is discrete time, X, is initial time error, yo is initial 
fractional frequency offset of a local clock from the reference frequency, D is linear fractional frequency 
drift rate, and w, is random time error deviation component. The results of such an examination for the 
simple MA, three-state Kalman, and second-order Wiener filters have recently been discussed in [lo]. 
Based on those results [lo], it has been deduced in [ll] that the task may be solved alternatively by the 
bias elimination of a simple MA with the aid of stochastic approximation, taking into account that the 
time error (1) is ordinarily changing slowly and rather linearly during the averaging interval 8 = A( N - 1). 

In this paper we present and examine the designed filter [ll] for the different time error processes. First, 
we examine the filter for the simulated “stationary” (yo = 0, D = 0) and “nonstationary” time error proc- 
esses, then provide filtering of the real GPS-based processes generated with the rubidium and crystal 
clocks. To know the tradeoff, we employ four filters, namely, a simple MA, the optimally unbiased MA, 
and the two-state and three-state Kalman. 

OPTIMALLY UNBIASED MA FILTER 
Suppose we are given the discrete-time GPS-based noisy time error E,, (observation) on the time interval 
of the discrete points n - N + 1, ...,n . The observation is assumed to be an additive sum of a time error (1) 
and a zero-mean white Gaussian noise w, of the GPS timing signals [12] with constant variance of, that 
is, 

5, =x,, +w,, 
where x,, is assumed change linearly on the averaging interval n - N + 1, . . . ,n and the noise 
is inherently negligible as compared to w, in (2). Estimate the time error with a simple MA 

Since X, changes linearly, the filter (3) inevitably produces the bias 
A A t  A/ 

hx, = X,i - X,t X,z-N+l - X,, 9 

which looks negligible being related to the center of the averaging interval. To eliminate the bias (4), ob- 
tain an additional weighting function W,’(N),i  =0, 1, ..A-1 for the simple MA (3) in the way of 

1 N-I 
I;, = - c w&N)g,-, and provide the unbiased estimate in form of the MA model 

N ,=o 

where W ,  (N) = W,’(N)/N is the required weight. 
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WEIGHTING FUNCTION 
Since the time error function is assumed to be linear while averaging, the bias may be formally compen- 
sated for (3) in the following way: 

where the unknown variable x , - ~ + ~  is time error at the start point of the averaging interval. Supposing that 
x, , -~+~ is known explicitly, the estimate (6) will be unbiased with almost the same smallest noise as that 
produced by a simple MA. To evaluate x , , - ~ + ~ ,  use nonparametric linear regression 1131, which serves in 
statistics as an optimal stochastic approximation in a sense of least mean squares (LMS) 1141. As a result, 
the continuous linear regression function appears for the interval n - N + 1, ..., n 

(7) h ( t )  = a,, + b,, ( t  - C, ) 
where a,, b, , and c, are coefficients given as 

“ m  

where COV(E,,, , t,, ) is sample covariance of E, and t ,  and o:, is sample variance of time. Since (7) stochas- 
tically approximates the process in the optimal way, its value h(trI-N+l)  may be treated as the most accu- 
rate evidence of x , - ~ + ~ .  Then substituting h(tr,-Ntl)  for (6) should yield the optimally unbiased estimate. 

OPTIMALLY UNBIASED WEIGHT 

Now examine the above-mentioned opportunity, putting down 

Substituting (8) and (1 1) for (6) yields the formula 
A A I  

xtr = xn - b, t t n - N + l  - 1 * 
for which, first, calculate (10) 

then a routine transform produces the variance 

where an intentionally introduced coefficient is k = 1 here, and leads to the covariance of 6 and t , that is, 
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Substitute (9), (13)-(15) for (12) ,  make the transformation, and get the desired unbiased estimate 

N - L  2 (2N - 1) - 6 i  
/"' =; N ( N  + 1 )  kn-I 1 * 

Then write the required weighting function for (5) as 

otherwise I . 

which evidently is nonzero on the averaging interval only. It seems important to note that the same for- 
mula (16) appears ifone just converts the linear regression value h(tn) into the MA model (5). 

Let us now note that (17) is linear (Fig. 1) with its maximum w,(N) = 2(2N - and its minimum 

WN-] ( N )  = - 2(N -2) , and with zero-point no = ( 2 N  - 1 ) / 3 .  Two special features of the weight (17) may 

be observed, namely: 1 )  its square is unity, thus, this is nothing more than impulse response of the Finite 
Impulse Response (FIR) filter [14]; 2) the maximum-to-minimum ratio of the weight tends to 

N ( N  + 1) 

N ( N  + 1) 

It was shown in [ll] that the filter (16) is optimally unbiased, since the bias is totally compensated for 2 5 
N ,  this is & = 0. Its estimate minimal RMSD ooMA\Nx2 = &ow, (Appendix) corresponds to the mini- 
mal number N = 2 and, since N increases, the noise asymptotically tends to oOMAll,N = 2 o w N .  

Now note that even though the bias is totally compensated, the filter (16) produces noise bigger than a 
simple MA; this 'is &ow, 5 oOMA c 2owN . Moreover, because bias is negligible, both the RMSE and the 
maximal error (Al) have for N = 2 almost the same minimal magnitude; this is E &ow, . 

IMPROVED WEIGHT 

Minimization of the global filtering error ( A l )  leads to the improved weight provided in [ll] rather in a 
heuristic way based on simulation. Here, since the function slope (9) strongly influences the compensa- 
tion efficiency, one can just change the variance in the denominator of (9) by the integer k in (14) and 
minimize the global error for the smallest number N = 2 .  Then k = -6 provides appreciable diminishing 
of RMSD, so that the filter exhibits ow, e o,,, e 2owN for 2 5 N and both the RMSE and the maximal 
error start approximately with the same magnitude = ow, as well. The improved optimally unbiasedfilter 
for k = -6 then becomes 
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N(NZ +6) 
(19) 

with its weighting function 

, O I i I N - 1  w, ( N )  = 1 N(N2 +6) 9 

2N(2N-3)+9-6i(N-l) 

I 0, otherwise 

The special feature of the filter (19) is for N = 2 all its particular errors (Al) are almost equal to those of 
the simple MA and then, since N increases, tend to those of the optimal filter (16). However, the im- 
provement is reached at expense of bias, which in a case of (16) is totally compensated. This is the reason 
why the filter (19) is in fact asymptotically optimally unbiased, since its bias tends toward zero as 
N + 0 3 .  With 20 I N both filters, (16) and (19), demonstrate almost the same performance and the im- 
proved filter looks better only for N < 20. 

FILTER ANALYSIS 

Let us now observe major properties of the filters (16) and (19) aiming to measure their performance by 
the factors such as the accuracy of the obtained solutions, their convergence speed, their tracking ability 
for the time error process, and their computational complexity. 

The accuracy strongly depends on the produced bias and noise. From this point of view, the filter (16) is 
optimal in terms of minimal bias, and the filter (19) is optimal in terms of the minimal global error. 

All three filters, namely, a simple MA, (3), the optimally unbiased, (16), and the improved, (19), exhibit 
the same convergence of the algorithms, since all the data should be processed for the same time, and 
both weights, the rectangular for (3) and the triangle for (5) are restricted by a unit square. In contrast to a 
simple MA (3), the filter (16) exhibits much better tracking because the cause, the bias, is removed. The 
filter (19) also looks much better than (3), but slightly worse than (16). 

Certainly, each algorithm, (16) and (19), takes more time for computation, because of an additional 
weight introduced for a simple MA. However, this argument cannot be seriously taken into account as a 
visible disadvantage if we recall that the sample time in the GPS-based timekeeping is usually A = 
10.. .lo00 sec, so there is enough time for computation. 

SIMULATION AND FILTERING 

We now examine both filters for the different practical situations. First, we simulate and study the noisy 
processes with known time errors close to those obtained with use of the GPS timing signals. Then we 
investigate the filtering errors respecting the rubidium and crystal clocks. In this last case, the time error 
had been measured based on the GPS Timing Receiver of the Motorola Oncore UT+ type with the sample 
time A = 100 sec. To obtain small filtering noise, we put down 80 I N, in which case both filters, (16) and 
(19), exhibit rather the same error, and, for this reason, we use only the improved formula (19). While 
studying it, we compare the results to those inherently provided by the two-state and three-state Kalman 
filters [15] and evaluate the filtering error by (Al). The results are obtained based on MATHCAD soft- 
ware. 
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SIMULATION 

To test the filter for all the errors (Al), we simulate two time error processes named the “stationary” and 
the “nonstationary” cases. The process is assumed to be stationary if xo = yo  = D = 0 and the nonstation- 
ary case is obtained with x, = 0, yo  = -5.10-’* and D = 0. For both the cases we set N = 100 and simulate 
the white Gauss noise with an rms deviation of ow = 2511s. Both a simple MA (3) and the unbiased filter 
(19) have been examined, and the filtering errors were calculated for the simulated process x, taken as an 
accurate function of the time error; this is x; = x,, in (Al). As had been expected, noise of the filter (19) 
(and, strictly, of all other filters [2], if one were to extend) exceeds that of a simple MA in the stationary 
case (Fig. 2). In contrast, a simple MA demonstrates big bias in the nonstationary case (Fig. 3). 

Based on Figs. 2 and 3, one may conclude that both filters, a simple MA and the unbiased, produce al- 
most the same bias in the stationary case. The other conclusion is the noise produced by the unbiased 
filter in this particular case is about three times bigger than that of simple MA, though theoretically the 
limit equals 2 [ll]. On the whole, we see that simple MA is best for the stationary case (Fig. 2) and the 
unbiased filter is best for the nonstationary case (Fig. 3) with the ratio of the RMSE of 0.43 and 4.93 for 
each case, respectively. 

GPS-BASED TIME ERROR GENERATED WITH THE RUBIDIUM 
CLOCK (THE FIRST CASE) 

Here we deal with the real data of the GPS-based time error generated by the rubidium clock with the off- 
set of yo % 2.3.10-’* and A = 100 sec. Following the tradition, we examine both a simple MA and the 
unbiased filter, and do the same for the two-state and three-state Kalman algorithms [15]; those are the 
most matched with the time error model (1). Since the transient is the important performance of the filter 
in timekeeping, it delays receiving of the first estimate, then, to obtain the same inertia for each filter, we 
put N = 80 and set the proper states noises in the signal noise matrices of the Kalman filters. In this 
way, we obtain the transient time at the level of 0.9 to be equal to the averaging interval 
8 = A(N - 1) 4 2.22 hours of a MA. Figure 4a shows the observation and all the four filtered curves. Be- 
cause in this case we do not know the origin of the time error x,” in (Al), we assume the three-state Kal- 
man estimate iiKnf to be the most accurate. Hereupon, substituting x,” = for (Al) produces Fig. 4b. 
The visible finding here is the unbiased filter is best as compared to the simple MA and even to the two- 
state Kalman. Just as in the simulated case (Fig. 3), we watch here for the good compensation of the bias, 
which is almost the same as that of the three-state Kalman filter. Though the noise of the simple MA is 
inherently small, the RMSD of its estimate is bigger by about 2.5 and 1.6 times that of the unbiased and 
two-state Kalman filters, respectively. With this, the unbiased filter exhibits about 1.5 times smaller error 
than that of the two-state Kalman filter. Yet, both the two-state Kalman and the unbiased filters yield 
rather the same maximal error. 
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GPS-BASED TIME ERROR GENERATED WITH THE RUBIDIUM 
CLOCK (THE SECOND CASE) 

Consider the other case of the time error of the rubidium clock with yo G -1.44. IO-’* and the same con- 
ditions as those provided for the first case. Again, we see (Fig. 5) the visible smallest error of the unbi- 
ased filter. Calculation shows as well the best cpmpensation of the bias, which is smallest among those of 
a simple MA and the two-state Kalman filter. The unbiased filter demonstrates the RMSD, which is 
about 3.0 and 1.8 times lower than that of a simple MA and the two-state Kalman filter, respectively. 
Both the RMSE and the maximal errors are also smaller by more than two times in this case. 

GPS-BASED TIME ERROR GENERATED WITH THE CRYSTAL 
CLOCK 

Let us now investigate the final example of the time error filtering. This case corresponds to the ovenized 
crystal oscillator (OCXO), in which case the time error is inherently bigger than that of the rubidium 
clock. The time error function and the filtered results are sketched in the Fig. 6. On the whole, we come 
here to the same conclusions, namely: the optimally unbiased filter demonstrates negligible bias and ex- 
hibits the RMSD, the RMS, and the maximal errors by 4.1 to 4.4 times smaller as compared to a simple 
averaging, and by 2.7 to 3.2 times smaller than those provided by the two-state Kalman filter. Recall we 
use the estimate of the three-state Kalman filter as a reference. 

CONCLUSIONS 

We have examined in this paper the optimally unbiased MA filter [ll] designed especially for the tasks of 
“on-line” estimation and synchronization in timekeeping. The special features of the filters, (16) and 
(19), are 

The filter (16) is optimally unbiased and the filter (19) is asymptotically optimally unbiased with 
the maximum produced noise by 2 times bigger with 1 << N than that of a simple MA. 
Both filters yield the same result, since 20 I N and the filter (19) produces noise smaller, since N 

The filters do not require any a priori knowledge about the GPS-based time error process. 
<20. , 

Based on results of the numerical simulation and the filtering of the real GPS-based time error processes 
generated by the rubidium and crystal clocks, we come to the following conclusions: 

In practice, the noise of the optimally unbiased filters, (16) and (19), may be more than by 2 times 
bigger that that of a simple MA. This holds true for a small number of samples n. Since n in- 
creases, the ratio of RMSD tends to the theoretical limit of 2. 
The filters exhibited the intermediate error between those provided by the three-state and two- 
state Kalman filters, since all the filters were tuned for the same time constant. 
In fact, both filters may be used in timekeeping to provide an unbiased estimate of time error with 
small noise. 
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APPENDIX : FILTERING ERRORS 

Find out the estimate error as 
E,, = x; -i,, 9 

where i,l is estimate of a time error, x: is assumed to be accurate value of a time error. Evaluate (Al) 
by the particular sample errors for an arbitrary number M of estimates; those are, bias A? = E[&,,],  vari- 

ance 0, = @, rms error (RMSE) 

E,,, = da = dm, maximal error E,,,,, = maxl&,,( , and global error, which we would like to 
evaluate as 

0: = E[(&,, - A32] ,  root-mean-square deviation (RMSD) 

= OS(&, , ,  + E,,,) . 
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Figure 1. The optimal weighting function. 
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Figure 2. Filtering of the simulated stationary time error process for xo = 0, yo =0, D = 0 , ow = 25ns , 
A = lOOs, and N = 100. 
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Figure 3. Filtering of the simulated nonstationary time error process for xo = 0, yo  = 5.10- , D = 0,  

a, = 25ns, A = lOOs, and N = 100. 
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Figure 4. Filtering of the GPS-based time error process generated by the rubidium standard for A = lOOs, 
7 and N = 80: a)  Estimates; b) Errors with respect to the three-state Kalman estimate. 
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Figure 6. Filtering of the GPS-based time error process generated by the rubidium standard for A = lOOs, 
and N = 80: a) Estimates; b) Errors with respect to the three-state Kalman estimate. 
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Figure 7. Filtering of the GPS-based time error process generated by the OCXO for A = lOOs, and N = 
80: a)  Estimates; b) Errors with respect to the three-state Kalman estimate. 
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QUESTIONS AND ANSWERS 

J I M  CAMPARO (The Aerospace Corporation): You had random walk frequency in the rubidium clock 
data. I am very sure time scales that random walk would look like just a linear frequency offset. And so if I 
understand this correctly, your averaging time for your moving average has to be on that time scale where 
random walk looks like some frequency offset. Is that correct? 

YUlUY SHMALIY: That’s right. Yes. 
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