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Abstract 

GPS timing plays a critical role in modern practice of time errors estimate and synchronization. 
Big noise of the GPS-based measured data and inherent non-stationarity of a time error cause 
major difficulties here. In spite of theoretical separation of tlie application fields for the filters 
(stationary and non-stationary signals), GPS-based time error processes require more explicit 
practical answer. Indeed, what process may be practically treated as a stationary one and, to 
opposite, how to recognize a non-stationary case? In this report we answer these questions by 
numerically and show that for the same transient time the following filter should be used to get 
the best accuracy for the known initial fractional frequency offset yo (time error rate) of oscil- 
lator, namely an average snzootlter for \ yo  I < r, , the Wiener filter for r, 5 (yo 1 5 r, , and the Kal- 

man filter for r2 < 1 Y o  1, where rl and r2 are coordinates dependent on the required accuracy. We 
prove this conclusion by the example of a time error estimate of the rubidium standard based on 
the reference tinting signals of the Motorola GPS UT+ Oncore Timing receiver. 

INTRODUCTION 
GPS timing plays a critical role in modern practice of time errors “on-line” estimate and synchronization. 
Major difficulties here are caused mainly by big noise of the measured data provided by GPS receiver and 
inherent non-stationarity of a time error. Statistically, once a random signal exhibits stationary nature, then 
the optimal Kolmogorov-Wiener approach (Wiener filter [ 11) is efficiently used and, conversely, the Kal- 
man-Bucy technique (Kalman filter [21) yields tlie best estimator for the non-stationary random signals. In 
spite of both approaches all cases, test and measurement still use an average 
smoother [3] owing to its transparency and sinall variance, and despite of an estimate bias caused inevita- 
bly by non-stationarity. 

evidentally covering 

Modern timekeeping systems employ all three filters. Observing them even in the past Proceeding of 
PTT1’99, we realize that, for instance, to detect the failure of a single satellite clock three different space- 
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segment timekeeping subsystems are designed [4]. Two subsystems use a direct average and the three-state 
Kalman filter is implemented in the third case,yielding the most accurate estimate as compared to the aver- 
age filters. In the synchronization algorithm for the WAAS network they are based on the two-state Kal- 
man filter [ 5 ] ,  providing a control error of 50ns. The same two-state filter was used in the new steering 
strategy for the USNO Master Clock[6]. Contrarily, while steering the cesium-based primary clock of the 
Geo Uplink Subsystem they employ an average smoother [7]. Finally, to estimate a time error of the master 
clock for the WAAS test transmissions the algorithm was designed based on the IIR digital filter of the 2"d 
order [SI, which may be considered as a non-optimal Wiener filter. 

The result is following, for rather the same quality master clocks and time errors the different estimators 
are used, and it seems obvious that aiming to obtain the smallest estimate and synchronization error, one 
must follow the rules to select the filter in the optimal way. To work the rules out for the GPS-based time 
error processes, first, we must realize what process may be practically considered as a stationary one and, 
conversely, how to recognize a non-stationary case? Finally, what type of the digital filters should be used 
to be the most accurate in practice for the certain transient time and known rate of change of a time error 
caused by the crystal oscillator, rubidium standard, cesium standard, or even hydrogen maser? 

In this report we answer the questions in the following way. We numerically study all three filtering algo- 
rithms based on an average smoother, the Wiener and Kalman filters for the same common transient time 
tl, taken as an average time of a smoother. We then simulate the GPS-based time error raidom process with 
a constant initial fractional frequency offset yo between reference and local oscillators and study the filter- 
ing errors for the proper yo . In this way we determine the ranges for y o ,  in which each filter exhibits a 
minimal either total (RMS variance plus mean bias) or a maximum error. We show that for the same t,, the 
following filter should be used to get the best accuracy, depending on yo : 

Average smoother is for the range of I y 0 l  < 

Wienerfilter is for r, I 1 
Three-state Kalman filter is for p; < l y 0  1, 

1 I r, , and 

where rl and r2 are determined for the total error as rlf and r2[, and for the maximal error as rlnl and r ~ , , ~ ,  re- 
spectively. Because processing time influences the error strongly then we study the errors for the different 
tl,, finding out correspondent dependencies y1,*( tr , )  and presenting the simple approximation function 
r, = all,;' , where i lt,2t,lm,2m, and a, is a constant. 

We, finally, consider the example of the filter selection to get the most accurate estimate of the time error 
of the rubidium standard with known yo employing the Motorola UT+ Oncore receiver. First, through the 
equality yo = art,;,' ' we establish the critical transients for the total and maximal errors, tCrl, , t,, 21 and t,, I,,I , 
t t , , , , l ,  respectively, and expect that an average smoother will give the smallest error for t,, <tr , , ,  or 
t,, < t ,,,,,, , the Wiener filter should be the most accurate for t f r l ,  < t,, < tlrZ1 or t ,,,, < t,, < t ,  2,,, , and, finally, 
the Kalman filter must be the best for tOzr < t, or t,,z,n < t ,  . As a matter of the fact we conclude that the 
methodology holds true at least for the considered case. 

MATHEMATICAL MODELS OF THE SIGNALS 
Consider mathematical presentation of a timing signal of local oscillator and a noisy time error. 
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An Oscillator Timing Signal 

A model of total instantaneous phase @(t) of oscillator is truly legalized in [9] as 
(1) 

where: Bo is initial phase offset, 
yo is the fractional frequency offset from the nominal frequency v,,, (mainly due to finite fre- 

quency settability of the clock), yo[ in ns/hour] = 3 . 6 ~  yo[in parts of lo"*], 
D is the linear fractional frequency drift rate (basically representing oscillator aging effects), 
cp(t) is the random phase deviation component. 

@(t) = Q o  + 2nv,, (I + y,)t + 7CDV,,,,t2 + cp(t), 

While subtracting from (1) the same type phase model of a reference source and then dividing the result by 
~ X V , ~ ~ ~ , , ~  , one comes to the time error error model 

In (2) one can also take that all the degradation sources yoJef, DJef, and cpJekt) of the reference source are 
negligible as compared to those of the clock under test. As a result, the x(t)  inodel reduces to the practical 
form of a time error of local oscillator 

A Noisy Time Error 

Basically, we measure a time error x(t)  in discrete time, providing values x, for discrete time points t ,  for 
the constant time interval A = tv - where v = 0, I ,  2, , . . . GPS-based measurements add a noise to a time 
error, which has a normal histogram, thus, may be modeled as a Gaussian noise. Both a time error and a 
noise are summed (3) allowing presentation of a measured noisy time error (observation) and a clock state 
with respect to (3) in the matrix form as follows 

5" = H"A" + %" ' 
A, = Av-lAv-I + nhv > 

(4) 
( 5 )  

where 5, is a measured noisy time error (observation), 3Lv is 3-dimensional oscillator (clock) state vector 
(time error, frequency, and aging), H, is 1x3 dimensional measurement matrix, A, is 3x3 dimensional 
clock state transition matrix, nov and nhv are jointly independent white noises with zero expectations and 
covariances V, and Y, of 3x3 dimension, respectively, 

vv = w,,n,T,)  3 (6) 
Y = E{n,,n~,) .  (7) 

(8) 

In discrete time the model (3) is transferred to the form of 

where y ,  = yv-l + Dv-lA + nYv ; D,, = D,,-, + nDl, ; and n,, , nYv , and nDv are correspondent discrete noises. 
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Correspondingly, (8) allows writing all the matrixes for (4) and ( 5 )  as 
1 A A2J2 

A,, = y,, 7 A,, = 0 1 1 7  nx,, =[:i,]7a11d H 1 ~  ‘1, (9) [:] (I) 
present (4) in a form of 

and describe the noise matrix (7) as 
5, =x, +no,, (10) 

Y, = E{n,,n~,} z S,,A (1 1) 

where S,, is two-side spectral density of a continuous white noise of aging depending on A [ 101 and ex- 
pressed through the time error noise straightforward. 

ESTIMATION OF A TIME ERROR 
Consider the three statistical algorithms, namely an average smoothing, Wiener’s, and Kalman’s. 

Average Smoother 
Average smoother allows a non-optimal estimate i,, of a time error x v  (in a sense of a minimal RMS error) 
based on an observation tV (1 0). The algorithm does not require any a priori knowledge about an oscillator 
state model, time error, and even an observation and is straightforward 

where 5, = 0 if v < 0, N is number of average points. According to (12), the first estimate appears with 
delay on Npoints of the process, thus, a filter transient time equals t,, = A(N - 1) . 

Wiener Filter 

In discrete time domain the realizable Wiener filter provides estimate through a convolution of its iinpulse 
response h, and an observation (10) 

where 5, = 0 if v < 0, Mdetermines the length of h, that is taken to be equal zero apart the time interval 0, 
. . ., (M-1)A. To get a minimal RMS error for estimate, first, in the tradition of Wiener define an optimal 
unrealizable response H,,, = S,, /(Sxk + S R o ) ,  where S,  is discrete power spectral density of a time error 
(oscillator phase) that in spirit of Leeson [ 1 I]  is taken here as S ,  = a&’, where fk is Fourier frequency; a 
is a constant; S,lo is constant power spectral density of a white noise; k = 0, . . . , K- 1 , and K limits the length 
of the time error sequence taken at the early stage to estimate the spectral densities with enough accuracy. 
Then use a proper approximating filter with response H k  exp(j$,) and come through the inverse discrete 
Fourier transform to the optimal impulse response h,, of a realizable filter 
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h,, = B@-‘ {Hke ’h }, (’4) 
where B is a constant. In our experiment we increase (reduce) the level of Silo, increasing (reducing) in 
this way a filter transient time. 

Kalman Filter 

The three-state Kalman filter is matched with a clock model ( 3 )  [12], allowing the following algorithm for 
(4) and ( 5 )  to get estimates in discrete time 

where a filter gain is defined as 

where Rv = Av-lRv-lA~-, + Y , is a matrix of predicted errors, and the filtering errors are calculated as 

A A 

A, = A v - l L l  + u t ,  - H v A v - l L , ) ~  (1 5) 

(1 6) 

(1 7) 
where I is a unit matrix. Transient of the on-line operating Kalman filter is due to time expended to get 
estimate (17). It may be varied around the optimal value by changing S,,, in (I  l), so that since S,,, rises 
then t,, decreases, and vice versa. The total filtering error rises once transient is a non-optimal. 

- 
K, = R,H: (H,R,H: + V J ’ ,  

N 

Rv = (I - K,H,)R, , 

NUMERICAL STUDIES OF THE FILTER ERRORS 

All three filters, namely an average smoother (12), Wiener’s (1 3 ) ,  and Kalman’s (1 5), are examined here 
for the same time error process. To show the effect, the noisy process ( 3 )  is simulated with variance G = 
4011s and with both a stationary part of a deterministic function (0 I t < 25 hours), in which case 
x, = yo = D = 0 in ( 3 ) ,  and a non-stationary part (25 5 t hours) with yo = -2.1 0-l’ = -7.2 ns/hour and D = 0. 
Because we consider a transient time as a principal performance of a filter, then, to know trade-off, we ob- 
tain the same tt, = lohours for all three filters. While providing, the transient of a smoother was evaluated 
by its average time t,, = A(N -1) and that of the Wiener and Kalinan filter finished at the level of 0 9. 
Figure 1 shows the simulated processes and estimates extracted by the filters. Figure 2 gives correspondent 
errors calculated as difference between estimated and simulated functions 

(1 8) 
Just as it had been expected based on the filter strategies for the dynamic range (25hours < t), the Kalman 
filter showed the smallest error, the Wiener filter was less accurate, and, the smoother stayed hors-concours 
with its biggest error. Conversely, for the range of a stationary noisy error (t < 25hours), the smoother was 
the best, the Wiener filter exhibited more big error, and the Kalinan filter loolied like the worst. Neverthe- 
less, it is obviously speaks in favor of the Kalman filter that its error remains say rather the same for the 
both stationary and non-stationary ranges (Figure 2). 

E, = X” -x, . 

Excited by the curiosity of the different filtering errors for the stationary and non-stationary processes with 
the constant transient, we come to another experiment, while simulating only a non-stationary process and 
evaluating (1 8) for &,. = const and various yo by the total filtering error 
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and the maximal filtering error 

Before going on to analyze the results, let us study Figure 3, which shows the total (a) and maximal (b)  
errors as functions of yo for tt, = 6hours for all three filters. There an average smoother yields the smallest 
total error for yo < rlf = 1.57x10-13, the Wiener filter is the most accurate for rlt = 1 .57~10- '~  <yo < r2/ = 

4 035~10- '~ ,  and the Kalman filter is for rZ1 = 4 .035~10- l~  < yo. The same filters provide the smallest 
maximal error for the ranges ofyo < rlnl = 7.59x1O-l3, rln7 = 7 . 5 9 ~ 1 0 - l ~  <yo < r2nl = 9.22~10- '~,  and rZnl = 
9 22x <yo, respectively. We then estimate coordinates r l l  , r2/ , rlnl , and rlnr by changing tr, , and come 
to the correspondent dependences (Table 1). 

E m a x  = maxiEvi . (20) 

Yo 
3 0  

4 5  

6 0  

7 5  

9 0  

10 5 

12 0 

13 5 

15 0 

16 5 

18 0 

Table 1 

Transient, Measure Total error coordinates Maximal error coordinates 

- -  
1.804 4.054 8.28 I 1.376 

The curves provided in this way (Figure 4) were noisy because of different length-limited samples of the 
simulated random process. Nevertheless, it seems obvious that the following approximating function 
G x t6' is accurate enough to be used in practical calculations for each coordinate. We approximate those 
as follows 

(21) 
and use (21), while considering the below-given example of the filter selection for the GPS-based time er- 
ror process generated by the rubidium standard. 

r,, 2.3 x t[;' , r2, ; 6.0 x til , rlr,l 2 11 x t i '  ', and rlrn z 15 x tf;I ' , 

162 



EXAMPLE: FILTER SELECTION FOR THE GPS-BASED 
TIME ERROR OF A RUBIDIUM STANDARD 
Measurement of the time error of the rubidium standard had been carried out based on the Motorola GPS 
Timing Receiver Oncore UT+ with average time A = 100s for about 30 hours with the initial error of 
x, z 2.1 ns and offset yo s -4.7 ndhour = -1.3 x lo-’’ . To separate the ranges for each filter, substitute the 
known yo for each coordinate in (2 1) and come to the following prediction: 

For the total error (19) 
If t,? < 1.455hours then an average smoother should be the most accurate 

If 1.455hours < t ,  < 2.757hours then the Wiener filter should be the most accurate 
If 2.757houvs < t,, then the three-state Kalman filter should be the most accurate 

For the maximal error (20) 
If t,, < 4.129hours then an average smoother should be the most accurate 

If 4.129hours < t ,  < 5.078hours then the Wiener filter should be the most accurate 
If 5.078hours < t, then the three-state Kalman filter should be the most accurate 

Then tune the filters step by step for several transients to satisfy the above-determined conditions and esti- 
mate total (1 9) and maximal (20) errors (Table 2). 

Table 2 
TOTAL AND MAXIMAL ERRORS OF THE FILTERS FOR THE DIFFERENT TRANSIENT TIMES 

hours Smoother Wiener Kalman Smoother Wiener Kalman 
___ ttn Total error, ns Maximal error, ns 

An analysis of Table 2 shows that just as it had been predicted the three-state Kalman filter allows the 
smallest both total error for 3.0hours 5 t,,. and maximal error for 4.5hours I t,, . The Wiener filter exhibits 
the smallest those errors for 2.2hours = t,, and 3.0hours = t,, , respectively. An average smoother gives the 
smallest both those errors for t,, I 1 .Ohours and t,, i 2.2houvs, respectively. In the range of t,, I 1 .Ohour 
we watched also for the small error of the Wiener filter. This is because of the limited processing sequence 
available with small average time. Thus, we have proved in this way the above-given methodology gener- 
alized by Figure4, except the case of tl, = l.Ohour, and, finally, to illustrate the real filtering process, we 
briiigFigures 5-8, those show four cases of a time error estimate provided by all three filters. 
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CONCLUDING REMARKS 

1 

0 Foryo E lo-” (crystal) the three-state Kalman filter is the most accurate once ttr > lhour 

(crystal or rubidium) then an average smoother is accurate for tlr < Shows, the 
Wiener filter is for Shours < ttr c: 6hours, and the three-state Kalman filter is for 6hours < ttr 
Once yo 2 

0 For yo I (cesium and hydrogen) an average smoother is accurate for tfr < 24hours 

The results are readily extended to the general case, including aging. Just account the maximally possible 
frequency offset of your oscillator for the measurement (observation) and follow the above-given methodol- 
ogy, for which more satisfactory justification we plan to revise the results further analytically. 
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Figure 1. Simulated error, noisy observation, and estimates provided by the average smoothing, Wiener, and 
three-state Kalman filters for the stationary and non-stationary processes 
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stationary ranges (see Fig.1) 
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Figure 3. The total (a) and maximal (b) errors of the average smoothing, Wiener, and three-state Kalman 
filters as functions of the initial frequency offset yo 

10 

N .- 
0 .? 
ai 

.E 1 
-F 

* 
Q 

0 
0 
0 

C 
0 
P 

c) .- 
m 
.E 0 1  

2 
u) u) 

0 

o ni 
1 10 100 

Figure 4. 
Transient time it,, hours 

Coordinates rlt, rZt, rlm, and rzn, as functions of the filters transient time tr,, and correspondent 
approximating functions 

167 



- 
.............. 

T 
t 

30 T 50 

In 
C 

L" 

2 -50 
l;j 

ir 
E 
- 100 

-150 

Smoother 
Wiener 
Kalman + I 

20 

-10 

20 

Time, hours 

6) 

30 

Figure 5. Estimates for ttr = l.0hour (a) and filtering errors (b): the average smoother is the most accurate 

30 7 
.......... Smoother - Wiener 
___ Kalman 

In 
S 

i 

w 
2 
L 

2 
i= 

-100 

~ 150 
Time, hours 

b) 

k.++ -i -30 1 
L 

Figure 6. Estimates for ttr = 2.2hours (a) and filtering errors (b): the Wiener filter exhibits the smallest error 

168 



50 

fn 
C 

$ ,$ -50 

.- E 
I- 

100 

-150 

30 I 7 + 

20 -- 

-10 -- 

Smoother 
.............. Wiener - Kalman 

Tim e, hours 

Figure 7. Estimates for ttr = 3.0hours (a) and filtering errors (6): the Kalman filter is the most accurate 

50 

fn 
S 

L" e 
t 

F 
E" 

- 50 

- 100 

- 150 

I 7 
i 

fl) 

30 1 Smoother 
.............. Wiener - Kalman 

20 

10 
i 
e 
I3 
rn 
C 

a 
.- 
L 

+ - 
ii 

Time, hours 
1 - 30 

b)  
Figure 8. Estimates for tt, = 6.0hours (a)  and filtering errors (6): the Kalman filter seems obviously like the 

best estimator 

169f 170 


