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Abstract

GPS timing plays a critical role in modern practice of time errors estimate and synchronization.
Big noise of the GPS-based measured data and inherent non-stationarity of a time error cause
major difficulties here. In spite of theoretical separation of the application fields for the filters
(stationary and non-stationary signals), GPS-based time error processes require more explicit
practical answer. Indeed, what process may be practically treated as a stationary one and, to
opposite, how to recognize a non-stationary case? In this report we answer these questions by
numerically and show that for the same transient time the following filter should be used to get
the best accuracy for the known initial fractional frequency offset y, (time error rate) of oscil-

lator, namely an average smoother for 1 yo‘ <rp the Wiener filter for n< ‘ y0{ <7y and the Kal-
man filter for y, < } y 0’, where r; and ry are coordinates dependent on the required accuracy. We

Dprove this conclusion by the example of a time error estimate of the rubidium standard based on
the reference timing signals of the Motorola GPS UT+ Oncore Timing receiver.

INTRODUCTION

GPS timing plays a critical role in modern practice of time errors “on-line” estimate and synchronization.
Major difficulties here are caused mainly by big noise of the measured data provided by GPS receiver and
inherent non-stationarity of a time error. Statistically, once a random signal exhibits stationary nature, then
the optimal Kolmogorov-Wiener approach (Wiener filter [1]) is efficiently used and, conversely, the Kal-
man-Bucy technique (Kalman filter [27) vields the best estimator for the non-stationary random signals. In
spite of both approaches evidentally covering all cases, test and measurement still use an average
smoother [3] owing to its transparency and small variance, and despite of an estimate bias caused inevita-
bly by non-stationarity.

Modern timekeeping systems employ all three filters. Observing them even in the past Proceeding of
PTTI’99, we realize that, for instance, to detect the failure of a single satellite clock three different space-
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segment timekeeping subsystems are designed [4]. Two subsystems use a direct average and the three-state
Kalman filter is implemented in the third case,yielding the most accurate estimate as compared to the aver-
age filters. In the synchronization algorithm for the WAAS network they are based on the two-state Kal-
man filter [5], providing a control error of 50ns, The same two-state filter was used in the new steering
strategy for the USNO Master Clock|[6]. Contrarily, while steering the cesium-based primary clock of the
Geo Uplink Subsystem they employ an average smoother [7]. Finally, to estimate a time error of the master
clock for the WAAS test transmissions the algorithm was designed based on the IIR digital filter of the 2n
order [8], which may be considered as a non-optimal Wiener filter.

The result is following, for rather the same quality master clocks and time errors the ditferent estimators
are used, and if seems obvious that aiming to obtain the smallest estimate and synchronization error, one
must follow the rules to select the filter in the optimal way. To work the rules out for the GPS-based time
error processes, first, we must realize what process may be practically considered as a stationary one and,
conversely, how to recognize a non-stationary case? Finally, what type of the digital filters should be used
to be the most accurate in practice for the certain transient time and known rate of change of a time error
caused by the crystal oscillator, rubidium standard, cesium standard, or even hydrogen maser?

In this report we answer the questions in the following way. We numerically study all three filtering algo-
rithms based on an average smoother, the Wiener and Kalman filters for the same common transient time
t, taken as an average time of a smoother. We then simulate the GPS-based time error random process with
a constant initial fractional frequency offset y, between reference and local oscillators and study the filter-

ing errors for the proper y, . In this way we determine the ranges for y,, in which each filter exhibits a

minimal either total (RMS variance pius mean bias) or a maximum error. We show that for the same 7, the
following filter should be used to get the best accuracy, depending on y,:

» Average smoother is for the range of |y | <r,,
*  Wiener filter is for 1, <|y,|<r,, and
o  Three-state Kalman filter is for r, <|y,|,

where r; and r, are determined for the total error as ry; and ry, and for the maximal error as ry,, and ry,, re-
spectively. Because processing time influences the error strongly then we study the errors for the different
t,, finding out correspondent dependencies r,(t,) and presenting the simple approximation function
r,=a;>, where i =1¢,21,lm2m, and g; is a constant.

We, finally, consider the example of the filter selection to get the most accurate estimate of the time error

of the rubidium standard with known y, employing the Motorola UT+ Oncore receiver. First, through the
equality y, = a,t,° we establish the critical transients for the total and maximal errors, ¢,,,, ¢,,, and ¢

Hlm?

respectively, and expect that an average smoother will give the smallest error for ¢, <¢,, or

ol

t
t, <ty
the Kalman filter must be the best for ¢, <z, or ¢,,,
methodology holds true at least for the considered case.

MATHEMATICAL MODELS OF THE SIGNALS

Consider mathematical presentation of a timing signal of local oscillator and a noisy time error.

frim?

, and, finally,

the Wiener filter should be the most accurate for ¢, <¢, <t,,, Or t,, <t, <t

rlt trlm r2m

<t,. As a matter of the fact we conclude that the
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An Oscillator Timing Signal

A model of total instantaneous phase ®(¢) of oscillator is truly legalized in [9] as
D) =@, +2mv,,, (1+y, ) +nDv, t* + o), (1)
where: ®@j is initial phase offset,
Vo is the fractional frequency offset from the nominal frequency v, (mainly due to finite fre-
quency settability of the clock), yo[ in ns/hour] = 3.6x yy[in parts of 1073,
D is the linear fractional frequency drift rate (basically representing oscillator aging effects),
©(?) is the random phase deviation component.

While subtracting from (1) the same type phase model of a reference source and then dividing the result by
2mv,..» ON€ comes to the time error error model

D-D, H-0o,,0)
x(t):xo"'(yo_ymef)t"'* ftz‘*'(p( 0 f(" @)
2 27

nomt

In (2) one can also take that all the degradation sources yo,., D;e, and @,.f) of the reference source are
negligible as compared to those of the clock under test. As a result, the x(¢) model reduces to the practical
form of a time error of local oscillator

o0 3)

21V

nom

x(£) = x, +yot+§t2 +

A Noisy Time Error

Basically, we measure a time etror x(¢) in discrete time, providing values x, for discrete time points ¢, for
the constant time interval A= ¢, - f,.;, where v =10, 1, 2, .... GPS-based measurements add a noise to a time
error, which has a normal histogram, thus, may be modeled as a Gaussian noise. Both a time error and a
noise are summed (3) allowing presentation of a measured noisy time error (observation) and a clock state
with respect to (3) in the matrix form as follows

& =HA, +n,,; 4

by = A b, 0y, )
where &, is a measured noisy time error (observation), A, is 3-dimensional oscillator (clock) state vector
(time error, frequency, and aging), H, is 1x3 dimensional measurement matrix, A, is 3x3 dimensional
clock state transition matrix, r, and m,, are jointly independent white noises with zero expectations and
covariances V, and W, of 3x3 dimension, respectively,

V, = E{noJg,}» (6)

¥, = Efn,n;,} (M
In discrete time the model (3) is transferred to the form of

D
X, =x,_ +y, A+ AE—“-AZ +n,, )

where y, =y, +D, \A+n,; D, =D, +np,; and n,, n,, and 7, are correspondent discrete noises.
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Correspondingly, (8) allows writing all the matrixes for (4) and (5) as

x, 1 A AN/2 n,
A=y |-A, =0 1 A i, =|n, | adH =]l 0 0], )
D, 0 0 1 np,
present (4) in a form of
E, =%, +Hy,» (10)
and describe the noise matrix (7) as
0 0 0
¥, =E{n,nl}=S, A0 0 0 an
0 0 1

where S, is two-side speciral density of a continuous white noise of aging depending on A [10] and ex-

pressed through the time error noise straightforward.

ESTIMATION OF A TIME ERROR

Consider the three statistical algorithms, namely an average smoothing, Wiener’s, and Kalman’s.

Average Smoother
Average smoother allows a non-optimal estimate X of a time error x, (in a sense of a minimal RMS error)

based on an observation &, (10). The algorithm does not require any a priori knowledge about an oscillator
state model, time error, and even an observation and is straightforward

" |
- Y, 12
X, N €, (12)

i=v—~N+1

where £ =0 if v <0, N is number of average points. According to (12), the first estimate appears with

delay on AV points of the process, thus, a filter transient time equals ¢, = A(N ~1).

Wiener Filter

In discrete time domain the realizable Wiener filter provides estimate through a convolution of its impulse
response 4, and an observation (10)

B = ek, (13)

i=v—M +1
where & =0 if v <0, M determines the length of %, that is taken to be equal zero apart the time interval 0,

..oy (M-DA. To get a minimal RMS error for estimate, first, in the tradition of Wiener define an optimal
unrealizable response H, =S, /S, +S,,), where S is discrete power spectral density of a time error

(oscillator phase) that in spirit of Leeson [11] is taken here as S, = af,”, where f; is Fourier frequency; a

is a constant; Sy is constant power spectral density of a white noise; k=0, ..., K-1 , and X limits the length
of the time error sequence taken at the early stage to estimate the spectral densities with enough accuracy.
Then use a proper approximating filter with response H, exp(j¢,) and come through the inverse discrete

Fourier transform to the optimal impulse response /, of a realizable filter
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h, = B@ " {H e}, (14)

where B is a constant. In our experiment we increase (reduce) the level of § , increasing (reducing) in

no 2

this way a filter transient time.
Kalman Filter

The three-state Kalman filter is matched with a clock model (3) [12], allowing the following algorithm for
(4) and (5) to get estimates in discrete time

b= Ak, HKE LA R, (15)
where a filter gain is defined as
K,=R H.(HRH +V,)", (16)
where R, = A _ R, A’ +W_ isamatrix of predicted errors, and the filtering errors are calculated as
R, =(I-K,H,)R,, (17

where I is a unit matrix. Transient of the on-line operating Kalman filter is due to time expended to get
estimate (17). It may be varied around the optimal value by changing S, in (11), so that since S, rises

then f, decreases, and vice versa. The total filtering error rises once transient is a non-optimal.

NUMERICAL STUDIES OF THE FILTER ERRORS

All three filters, namely an average smoother (12), Wiener’s (13), and Kalman’s (15),are examined here
for the same time error process. To show the effect, the noisy process (3) is simulated with variance ¢ =
40ns and with both a stationary part of a deterministic function (0 < ¢ < 25 hours), in which case
x, = ¥, =D =0 in (3), and a non-stationary part (25 < ¢ hours) with y, = 2:10"% = -7.2 ns/hour and D = 0.
Because we consider a transient time as a principal performance of a filter, then, to know trade-off, we ob-
tain the same #, = 10hours for all three filters. While providing, the transient of a smoother was evaluated
by its average time ¢, = A(N —1) and that of the Wiener and Kalman filter ~ finished at the level of 0 9.

Figure 1 shows the simulated processes and estimates extracted by the filters. Figure 2 gives correspondent
errors calculated as difference between estimated and simulated functions

€,=X, —X,. (18)
Just as it had been expected based on the filter strategies for the dynamic range (25hours < ¢), the Kalman
filter showed the smallest error, the Wiener filter was less accurate, and, the smoother stayed hors-concours
with its biggest error. Conversely, for the range of a stationary noisy error (¢ < 25hours), the smoother was
the best, the Wiener filter exhibited more big error, and the Kalman filter looked like the worst. Neverthe-
less, it is obviously speaks in favor of the Kalman filter that its error remains say rather the same for the
both stationary and non-stationary ranges (Figure 2).

Excited by the curiosity of the different filtering errors for the stationary and non-stationary processes with

the constant transient, we come to another experiment, while simulating only a non-stationary process and
evaluating (18) for ¢,. = const and various y, by the total filtering error
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+ e~ (19)

and the maximal filtering error

: (20)

Before going on to analyze the results, let us study Figure 3, which shows the total (@) and maximal (b)
errors as functions of y, for #, = 6hours for all three filters. There an average smoother yields the smallest
total error for yy < ry, = 1.57><10'13, the Wiener filter is the most accurate for r, = 1.57x107" < Yo <y =
4 035x10", and the Kalman filter is for 75, = 4.035x10™ < y,. The same filters provide the smallest
maximal error for the ranges of y, < ry, = 7.59><10”13, Fim = 1.59x10" <y <1y = 9.22><1()'13, and 7y, =
922x107% < Yo, respectively. We then estimate coordinates ry, , 7y , F1, , and ry,, by changing 7, , and come
to the correspondent dependences (Table 1).

€ = max

max

SV

Table 1
DEPENDENCIES OF THE COORDINATES (FIGURE 3) ON THE FILTER TRANSIENT

Transient, Measure Total error coordinates Maximal error coordinates
hours rit rat Nm F2m

15 Yo, nshour 4032 11376 20.844 32.782
Yo 1.12x10" 3.16x10™" 5.79x10™ 9 106x10™?

30 1.804 4,054 L h 11.376
5.01x10"° 1.126x10"* 2.3x10™" 3.16x107

45 0984 207 3.996 - 6.091
2.733x10" 5.748x10™" 1.11x10™ 1.692x10™

60 o 0B65 . 1453 2733 3.318
1.57x10™"° 4.035x10™" 7.593x10™"° 9.217x10™"

75 10.3636 14506 1.878 2107
101x10™" 3.196x10"° 5.217x10"° 5.854x10"°

90 03 08028 14088 1.5329
8.36x10™* 2.23x10™ - 3.08x10™ 4.258x10™

105 02578 0.703 . 1038 1272
7.16x10™ 1.952x10™ 2.878x10"° 3.533x10™"°

120 0.2542 10.4896 14614 1.6718
7.06x10™ 1.36x10™"° 3,226x10™° 4.644x10™°

135 02031 04913 0.7423 0.9086
5.643x10™" 1.3647x10"° - 2.062x10™ 2 524x107°

150 G - 0.398 . 0.7636 - 0.7758
- 1.106x10™"° 2.121x107"° 2.155x107°

16 5 0.0295 0.3207 0583 0.6548
3.19x10™ 8.91x10™ 1.619x10™° 1.819x10™"*

18 0 m 0.2497 _ 05526 0.6073
- 6.937x10™" 1.54x10"° 1.69x10"°

The curves provided in this way (Figure 4) were noisy because of different length-limited samples of the
simulated random process. Nevertheless, it seems obvious that the following approximating function
G xt;'’ is accurate enough to be used in practical calculations for each coordinate. We approximate those

as follows
no=23xt,"%, r, 26.0x¢t,"°, 1, =11xs;' %, and 1, =15%¢,"°, @1

and use (21), while considering the below-given example of the filter selection for the GPS-based time er-
ror process generated by the rubidium standard.
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EXAMPLE: FILTER SELECTION FOR THE GPS-BASED
TIME ERROR OF A RUBIDIUM STANDARD

Measurement of the time error of the rubidium standard had been carried out based on the Motorola GPS
Timing Receiver Oncore UT+ with average time A = 100s for about 30 hours with the initial error of
x, = 2.1ns and offset y, = -4.7 ns/hour=—1.3x107"?. To separate the ranges for each filter, substitute the

known y, for each coordinate in (21) and come to the following prediction:

For the total error (19)
If ¢, <1.455hours then an average smoother should be the most accurate

If 1.455hours <t, <2.757 hours then the Wiener filter should be the most accurate
If 2.757hours <, then the three-state Kalman filter should be the most accurate

For the maximal error (20)
If ¢, < 4.129hours then an average smoother should be the most accurate

If 4.12%hours < t, <5.078hours then the Wiener filter should be the most accurate
If 5.078hours <t, then the three-state Kalman filter should be the most accurate

Then tune the filters step by step for several transients to satisfy the above-determined conditions and esti-
mate total (19) and maximal (20) errors (Table 2).

Table 2

TOTAL AND MAXIMAL ERRORS OF THE FILTERS FOR THE DIFFERENT TRANSIENT TIMES
ter, Total error, ns Maximal error, ns

hours Smoother Wiener Kalman Smoother Wiener Kalman
10 8367 8210 10 83 17.204 16626 36 363
22 9.429 8.225 9446 “14.447 14 842 18 088
30 10 447 8.677 8,279 15 536 14763 16 850
45 13 363 1025 6622 19 021 14 486 13.805
60 16 942 12.376 . 5306 26 099 16 204 12759

An analysis of Table 2 shows that just as it had been predicted the three-state Kalman filter allows the
smallest both total error for 3.0hours <t, and maximal error for 4.5hours<t,. The Wiener filter exhibits

the smallest those errors for 2.2hours=1t, and 3.0hours=t, , respectively. An average smoother gives the

2

smallest both those errors for ¢, <1.0hours and r, <2.2hours, respectively. In the range of ¢, <1.0hour

we watched also for the small error of the Wiener filter. This is because of the limited processing sequence
available with small average time. Thus, we have proved in this way the above-given methodology gener-
alized by Figure 4, except the case of 7, = 1.0hour, and, finally, to illustrate the real filtering process, we
bringFigures 5—38, those show four cases of a time error estimate provided by all three filters.
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CONCLUDING REMARKS

We have numerically examined in this report the errors of the three filtering approaches, namely an aver-
age smoothing, Wiener’s, and Kalman’s once they are employed to get “on-line” time error estimate in the
modern timekeeping systems. As a major result we present Figure 4, which, at first, practically answer the
question “What are stationary and non-stationary time error processes?” separating space for them left and
right, respectively, by correspondent curves. And, it is the most important, Figure 4 allows selection of the
filter type for the initial frequency offset y, (rate of change of a time error) and the filter transient ¢,. Based
on this, once interesting of the maximal filtering error, we conclude that the following filter seems to be the
most accurate depending on yy and ¢, , namely

e For yp = 10™ (crystal) the three-state Kalman filter is the most accurate once #, > 1hour

e Once yy = 10™** (crystal or rubidium) then an average smoother is accurate for £, < Shours, the
Wiener filter is for Shours < £, < 6hours, and the three-state Kalman filter is for 6hours <1,

e Foryy < 10" (cesium and hydrogen) an average smoother is accurate for #, < 24hours

The results are readily extended to the general case, including aging. Just account the maximally possible
frequency offset of your oscillator for the measurement (observation) and follow the above-given methodol-
ogy, for which more satisfactory justification we plan to revise the results ~ further  analytically.
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Figure 7. Estimates for #, = 3.0hours (a) and filtering errors (5): the Kalman filter is the most accurate

30 T
20|
@ 2 10
= [y
o e
S i
g 20 >
° £
E g
= i
,10 -
100 -
-20
-150 -
a0 4
)
30
[/}
c
w
[o]
=
[95]
[}]
£
I,—

-100

-150 1

Figure 8. Estimates for ¢, = 6.0hours (a) and filtering errors (b): the Kalman filter seems obviously like the

Filtering Error, ns

-L%g

e

U T

Smoother + + 4+

- RS
Wiener L _Ei,‘.
Kalman + +,
#H_lw _apn L
ot 30
a)

best estimator

169/170

Time, hours

b)

Time, hours

b)

Smoother
Wiener
Kalman

Smoother
Wiener
Kaiman




