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Abstract 

In a test of whether a Kalman filter could provide viable frequencies for atomic clocks, as 
well phases for a mean timescale, both simulated and actual hydrogen maser frequency data 
were processed with a two-state Kalman filter involving the parameters frequency and 
frequency dr@ and incorporating noise measurements based on Hadamard variances. 
Separate clock solutions were then combined and integrated to generate a mean timescale for 
the ensemble. Results for sampling times of up to at least several days indicate that such a 
timescale is even more stable than the one being used to steer the USNO Master Clock. 

INTRODUCTION 
Tryon and Jones [l] proposed the first atomic timescale algorithm based on a Kalman filter in order to 
provide an ensemble time that is more uniform than the time kept by any one of the constituent clocks and 
whose estimated states are optimal in the minimum squared error sense. Their state equations contained 
as clock parameters the phase, frequency, and drift relative to another weighted clock. A problem with 
this type of filter is that, since time is unobservable, elements of the covariance matrix grow without 
bound [2]. 

Barnes and Allan [3] proposed a Kalman filter that utilized only frequency and drift, pointing out that 
only these two parameters are physically meaningful for a clock, and indeed showed by simulations that 
such a two-parameter filter performed better than the three-parameter one. Though they studied cesiums, 
and cesiums generally have no significant drift, a drift parameter was necessitated by the need to allow for 
random walk FM noise. Elimination of the phase variable properly requires the use of measurement data 
without significant phase noise. 

Consequently, a reasonable model for our masers (which generally have inherent frequency drift) is: 

f ( t + A t )  = f ( t ) + A t . d ( t ) + ~ ( t + A t )  

d(t + At)  = d( t )  + q(t + At)  

where f (t)  is a clock's frequency at time t = 1, 2, ...; d (t) is its frequency drift; E (t)  and q (t) are 
independent random variables with zero mean and normal distributions (Le. white noise processes) 
uncorrelated in time (i.e. zero autocorrelation); and At is the time step (1 hour in our case, which is in the 
white FM noise regime of masers). 

In order to minimize process noise, one must choose a reference that is stable as possible. The Mean, at 
least as derived from the clocks under consideration, cannot so serve because it is not yet available at the 
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first step of a recursion. Even if it were, the problem could not be solved because it would be 
underdetermined. One could refer all the frequencies and drifts to one of the weighted clocks or to a 
mean predicted from previous data. However, it would be easier and more error- and correlation-free to 
refer one type of clocks, say the masers, to the Mean of the other type of clocks (cesiums). In USNOs 
operational timescale, the maser rates and drifts are calibrated against the cesium Mean anyway, which is 
always available. And the fact that in practice (though not in this study) the maser states would not be 
measured against those of another maser or their mean limits covariance growth with time. 

- - 
f, ( t  + At)  
d ,  ( t  + At)  

d ,  (t + At)  
f , ( t + A t )  

... - - 

THE KALMAN FILTER 

- - 
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= 0 0 1 At e * *  
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The state transition equations are: 

or: 

X ( t  + At)  = Q, ( t )  X ( t )  + W (t + A t )  

where the subscripts denote clocks and @ (t) is the state transition matrix. 

Let q (t) be the phase of clock i at time t relative to the cesium Mean. The observation equations 
are: 

1 0 0 0 ... 
0 0 1 0 .*.  

............... 

or: 

Z ( t , A t )  = H ( t )  X ( t )  + V ( t )  

where 2 (&At) is the vector of measurements, H (t) is the observation matrix (time-dependent in that the 
number of weighted clocks with available data may vary), and V (t) is the vector of measurement errors v, 
(0. ' 

For uncorrelated parameters, the covariance matrix Q (At) of the process errors W (t), for 
sufficiently small At, is such that: 
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dQ - - -  
dt 

2 o  0 o . . .  
0 s7, 0 0 *.. 
0 0 s,2 0 ..’ 
0 0 0 SV2 * . *  

2 

2 

... . . . . . . . . .  ... 
2 2 where s&, is the noise spectral density (sometimes called variance rate) of random-walk FM and sV, is 

the noise spectral density of random-run FM (random walk of frequency drift). The effect of these errors 
on the system for any interval At is: 

dQ 
dt  Q(At)  = Q, ( t )  - iPT ( t )  dt 

sE12At -k S , ~ ’ ( A ~ ) ~  I 3  

S , , ~ ~ ( A ~ ) ~  I 2  
... 

sq12(At)’ I 2  .--  
sll, ‘At ... 
... ... 

where QT is the transpose of matrix @. 

If the measurement errors are uncorrelated, the measurement error vector V ( t  + At) has the covariance 
matrix: 

I o  R ( A t )  = 

where s: is the noise spectral density of random walk of phase, or white FM. The assumption of zero 
autocorrelation does require prefiltering for such outliers as erroneous phase measurements shared by 
consecutive first differences. 

So far we have assumed that there are data every time step. When this is not the case, At in our state 
equations and Q (t)  formulation can be the actual interval between measurements, but not in our 
formulation for R (t) ,  where At must remain the time step. 

Rather than noise spectral densities, let us instead solve for the variances 0: = s:At, C? = s?At, and a: = 
s t A t  as our noise parameters. The Hadamard variance, aH, when the noise sources consist only of white 
noise FM, random-walk FM, and random-run FM, can be expressed as [4]: 

(1) 2 2 oH = oV Z-’ + (116) 0,’ z + (111120) o,,’ r3 
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where 2 is the sampling time. Our noise parameters may be solved by least squares from this equation of 
condition. Hadamard variance has the beneficial property of being insensitive to drift. 

Improved values could be obtained from fits of the individual masers to the cesium Mean and recomputed 
occasionally, say at times of significant frequency and drift changes. These quantities introduce time 
constants into the noise terms that allow for the different noise processes. As with H (t), the only 
dependence of Q (At) and R (At) on time is on the particular clocks involved. 

The first step in the version of the Kalman recursion in which no knowledge of the process noise is 
required is to calculate the inverse of the transition covariance: 

P-‘( t )  = [ P - ( t ) ] - ’  + H T ( t ) R - ’ ( t ) H  ( t )  

where the transition covariance matrix predicted for the next step P-(t) (whose superscript denotes 
“predicted”) can be assumed initially to contain huge covariances. 

Second, we compute the Kalman gain K: 

K ( t )  = P ( t )  H T ( t )  R-’( t )  

where P (t) is the transition covariance matrix of the current step. Next, we update the parameter estimate 
thusly (where A denotes “estimated”): 

i ( t )  = i - ( t ) + K ( t )  [ z ( t > - H ( t ) i - ( t ) l  

Then we make the following predictions for the next step 

i - ( t  + A t )  = CP ( t )  i ( t )  

P - @ + A t )  = @ ( I )  P ( t )  CPT(t) + Q ( t )  

and so on. Each application of the recursion yields an estimate of the system state that is a function of the 
elapsed time since the last filter update, which can occur any time, i.e. At is not necessarily constant, and 
the data need not be equally spaced. Note that there are two matrix inversions instead of one as in the 
more common formulation of the Kalman filter. We will see that this is of no consequence. Further, note 
that our clock model assumes the frequencies to be real-time, so their initial estimates must be those 
applying at time t = 0. 

While it may appear to be necessary to invert a matrix 2n on a side, where n is the number of clocks, note 
that @ (t) and Q (t) are block-diagonal and R (t) is diagonal, implying, respectively, that: (1) maser 
frequencies relative to the cesium Mean are independent of one another; (2) maser frequency errors are 
independent of one another; and (3) measurement errors are independent. These assumptions may not be 
strictly true due to, e.g., environmental influences, so there may be some mismodelling, but the diagonal 
structure of these matrices implies the same structure for P (t) and, hence, that the problem may be solved 
as a series of 2 x 2 matrices, greatly reducing computational time and errors. Thus, the two inversions 
required by the above filter formulation is not a problem. And all correlations with the reference would 
be allowed for, while many Kalman-based algorithms neglect these. 
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If prefilter analysis of the data indicates the presence of a significant frequency step, the covariances in 
P-(t)  could be reset to huge values in order to reinitialize the filter. 

THE KALMAN MEAN 

The frequencies and drifts produced by this two-state Kalman filter could be averaged and integrated to 
generate a Kalman-based mean timescale. The relative sizes of the clock covariances F ( t )  would be 
inversely related to the individual clock weights. Robustness would require the imposition of an upper 
limit on any one clock‘s relative weight. If the filter and model operate correctly, the clock variances 
should slowly converge to steady-state values. 

If, in forming the mean timescale, each clock’s frequency is weighted according to the inverse of its 
variance, the timescale would be biased by the “clock-ensemble effect.” The prediction error is always 
too small because the frequency of a clock is correlated with the frequency of the ensemble, since the 
ensemble includes a contribution from each clock. The weights, which are proportional to the inverse of 
the variances, are therefore systematically too large, causing a positive feedback that increasingly biases 
the timescale toward the ensemble’s best clock [5,6]. This can be avoided if the weight of each clock is 
based on its stability relative to a mean of which it is not a part, either by: (1) using another mean entirely, 
say one based on cesium clocks rather than masers; or (2) computing a mean consisting of the rest of the 
clocks in the ensemble and referring the clock in question to that mean. (2) can be accomplished by using 
the relation: 

2 ou = o ” ( l - w )  

where o2 is the uncorrected variance, o: is the corrected (unbiased) variance, and weight is the relative 
weight [7]. In practice, an upper limit would also have to be placed on any one clock’s weight. 

USNO‘s operational timescale assumes constant drifts and, aside from drift, constant frequencies. Proper 
tuning of the Kalman filter through the system noise Q matrix should limit the steady-state parameters to 
the expected white FM and random-walk FM noises, without the necessity of exponential filters such as 
those employed by Stein to derive his parameters [8] and used by NIST in their AT1 and AT2 algorithms 
PI .  

Parameter and error estimates would be available from the filter in near real time, but practical 
implementation would require robust detection and rejection of outliers (measurements whose errors are 
unlikely to have originated in the clock model’s process noises), as well as prompt recognition of time and 
frequency steps. Kalman filters provide both a forecast of the next data point and an estimate of its 
uncertainty, so it is possible to implement robust outlier detection, though one must allow for the 
possibility that discrepant points are indications of a step in time or frequency. Stein proposed an altered 
gain function to smoothly deweight outliers and an adaptive filter to recognize time and frequency steps 
[91. 

Initially the filter’s knowledge of the parameters will be crude, but in postprocessing one can make use of 
“future data” by running forward and backward filters through the data and averaging the corresponding 
parameters weighted by the number of time steps contributing to each using weights based on filter 
variances (“smoothing”) [lo]. In order to avoid using the same datum twice, the state at any one time 
from one of the filters has to be averaged with the predicted state at that time from the other filter. This 
kind of processing of time data has only been done by NIST a posteriori for their AT2 timescale [ll]. 
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