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Abstract 

The least-squares analysis of Two- Way Satellite Time and Frequency (TWSTFT) data, with 
the aim of determining optimal estimates of phase and frequency offsets, is conskiered. An 
overview of the application of Gauss-Markov estimation to the analysis of a unvormly spaced 
time series is presented. Two aspects of TWSTFT data analysis are examined in depth. Firstly, 
measures based on second dvference statistics for characterizing the consistently but unevenly 
spaced TWSTFT measurements are introduced. Secondly, an approach to the estimation of the 
occasional and unknown delay steps in TWSTFT data, for example due to hardware 
replacement, is presented. 

1 INTRODUCTION 

Two-way Satellite Time and Frequency Transfer (TWSTFT) [l] has been used operationally by primary 
timing laboratories for several years. TWSTFT links between laboratories have proved to be both stable 
and reliable, and consequently TWSTFT measurements are used for several of the main links in the 
computation of International Atomic Time (TAI). This paper describes new analysis techniques being 
developed for the processing of TWSTFT measurements. The overall aim of the study is to be able to 
determine, at any measurement epoch, estimates of the phase and normalized frequency offsets, together 
with their uncertainties, between two clocks or time scales being compared using TWSTFT. 

In Section 2, we describe an approach, based on Gauss-Markov estimation, to solving this problem for the 
case of measurements of the phase difference between two clocks or time scales made at uniformly spaced 
times and assuming knowledge of the random noise processes underlying the measurements. For time 
series corresponding to uniformly spaced times, second difference statistics, such as the Allan and 
modified Allan variances, provide a means to obtain information about the noise processes. 

However, the application of this approach to TWSTFT is made difficult for two reasons. Firstly, for many 
operational links based on TWSTFT, measurements are available only on Mondays, Wednesdays, and 
Fridays. The measurements constitute a time series that is unevenly spaced (with a 2-, 2- and 3-day 
spacing), but consistent, in that this spacing pattern is repeated. Conventional second difference statistics, 
such as the Allan and modified Allan variances, are not applicable to such time series. A new second- 
difference statistic, designed for consistently but unevenly spaced time series, is described in Section 3. 
Secondly, it is well known that TWSTFT data can be subject to occasional phase offsets or steps resulting 
from replacement of the hardware underlying the collection of the data. In Section 4, a method is 
described for analyzing TWSTFT measurements to provide estimates of these steps, together with their 
associated uncertainties. A summary is given in Section 5. 
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2 ANALYSIS OF A UNIFORMLY SPACED TIME SERIES 

Let x(t) denote the phase difference, as a function of time t, between two clocks and {a: i = 1, ..., m} a 
time series of measurements of x made at uniformly-spaced times { tI: i = 1, . . ., m}. Suppose x(t)  is 
modeled in terms of a phase offset po and a normalized frequency offsetfo, i.e., 

and the measurements as 

where e, denotes a random error. Using matrix notation, 

x=Xp+e,  

where 

We suppose that the elements of e have zero expectation (E(e) = 0) and a known covariance matrix (V(e) = 
V) [2]. Typically, the elements e, are a linear combination of (independent) samples of known noise types. 
For simplicity of presentation, we restrict the analysis to the well-known noise types of white phase 
modulation (WPM), white frequency modulation (WFM), and random-walk frequency modulation 
(RWFM). The extension of the work to other noise types, such as flicker phase modulation (FPM) and 
flicker frequency modulation (FFM), given a characterization of these noise types, is straightforward. 

We express V in terms of known covariance matrices that relate to each noise type and parameters 
describing the “magnitude” of each noise type present. Each noise type is characterized by a 
transformation of a WPM process. The covariance matrices V for standardized WPM, WFM, and R W M ,  
for which the transformed WPM process has unit standard deviation, are given by, respectively, 

v,, = I ,  vm =nT, v,,,, =(T”(T”,  

where I is the identity matrix, and T defines the “summation operator” 

[3, Appendix A]. The covariance matrix V(e) for noise arising as a linear combination of (independent) 
WPM, WFM, and RWFM is then expressed as 
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where (T’WPM, dm, and dRwm denote the variances of the WPM underlying each noise type. 
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Given the model (2) for the measurements, and assuming the covariance matrix V(e) is also given, for 
example as defined by (4), a leas-squares analysis or Gauss-Markov regression [2] may be applied to 
obtain estimates of the phase offset po and the normalized frequency offset&, together with their associated 
uncertainties. The estimates are optimal in the sense of being the estimates of minimum variance from the 
class of linear unbiased estimates of po and& [2]. 

Standard 
uncertainty of & 

de- 
~ W F M  

2, lr;;; 
QRWFM Jz 

20 

The results of this analysis for the examples of (pure) WPM, WFM, and RWFM are given in Table 1. For 
ease of presentation of results, we suppose ti = izo with i = -m, . . . , +m for WPM and i = 0, . . . , m for WFM 
and RWFM. Other cases can also straightforwardly be handled. The results show that for WFM and 
RWFM, the estimate po of the phase offset at t = 0 is the measurement %, whereas for WPM and data 
distributed symmetrically about t = 0, it is the mean of the measured phase offset values. Furthermore, for 
WFM and RWFM, the estimate& of the normalized frequency offset is the slope of the chord joining the 
first and last measured values (for WFM) and the first and second values (for RWFM). 

The law of propagation of uncertainty [4] is applied to the model defined by the Gauss-Markov regression 
and the statistical model (4) for the measurements to provide the standard uncertainties of the estimates po 
andfo and their covariance. (For the cases considered in Table 1, the estimates po andfo are uncorrelated 
for WPM and WFM, but they are correlated for RWFM.) The estimates of po andfo, together with the 
model (l), can be used to predict the phase offset x at any given time t. A further application of the law of 
propagation of uncertainty permits the standard uncertainty of any quantity derived from po andfo, such as 
a predicted phase offset, to be evaluated. 

Table 1: Results of Gauss-Markov estimation for the examples of (pure) WPM, WFM 
and RWFM. 

3 SECOND DIFFERENCE STATISTICS 

For several years TWSTFT measurements made using Intelsat satellites between European primary timing 
laboratories, and between European and North American laboratories, have been available on Mondays, 
Wednesdays, and Fridays. The measurements constitute a consistently but unevenZy spaced time series. 
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Time transfer measurements are usually characterized through the use of the well-known second difference 
statistics AVAR, MVAR and W A R  [SI. However, these statistics do not lend themselves directly to the 
characterization of unevenly spaced measurements. The characterization of unevenly spaced TWSTFT 
data has been considered previously, using techniques based on interpolating missing data followed by the 
application of second difference statistics to the resulting “reconstructed” time series [3,6]. The approach 
considered here is to develop a second-difference statistic that may be used directly on unevenly spaced 
TWSTFT data, thus avoiding any dependence on the form of interpolation used. 

Y2 . -  - 

Ym-3 

3.1 ALLAN VARIANCE FOR A UNIFORMLY SPACED TIME SERIES 

In order to motivate the construction of a second-difference statistic for a nonuniformly spaced time series, 
we begin by reviewing the Allan variance for a uniformly spaced time series and, in particular, its 
definition in terms of a second-difference operator. 

Consider the time series x = (x l ,  ..., x , ) ~  with x, denoting a measurement of x(t) at t, = izo, i = 1, ..., rn. 
Here, z = zo denotes the spacing (in time) between the measurements x of phase difference. To determine 
the “single-spaced” (z = 70) Allan variance statistic, we first form the time series of second differences y = 
(yl, ..., ym-2) of x, viz., T 

- 2  
1 

1 
- 2  1 

1 - 2  
1 

1 
- 2  

where Al is a band diagonal matrix with band defined by 

The time series y is stationary for the five well known noise types listed in Section 2 as well as linear 
frequency drift (the latter modeled by behavior of the formfDt2), and is independent of the phase and 
normalized frequency offsets po and fo (but not f D )  in a model for the original time series x. The Allan 
variance AVAR(z0) is then calculated from y using 

where Efy:] denotes the sample expectation (or arithmetic mean) of the elements y: derived from y. 

The Allan variance for a longer averaging time z=nzo may similarly be constructed using a second- 
difference operator a: that is a linear combination of the single space z = zo operator alT given above. For 
example, for the case n = 2: 
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1 - 2  1 0  0 
a i = ( l  o -2  o 1)=(1 2 I 

Let A2 be a band diagonal matrix with band defined by a2, and 

z = A2x. 

Because the second-difference operator a; is constructed as a linear combination of second-difference 
operators alT, the time series z is also stationary for the five well known noise types and linear frequency 
drift, and is independent of both the phase and normalized frequency offsets for the time series x. The 
Allan variance for the averaging time z = 270 is given by: 

1 AVAR(z) =-E[iz,?] 
2z2 

3.2 ALLAN VARIANCE FOR A NONUNIFORMLY SPACED TIME SERIES 

Let (XI, . . ., x6)T denote six consecutive (uniformly spaced) measurements of phase offset and consider the 
situation that the only values that are available are XI, x4, and x6. Here, x2, x3 and x5 denote “placeholders” 
for missing measurements. We can derive a second-difference operator a3; (the “3” and “2” represent the 
3- and 2-zo spacing between the measurements x1 and x4, and x4 and x6, respectively) as a linear 
combination of single spaced ‘I: = zo second-difference operators alT that has zero second, third, and fifth 
elements, as follows: 

( 1 - 2 1  0 0 0  

( 0 0  0 1 - 2 1  

The operator a32  is determined uniquely except for a multiplying scale factor that is chosen so that the 
“central” coefficient is -2 (as for the uniformly spaced second-difference operator a:). 

Now suppose that x is a time series for which the only available measurements follow the above 3- and 2- 
TO spacing, i.e., the available measurements are xl, x4, x6, x9, Xil ,  ~ 1 4 ,  etc. Let A32 be the matrix 

and 
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z is calculated only in terms of the available measurements in x. In addition, being a linear combination of 
single spaced z = zo second-difference operators alT, z is stationary for the five well known noise types and 
linear frequency drift, and is independent of both the phase and normalized frequency offsets for the time 
series x. 

For this time series we can also construct a second-difference operator a23T that applies to measurements 
exhibiting a 2- and 340 spacing, e.g., the measurements x4, x6, and x9. Applying both a3z’ and a2: 
operators to the available measurements in x gives the more natural counterpart to the analysis for a 
uniformly spaced time series where there is “overlap” between successive second-difference operators. 

T An expression for a general spacing of available measurements is given as follows. Let (XI, ..., XI+,+& 
denote measurements of phase offset for which the only values that are available are xl ,  xl+,, and xl+p+q, Le., 
the spacing between available measurements is z1 = po and 22 = qzo. A second-difference operator a,, , 
that is a linear combination of single spaced z = zo second-difference operators alT and operates only on the 
available measurements, is defined in terms of these measurements by: 

T 

T Now suppose, for a given time series x, that z contains all possible values z computed by applying a,, and 
aqp to x, i.e, from available measurements in x separated by z1 = po and 72 = qzo. Then we generalize the 
definition of the Allan variance for a uniformly spaced time series to be applicable to a nonuniform spacing 
as follows: 

T 

GAVAR(z, ,z ,)=-E[z~l 1 Z= Zo(P -I- 4 )  
2Z2 2 

In terms of its dependence on z1 and zl, this generalized Allan variance GAVAR(zI,z2) has the following 
properties: 

a) If 21 = z2 = z, then GAVAR(zl, z2) is identical to AVAR(z) with an averaging time z. 

b) The underlying time series z on which the GAVAR(zl, 7 2 )  variance is based is stationary for the five 
well-known noise types and for linear frequency drift. 

c) GAVAR(zl, 7 2 )  is independent of the phase and normalized frequency offsets for the time series x. 

Figure 1 compares values of GAVAR(zl, z2) with those of AVAR(7) for WPM, WFM, RWFM, and linear 
frequency drift (LFD). For various choices of p and q the ratio of GAVAR@co, go) to AVAR(z), with 
z = z~(p + q)/2,  is calculated and the figure displays values of this ratio as a function of r = p/(p + 4). As 
expected, when p = q (r  = %), the ratio is unity, showing that the two measures are identical. Furthermore, 
for p close to q, the ratio remains close to unity. However, as r departs from !h the ratio increases for 
WPM and decreases for WFM, RWFM, and LFD. The curves for RWFM and LFD are very similar. 
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Then, the modified Allan variance MVAR(z) is defined by: 

1 
MVAR(z) = -E[w:]. 2T2 

In a similar way, a modified Allan variance may be defined for a nonuniformly spaced time series. 
Consider the case of TWSTFT measurements made on the Wednesday (W), Friday (F), and Monday (M) 
of two consecutive weeks. Two Allan variance second-difference operators for the available TWSTFT 
measurements are as follows: 

( z o o o o - 2 o  9 o o g o o  9 oJ  
and 

"1- [ ~ 0 1 0 0 0 0 - 2 0 0 0 0  1 
F M W F 

The first of these is for the spacing p = 5 and q = 4. The second is for the spacing p = q = 5 and is identical 
to a second-difference operator for a uniformly spaced time series with n = 5. The second-difference 
operator used as the basis of the calculation of a modified Allan variance for the TWSTFT measurement is 
then given by averaging these operators, viz., 

8 o o o o 2 0 0 0 - -  
9 

0 0 - 1 0 0 0 0 2 0  0 l o o 0  0 0 - 1  O 1  
(; q - 5  

=(-- 4 0 -- 0 0 1 0 1 0 - ~ 0 0 - f - j  
9 2 9 2 

Properties of a modified Allan variance for a nonuniformly spaced time series calculated in terms of such 
second-difference operators are under investigation. 

4 ESTIMATING STEPS IN TWSTFT TIME SERIES 

Delay steps of unknown magnitude may occasionally be observed in TWSTFT time series. These are 
usually due to the replacement of a failed component within the TWSTFT instrumentation. In some cases 
it is possible independently to determine the magnitude of a delay step, but usually, for example when the 
step is the result of changing a satellite transponder, this is not possible. We examine here a method to 
determine an estimate of the delay step from the time series of TWSTFT measurements. 

Figure 2 shows a time series of (UTC(NPL) - UTC(USN0)) TWSTFT measurements. Three delay steps 
of unknown magnitude are observed, at MJD 51968, MJD 51984, and MJD 52032. The first two of these 
steps are due to unknown transponder delay changes, while the third is due to a modem replacement. 
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matrix B contains in its first n columns the values at tl of basis functions $(t) used in the representation of 
the polynomial p(t ,  c), viz., 

and in each of its last three columns the value zero or one according to whether the offset d,,j = 1, 2, 3, 
appears in the (corresponding) ith model equation (5). One choice for the basis functions @,(t) are the 
monomials A'-', although it is preferable to use alternative functions that ensure the reliability of the 
numerical computations performed (see below). 

Formally, the solution to this problem is given by [2] 

b = (BTBr lBTx ,  

with covariance matrix 

V(b) = s2(BTB)-', 

where s2, the root-mean-square (RMS) residual error 

evaluated at the solution, estimates the variance of the WPM noise process. In practice, to ensure 
reliability of the computed results, the polynomial p( t ,  c) is expressed in terms of Chebyshev polynomial 
basis functions in a normalized variable [8], and the least-squares problem defined by (6) is solved using 
matrix factorization methods [9]. 

Using a 12* order (degree 11) polynomial to represent the data shown in Figure 2, the following results are 
obtained: 

dl = 14.8 ns, with standard uncertainty 1.3 ns, 

d2 = -28.5 ns, with standard uncertainty 1.6 ns, and 

d3 = -20.1 ns, with standard uncertainty 1.5 ns. 

In Figure 3 we show the time series of measurements together with the fitted polynomial curve following 
the removal of the unknown delay steps. 

Although polynomials can be effective for modeling time series of TWSTFT measurements, they will not 
always be appropriate. The use of polynomial splines [lo] provides a more general capability. 
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SUMMARY 

In this paper we have considered the least-squares analysis of measurements of the phase difference 
between two clocks or time scales, with the aim of determining estimates at any epoch of the phase offset 
between the clocks or time scales. We have focused on presenting approaches developed to overcome 
present operational constraints of TWSTFT, Le., the consistently but unevenly spaced nature of the time 
series of measurements, as well as the presence of occasional delay steps of unknown magnitude. To 
characterize the TWSTFT measurements, we have used second difference statistics that are calculated only 
in terms of the available measurements. In order to remove the unknown delay steps, we have modeled the 
measurements using empirical functions together with parameters representing the delay steps. 
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