
33rd Annual Precise Time and Time Interval (PlTl)  Meeting 

KALMAN PLUS WEIGHTS: 
A TIME SCALE ALGORITHM* 

Charles A. Greenhall 
Jet Propulsion Laboratory, California Institute of Technology 

4800 Oak Grove Drive, MS 298-100 
Pasadena, CA 91109, USA 

E-mail: Charles. Greenhall @jpl. nasa.gov 

Abstract 

KPW is a time scale algorithm that combines Kalman filtering with the basic 
time scale equation (BTSE). A single Kalman filter that estimates all clocks si- 
multaneously is used to generate the BTSE frequency estimates, while the BTSE 
weights are inversely proportional to the white FM variances of the clocks. Results 
from simulated clock ensembles are compared to previous simulation results from 
other algorithms. 

INTRODUCTION 

The purpose of a time scale is to create a virtual clock from an ensemble of physical clocks whose 
differences from each other are measured at a sequence of dates (a date being the displayed time 
of a clock). The virtual clock is defined as an offset from one of the clocks, computed from the 
measurement data by some algorithm. We usually want the virtual clock to  be quieter than any of 
the real clocks in both the short term and the long term. 

One approach, which was tried in the early 1980s [l], is to  run a Kalman filter on the clock 
difference measurements, the noise of each clock having previously been modeled by a stochastic 
linear system. The filter produces an estimate, unbiased and with minimum error variance, of the 
phase and frequency of each clock; moreover, if we offset the tick of each clock by its phase estimate, 
we arrive at a single point on the time axis (if the measurements are noiseless). It makes sense, 
then, to regard this point as the estimated origin of the ensemble, and to  use the sequence of these 
values as a time scale. This time scale, which was realized as TA (NIST), was reported to  follow 
the clock with the best long-term stability, regardless of its short-term stability [2]. My goals have 
been to  reproduce this finding, understand it, and improve the method. I seem to have achieved 
the first and third goals, but not the second. 

It turns out that a good time scale algorithm can be constructed by injecting some of the Kalman- 
filter information into the traditional “basic time scale equation” (BTSE) , which requires frequency 
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estimates and a set of weights. In brief, here is the new time scale algorithm, called “Kalman plus 
weights (KPW).” 

1. Initialize the Kalman filter properly, and run it on the clock models and difference measurements. 

2. Throw out the Kalman phase estimates. 

3. Use the Kalman frequency estimates in the BTSE, whose weights are made inversely proportional 
to the white FM variances of the clocks. 

After describing the algorithm in detail, I show results from simulations of clocks with independent 
white FM and random-walk FM (RWFM) components. Included are comparisons with previous 
simulation results for two other time scales that make heavy use of Kalman filtering: the Barnes- 
Allan “frequency Kalman” [3] and Stein’s KAS-2l [4]. 

TERMINOLOGY AND NOTATION 

I shall try to  introduce a consistent and suggestive notation in which to work. The ensemble has n 
clocks H I , .  . . Hn. A date is the displayed time of a clock, determined by counting its oscillations. 
At date t ,  the following quantities are defined: 

hi ( t )  = time coordinate (on some time scale) of H,’s tick when it shows date t ;  not directly 
observable. 

ho ( t )  = time coordinate of an ideal clock Ho; ho ( t )  = a + bt for some constants a, b. This is not an 
unattainable concept; an ideal clock can and will be defined by extrapolating the initial state of a 
physical clock; see the section on startup. 

he ( t )  = time scale or ensemble time, the time coordinate of a virtual clock He, to  be determined 
by its computed offsets from the physical clocks. 

2, ( t )  = he ( t )  - ho ( t ) ,  offset of He from Ho, also called a time scale here. 

xi (t) = h, (t) - ho ( t ) ,  offset of H, from Ho. 

xiJ ( t )  = x, (t) - xj ( t )  = h, ( t )  - hj ( t ) ,  clock difference measurements, taken at an increasing 
sequence of dates to, t l ,  . . . . This study assumes noiseless measurements. 

X i e  ( t) = xi (t) - xe ( t )  = h, ( t )  - he ( t ) ,  offset of H, from He. The xze ( t )  are to  be computed as 
statistics of the measurements through date t ,  perhaps with some initial conditions. A time scale 

( t )  is determined by xi ( t )  and xie ( t )  for some i. When the measurements are noiseless, it usually 
turns out that any i can be used, that is, x, ( t )  - xze ( t )  gives the same value x e  ( t )  for all i. An 
equivalent condition is 

xie ( t )  - xJe ( t )  = ~ i j  ( t )  , i, j = I, . . . ,ne (1) 

If (1) is fulfilled, I shall say that the offsets x , ~  ( t )  are consistent with the measurements. This just 
means that the set of points {xie ( t )  : i = 1, . . . ,n} is a rigid translation of the set {xi ( t )  : = 1, . . . ,n}. 

‘A tradename of Timing Solutions Corporation 
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AVERAGE TIME SCALES 

This category includes many of the time scales in actual use [5]. An average time scale is defined 
recursively at measurement date t from measurement date t - T by an equation of form 

The weights wi ( t )  (which add to 1) and the frequency estimates jj2 ( t )  depend on the measurements 
through date t. From (2) and the previous definitions, there follows the basic time scale equation 
(BTSE), 

a recursive equation for the offsets x j e  (t). This is the computation that is actually performed to 
obtain the offsets of the virtual clock from the physical clocks. These offsets are consistent with 
the measurements. 

Average time scales usually calculate yz ( t )  as an estimate of the frequency of H, relative to  the scale 
He as calculated through date t. In the present formulation, yi ( t )  is an estimate of the frequency 
of Hi relative to  Ho, not He. This is the case for the Kalman-based estimate discussed below; the 
Kalman filter knows nothing about He. 

CLOCK MODEL AND KALMAN FILTER 

At this stage of development, I am using a two-state clock model: white FM plus RWFM. Jones 
and Tryon [l] showed how to integrate the differential-equation model to  a stochastic difference- 
equation model for discrete measurement dates, which may be unequally spaced. For the i th clock, 
the equations taking the state [zi, y,] from date t - T to date t can be stated as 

The process noise vector [w,, (t,  7) , wy2 (t,  T ) ]  (uncorrelated over dates and clocks) has covariance 
matrix 
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in which the q’s, which we assume to be known, specify the white FM and RWFM noise levels. In 
terms of them, the Allan variance of the i th clock is 

The overall state vector is X ( t )  = [x1 ( t )  , y1 ( t )  , . . . , x, ( t )  , y, ( t )] .  In a standard way [6], which 
will not be repeated here, the Kalman filter uses the model (4)-(5) and the measurements xij ( t )  to  
obtain a recursive estimate X ( t )  = [21 ( t )  , $1 ( t )  , . . . , 2, ( t )  , 6, (t)] and its error covariance matrix 
P ( t )  from the same quantities at date t - T .  

It turns out that the Kalman phase estimates 2i ( t )  are consistent with the clock measurements in 
the sense that 2% ( t )  - iiJ ( t )  = xij (t);  consequently, it makes sense to  define a natural Kalman time 
scale by 

(the same for all i ) .  It is this scale that was used for TA (NIST) and found wanting. 

startup 

The Kalman filter must be initialized at a starting date tl by providing a state estimate X (tl) , P (tl). 
By taking care with this task, we can establish a reference for the ensemble and make the filter 
settle down quickly [7]. Let us take noiseless clock difference measurements xij ( t o )  , x y  (tl), where 
tl = t o  + T .  Without loss of generality, we can assume that the xi ( t o )  are known exactly. Some 
initial information about the random walk frequency states is needed, too. For this purpose, let 
us regard HI as a master clock whose initial frequency state, relative to  some ideal clock Ho, can 
be defined or estimated. Thus, let 61 ( t o )  be some unbiased prior estimate of y1 ( t o ) ,  with error 
variance PI. We can always set: 

The implication of (8) is that HO is defined as the noiseless extrapolation of the initial state of 
HI, which, though unknown, can still act as a reference. This convention will be called the Muster 
Clock 1 Startup. This is not the same thing as using H1 as a master clock during the run [8]; after 
startup, its state is estimated (relative to Ho) on a par with the states of the other clocks. 

Here are the initialization equations, whose derivation is omitted: 

These give X ( t o )  and X (tl). For the Master Clock 1 Startup (assumed for simplicity), we have 
.i)(tl) = AQ(7)AT, where Q(T) is the overall process covariance matrix with diagonal blocks 
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A =  

KPW ALGORITHM 

1 0  
0 1  
1 0  0 0  
1 0  A 1  
7 

... ... 
1 0 0 0 * * *  0 0  
1 0 0 0 ... -- 1 1  
7 7 

The KPW time scale algorithm can now be quickly given. Set xie ( t o )  = x i  ( t o )  (that is, X e  ( t o )  = 
0). Initialize the Kalman filter from the clock difference measurements at t o  and tl. Run the 
Kalman filter on the measurements at dates t 2 ,  t 3 , .  . . to  produce state estimates 8, ( t k )  , y2 ( t k ) .  At 
measurement date t = t k ,  IC 2 1, apply the BTSE (3), where t - 7 = tk-1. The Kalman phase 
estimates itz are not used at all. 

It remains to  specify the BTSE weights. To argue towards a reasonable choice, define the estimated 
RWFM component of xi ( t )  as the discrete time integral of yi ( t ) ,  

Assume constant weights w,. Summing (2) over the measurement dates from tl to  t ,  we obtain 

We can regard the quantity in brackets as an estimate of the white FM component of H,. Thus, 
the implicitly defined time scale is a weighted average of approximate white FM components. To 
try to minimize the instability of xe  ( t ) ,  we make w, proportional to l/qz,. This method has been 
used for all the simulations. In practice, if the 4’s are revised in the middle of a run, then so would 
the w’s. 

SIMULATIONS 

These were run for various sets of clocks as determined by their 4’s. For convenience, the data 
were generated at equally spaced dates. The model equations (4) were used to  generate the true 
clocks. The Kalman filters were initialized by the Master Clock 1 Startup condition (8), and were 
mechanized by a covariance square root method [9,10] to avoid numerical instability and problems 
with singular covariance matrices. Because the true clocks were available, the time scales were 
computed from (9) and (10) instead of the BTSE (3). 
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Two Opposite Clocks 

The simplest and most revealing example is two clocks that are as opposite as they can be: Hi 
is pure white FM, while H2 is pure RWFM. The results are shown in Fig. 1 (arbitrary scaling). 
The upper plot shows the phases of the true clocks and the KPW time scale He. The natural 
Kalman time scale (7) exhibits an extreme form of its well-known behavior: it is exactly equal to  
x1 (t). This means that the Kalman phase estimate 81 ( t )  is identically zero; all of Hi’s white FM 
is thrown onto 8 2  (t) .  

The middle plot shows the total frequency (difference quotient of the phase) for the KPW scale 
He and the true clocks; the curves are offset for clarity. For H2, the total frequency is the same as 
the RWFM state ?JZ (t) .  The two upper intertwined curves, which are y2 ( t )  and its estimate y 2  ( t ) ,  
show that the Kalman filter does an excellent job of estimating this frequency state. 

In the lower plot, the straight lines are the theoretical Allan deviations of the true clocks; the 
dots are the measured Allan deviations. The KPW scale He is only moderately noiser than H2 
for short r ,  and about the same as Hi for long r. All the weight is on H2; this means that 
x ,  ( t )  = 2 2  ( t )  - Z2,RWF (t) ,  with Hi playing no role in the BTSE. Nevertheless, the long-term 
behavior of the scale seems to be governed by Hi.  

Eleven NIST Cs Clocks 

This example comes from a study by Barnes and Allan [3] based on simulations of a set of cesium 
clocks whose q’s had previously been measured. Figure 2 shows the result of a simulation using 
the same q’s. The phases of all the true clocks and the total frequencies of three of them are 
shown. The crosses in the lower plot (data from Fig. 9 of [3] show the Allan deviation of a time 
scale derived from the “frequency Kalman” filter, which uses pseudo-measurements of frequency 
differences. That scale dips a little lower than the KPW scale at 7 = lo5 s .  At 7 = lo4 s ,  though, 
the measured KPW Allan deviation is 1.30 x that 
can be achieved by a weighted average of the white FM components of these clocks. 

close to  the minimum value 1.27 x 

Eight Imaginary Clocks 

This example reproduces a simulation that was carried out by Stein [4] on an imaginary eight-clock 
ensemble to  demonstrate the KAS-2 time scale algorithm. The odd-numbered clocks all have the 
same q’s, as do the even-numbered clocks. Figure 3 shows the results of simulating this ensemble; 
the crosses in the lower plot show the KAS-2 stability from Stein’s Fig. 1. For each r ,  the measured 
KPW Allan deviation is less than 60% of the theoretical Allan deviation of the best clock for that 
7. 

CONCLUSIONS 

The KPW time scale algorithm has been demonstrated in a simulation playpen with perfect knowl- 
edge of the stochastic clock models and their noise levels. Under these conditions, KPW seems to 
be competitive with other Kalman-based time scale algorithms. The natural Kalman time scale, 
which does not use the basic time scale equation, has again been shown to be noisy in the short 
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term because the Kalman filter attributes the white FM noises to  the wrong clocks. I do not yet 
understand why this happens. 

A related symptom is the unbounded growth of portions of the covariance matrix. This growth 
does not harm the frequency estimates, especially if the Kalman filter is mechanized by a square- 
root method. Nevertheless, as Weiss and Weissert wrote [2], “it is suggestive of an undesirable 
situation.” In view of Brown’s [8] work, it might be possible to  reduce this matrix transparently. 

The KPW algorithm might serve as the foundation of a time scale that gives real-time results. Of 
course, a practical time scale must provide for clock insertion and removal, outlier detection and 
rejection, jumps in phase and frequency, steering, adaptive estimation of the q’s, and so on. In 
addition, the clock and measurement models should be expanded to  include random run FM, white 
PM, and measurement noise. 
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