
32nd Annual Precise Time and Time Interval (PTTI) Meeting

USING THE NETWORK TIME PROTOCOL
(NTP) TO TRANSMIT INTERNATIONAL

ATOMIC TIME (TAI)

Judah Levine
Time and Frequency Division and JILA

National Institute of Standards and Technology
And University of Colorado

Boulder, CO 80305, USA

David Mills
Electrical Engineering Department

University of Delaware
Newark, DE 19716, USA

Abstract

Although Coordinated Universal Time (UTC) is the time scale that is transmitted by almost all
time services, this scale is awkward to use in the vicinity of a leap second. Many computer systems
cannot represent the epoch corresponding to a positive leap second (23:59:60), and remain
synchronized to UTC by stopping the clock at 23.5959 for I extra second whenever a leap
second is to be added. This makes it impossible to assign unambiguous time tags to events that
happen during this period. In addition, computing the length of a time interval that includes a
leap second of either sign is d@icult because simply subtracting the two UTC time stamps at the
end-points of the interval does not account for the time interval occupied by the leap second itselJ;
To address these ksues, we have augmented the Network Time Protocol to allow a client system
to reconstruct TAI from UTC and a table of leap seconds. This time scale has no discontinuity
during the leap second. Intervals computed using TAI are unaffected by the additional time
occupied by the UTC leap second, and the TAI time scale provides an unambiguous time tag to
any event -- even one that happens during a UTC leap second. Although our solution is unique
to servers that support the Network Time Protocol, it could be adapted to other time services and
formats. Such systems could support time tags using either UTC or TM, and would signifiantly
reduce the problems that result from using UTC alone.

INTRODUCTION

The time services operated by National Metrology Institutes and timing laboratories generally transmit time

43 1

signals based on a local realization of Coordinated Universal Time (UTC). These local time scales, which are
identified as UTC(lab), are based on the UTC time scale computed by the International Bureau of Weights
and Measures (BIPM). Since 1972, the rate of the UTC time scale has been equal to the rate of International
Atomic Time (TAI), a time scale that is computed by the BIPM using a 1 worldwide ensemble of cesium
clocks and hydrogen masers. The rate of TAI, in turn, is determined by the length of the second, which is
defined based on the frequency of a hyperfine transition ip the ground state of the cesium atom. In addition
to serving as the basis for the definition of time, this transition frequency plays a central role in setting the
values for other fundamental constants of physics.

The length of the day computed using the current value for the cesium second is somewhat shorter than the
length of a day based on astronomical observations (specifically, the UT1 time scale). The difference is
currently about 260 ms (a fractional difference of about 3 x 1 Os); if this difference were left uncorrected, UTC
would gain somewhat less than 1 s per year relative to UTI. The rate of this divergence is increasing slowly.

This time divergence is bounded by introducing “leap seconds’’ into UTC so as to keep the absolute
magnitude of the difference between UTC and UT1 less than 0.9 s. (The leap second is not added to TAI, so
that the difference between UTC and TAI is exactly an integral number of seconds.) Since the length of a
UTC day is significantly less than the UT1 value, small variations in the length of the UT1 day do not affect
the sign of the difference. Therefore, leap seconds have always been inserted into UTC, and this is likely to
continue for the foreseeable future. However, the definition of the process also supports deleting seconds
from UTC, should that ever be necessary.

These leap seconds are usually added at the end of June or December; the most recent one was added to UTC
at the end of 1998, and the difference TAI-UTC became 32 s at that time. No additional leap seconds are
currently scheduled, although there will almost certainly be one announced during 200 1.

THE PROBLEM

The fast second of a normal UTC day is 235959, and the first second of the next day is 0O:OO:OO. When a
leap second is to be added to UTC, an additional second, whose name is 23:59:60,is inserted between these
two seconds. This procedure introduces two difficulties into timekeeping in general and computer-based
timekeeping in particular.

*

~
The first problem is that most computers keep time internally in units of seconds since some epoch (such as
0O:OO:OO 1 January 1970 UTC). (The conversion to and from other representations of the epoch is handled
by the routines that display the internal value.) There is no way of representing 23:59:60 in this system, and
most computer systems repeat the time value corresponding to 235959 instead. Although the internal clock
remains synchronized to UTC once the leap second is over, this solution effectively stops the clock during
the leap second and results in two distinct seconds having the same time stamp.

The second problem is that an interval that includes a leap second is physically longer than a normal
equivalent interval, but that difference is not reflected in a computation that simply subtracts the UTC time
stamps at the end points of the interval. Measuring the rate of some physical process using the difference in
UTC timestamps will therefore show a strange value whenever the interval includes a leap second. (This
problem is not unique to leap seconds - leap years introduce the same problem in people’s ages.)

432

THE SOLUTION

Since TAI has the same rate as UTC but has no leap seconds, applications that are affected by the two
problems mentioned above can address both of them using timestamps derived from TAI instead of from
UTC. Since these two scales always differ by an exactly integral number of seconds, it is a relatively simple
matter to compute one from the other once the value of the difference is known.

Although it would be possible to address these problems by switching digital time services to pure TAI, this
is not desirable for several reasons. In the first place, the resulting change would disrupt the thousands of
systems that are based on the existing UTC-based definition. In the second place, such a change would result
in a significant (and ever-increasing) difference between timestamps transmitted by the digital time services-
and normal civilian time, which will continue to be based on UTC to maintain its coordination with UTI.
Therefore, we have implemented a solution which continues to be based on UTC timestamps, but which also
contains the integer offset value between UTC and TAI to allow any client process to compute TAI as
needed. Our solution is based on the Network Time Protocol (NTP), but the principles could be adapted to
other protocols without great difficulty.

The solution we have implemented contains three independent components: (1) publishing the epochs of
past and future leap seconds, (2) transmitting this information from servers to their clients, and (3)
supporting combined UTC and TAI time stamps within the client itself We discuss the details of each
component in the following sections.

PUBLIC LEAP-SECOND TABLES

All of the public stratum-1 Internet time servers operated by NIST have a publicly-readable file that contains
information regarding all known leap seconds since the current system was defined in 1972. The name of the
file is leap-seconds.list, and it is in directory “pub”. (This filename is a link to a second file, located in the
same directory, which contains the leap second data. The name of this other file is leap-seconds.<timeval>,
where <timeval> is the time at which the file was last modified in units of seconds since 1900.0. This is done
so that users can detect when the file has been modified without actually having to read the file itself or even
retrieve it from the NIST server.) You can get the current version of this file using anonymous ftp to any of
our time servers. If you use a web browser, the URL would be: ftp://<tirneserver>/pub/leap-seconds.list.
The parameter <timeserver> is the name of any NIST-operated time server. (See our Web page
www. boulder.nist,gov/timefreg/service/time-servers. html for a complete list.) For example, you could use
the URL:

\

I

ftp://time-b.nist.gov/pub/leap-seconds.list

to get the current copy of the table of leap seconds.

The format of the table is described in the file itself. It is a simple text file. The symbol “#” introduces a
comment, which continues from that point to the end of the current line. A line starting with #$ is a special

433

comment line. The parameter on this line gives the last modification date of the filein NTP format (Le., as a
number of seconds since 1900.0). There will always be only one such #$ comment lines. The remainder of
the file contains leap second data, one value per line. Two consecutive data lines in the current file are:

3076704000 31 # 1 J u l 1997
3124137600 32 # 1 Jan 1999

The first value on each line is the epoch at which a new leap second was (or will be) introduced into UTC.
This parameter is expressed in seconds since 1900 - the timestamp format used by NTP. The second value
gives the difference between TAI and UTC starting at that epoch. The difference specified on each line is in
effect until the epoch given on a following line, or into the indefinite future if there is no subsequent entry.
(The remaining characters are a comment that gives the civil date corresponding to the epoch specified by the
first value.) In each case, the second parameter is to be added to a UTC time stamp to produce the equivalent-
TAI value. The correction affects only the integer-seconds portion of the NTP time stamp; the value of the
seconds fraction is always unchanged.

It is straightforward to compute the Modified Julian Day (MJD) number from an NTP time stamp. To
convert, divide the NTP timestamp by the number of seconds in 1 day, and add 15020, the MJD
corresponding to 1900.0. Thus 3 1241 37600/86400 + 15020=5 1 179, the MJD corresponding to 1 January
1999. AI1 of these computations can be done using integer arithmetic, so that there are no issues of round-off
or truncation.

The International Earth Rotation Service (ERS) in Paris is responsible for announcing leap seconds, and
NIST will modify the files on the servers as soon as we receive this notice from the IERS. Leap seconds are
normally announced several months in advance, and all of the NIST servers would normally be updated to
include the new leap second within one week of our receiving the announcement. It is extremely unlikely that
users would have less than one month of advance notice for an upcoming leap second.

TRANSMISSION FORMAT

Version 3 of the NTP time format (see RFC 1305) does not support any additional time parameters beyond
the UTC timestamps that are part of the basic protocol. However, the additional space needed to transmit the
difference between UTC and TAI is supported by the general format “extension fields” specified for NTP
version 4. These extension fields are in addition to (and are added at the end of) an unmodified
unauthenticated old-style timestamp packet, so that using them does not break previous versions of the client
software that does not expect them or know what to do with them. (However, an association that used the
version 3 authentication mechanism will not be compatible with a server that uses the new format to transmit
the UTC - TAI offset, since this offset value will be mistaken for part of the old-format authenticator. This
shouldn’t happen in principle, since a version-3 client does not know how to ask the server for these data,
and they are transmitted only if the client asks for them.)

\

‘

The extension fields defined in NTP version 4 are placed between a version 3 timestamp packet and a
terminating authenticator. Each extension field is a multiple of 4 octets (32 bits), and the total length of all
extension fields is rounded up to the next multiple of 8 octets (64 bits). Many different types of extension
field are defined. The most significant bit of the first octet always specifies whether the packet is a request

434

(0) or a response (I). The next bit is set in the response to indicate an error condition and is clear otherwise.
The remaining bits of this octet specify the version number of the protocol; the format described here has
been assigned a version number of 1. The second octet specifies the type of the request and the next 2
specify the length of any associated data. The type that is relevant to this discussion is “TAI leap second
table.” The details of the format are in [I].

To request the leap second table, a client sends a “TAI leap second table” packet (currently this is type 8) to
the server with the response bit cleared (thereby indicating a request for data). The server responds with a
table of 32-bit time stamps giving the times in NTP format when a leap second was (or will be) inserted. The
table is in reverse chronological order - the time of the most recent leap second is transmitted first. The TAI
- UTC difference associated with each of these time stamps is inferred from the transmitted length of the
table, using the fact that the offset was 10 seconds when the current leap second system was instituted in
1972 and must be increased by 1 s at the time specified by each subsequent entry. In addition, the response
contains a timestamp showing when the table was generated. If the first entry in the response is less than this
value then this entry specifies the current TAI - UTC difference. If the first entry is greater than the file
timestamp, then the first entry represents a future leap second that has been announced,but whose effective
date has not yet arrived. Normally, the current offset is one less than the value inferred from the table length,
and the next entry will give the effective date of the current TAI-UTC time difference. If the server is not
synchronized to an authenticated source then the timestamp field is 0.

The extension field is terminated with a message authenticator code (MAC), which is designed to guarantee
the provenance of the data. The authenticator is a message digest of the entire packet, and is computed using
a 32-bit key value. Both symmetric-key and public-key methods can be used to authenticate the messages.
The details are in [2]. While the authenticator is optional for a simple NTP time packet, it is required when
an extension field is present.

This implementation depends on two assumptions: (1) that leap seconds are always integral values and (2)
that all leap seconds will be positive. Both of these are basic to the current definition of UTC, but neither is
a fundamental unchanging truth. The first assumption was not true before 1972, for example, and this
method cannot be used to represent dates before 1972 for that reason. The second assumption might change

UTC were altered. This is not very likely in the short term, but neither the cesium definition nor the current
method of calculating UTC will live forever.

I if the current definition of the second changed, or if the way that definition is used to construct TAI and

CLIENT IMPLEMENTATION

The leap second table changes very slowly, and a client only needs to query a server infrequently - during a
cold start and once a month or even less often during steady-state operation. Furthermore, a client could
update its internal notion of the current offset value by incrementing it (or, in some future implementation,
conceivably decrementing it) each time it executed its special internal leap second code. There are two
different implementations, depending on how the client realizes the leap second.

If the client implements the leap second by stopping its clock for one extra second at a time that is equivalent

435

to 23:59:59, then it must increment the TAI - UTC difference at the start of the second copy of this second.
Thus,the internal state of the system would be:

UTC Time System Time TAI-UTC value
2 3 : 5 9 : 5 8 2 3 : 5 9 : 5 8 N
2 3 : 5 9 : 5 9 2 3 : 5 9 : 5 9 N
2 3 : 5 9 : 6 0 2 3 : 5 9 : 5 9 N + l (the leap second)
oo:oo:oo oo:oo:oo N+ 1
0 0 : 0 0 : 0 1 0 0 : 0 0 : 0 1 N+l

This is the more common case. On the other hand, if the client implements the leap second by stopping its
clock for one extra second at a time that is equivalent to OO:OO:OO, then it must increment the TAI - UTC
difference at the start of the second copy of this duplicated second. The internal state of the system in this.
case would be:

UTC Time System Time TAI-UTC value
2 3 : 5 9 : 5 8 2 3 : 5 9 : 5 8 N
2 3 : 5 9 : 5 9 2 3 : 5 9 : 5 9 N
23: 5 9 : 60 0 0 : 00 : 00 N (the .leap second)
oo:oo:oo oo:oo:oo N + l
00:00:01 0 0 : 0 0 : 0 1 N+ 1

The timestamp in the leap second file that is associated with this event is the value corresponding to the UTC
time of 0O:OO:OO - that is, the first second after the leap second has been inserted. Based on the previous
tables, a client process that uses the first method must increment its internal value of TAI-UTC when its
internal clock reads one second before the time in the table (for the second time), while a client that uses the
second method must increment its internal counter one second after the value of its internal clock reads the
time in the table (for the first time). If the internal implementation includes a special flag which is set to
indicate that a leap second is currently in progress, then the TAI - UTC difference can be incremented when
that flag is set. In each case, the goal is to realize a time scale that does not show any discontinuity (either in
time or time interval) across the leap second.

Since maintaining the system clock is a kernel function in all operating systems, the easiest way to
implement these strategies is to modify the kernel clock software and to add the additional location that holds
the TAI - UTC time difference in the kernel address space. This is usually straightforward in principle,
although it requires the source code of the kernel to realize it.

*

It is also possible to realize this system without modifying the kernel by defining a system-wide overlay to
the kernel clock. This is obviously less desirable in principle and has not been done to our knowledge.
Another solution (which was used in many older systems) is to implement the time adjustment associated
with a leap second by adjusting the effective frequency of the system clock, thereby slewing the system time
over some interval in the vicinity of the actual leap second. Since the maximum slew rate supported by most
kernels is of order 0.1% or less, a system that implements this method will require several minutes to
accommodate the leap second, and its clock will be wrong by a varying fraction of a second during this
interval. The only advantage of this implementation is that it produces a system clock that never goes
backwards, so that there is no problem with timestamps that violate causality. Since the system clock moves

436

backwards for only 1 second in the other implementations, this is not a strong enough advantage to outweigh
the problem that the clock is wrong for several minutes following the leap second.

The final aspect of the client implementation is the method that is used to provide the TAI - UTC time
difference to a user process. In order to maintain backward Compatibility with applications that do not use
this parameter, most implementations provide a separate system call which provides both the UTC
timestamp and the TAI-UTC offset as part of a single structure. It is then a simple matter for any client
process to compute the TAI timestamp. A client process that uses UTC timestamps simply ignores the TAI -
UTC offset parameter.

SUMMARY AND CONCLUSIONS

We have designed a system that can support simultaneously transmitting both UTC and TAL A client
process can use either or both of these time scales as appropriate - UTC where compatibility with other
services or legal traceability is required and TAI where smoothness of time intervals and monotonic time
stamps are more important. This dual system is fully compatible with the previous implementation of the
Network Time Protocol, and servers that support these new capabilities can simultaneously provide
timestamps in the old formats. Although our system is designed around the Network Time Protocol, it can
be readily adapted to other formats. In particular, the list of leap seconds is publicly available from all of the
NIST time servers, and access to this list does not depend on the Network Time Protocol or on the details of
the system used by the client to realize its internal time scale.

Even when the system fully supports the additional machinery for the TAI - UTC time difference,
applications that reference the system clock directly without using the TAI correction will continue to
operate in UTC as before. While these applications will use timestamps that are fully compatible with other
civilian time services, they will have to cope with the discontinuity in time and in time interval in the
immediate vicinity of each leap second. In particular, timestamps that are internal to the operating system
(the modification time of a file, for example) will continue to be expressed in a time scale derived from UTC.

Finally, we note that the user interface to the clock on most systems is designed so that consecutive requests
for the system time will produce responses that are monotonically increasing - even if the increase is only 1
in the least significant bit of the response. This design goal cannot be completely consistent with the
methods described above that are used to realize a leap second, although the resulting time offset is almost
always too small to be significant.

*

~

REFERENCES

[11 David Mills, “Public Key Cryptography for the Network Time Protocol,” Internet Draft, Draft-ietf-stime-
NTPauth-OO.txt, June 2000. Available on the Web at www.eecis.udel,edu/-mills/memos.htm.

[2] David Mills, “Public Key Cryptography for the Network Time Protocol,” Electrical Engineering Report
00-5-1, May, 2000, University of Delaware Electrical Engineering Department. Available on the Web at
www.eecis.udel.edu/-mills/reports.htm.

437

Questions and Answers

RICHARD SCHMIDT (USNO): Is it possible that your table could be limited to just two
lines? Is it possible that your cache table of leap seconds could be limited to just two lines
rather than the full historical table to limit the amount of data that you transfer?

JUDAH LEVINE: There are only 20-odd leap seconds, so the table is going 20 inches long.
Generally speaking, you are almost never going to be interested in historical value. You are
going to want the current value, and maybe the next value. So, I would guess the table entry
is maximum 20-something inches long and, more likely, 2 inches long. And that’s it. I think
in our lifetime, there’s going to be 100 leap seconds, at most. After that, it is going to be
somebody else’s problem.

ROBERT LUTWAK (Datum): I have a question from the perspective of other manufacturers
who are building NTP servers who need to receive advance notice of the leap seconds. It-is
not unlikely that they may start to rely on this table as a way of getting advance notice of the
leap seconds. In which case, maybe instead of just having it be a NIST incorporation in some
extension fields, it really needs to be built into the standard of NTP. So when the manufacturers
build it into hardware, they can rely it for the future.

LEVINE: I agree with you at the 100% level. That is somewhat beyond my power to do. All I
can say is that the extension field concept is built into the standard for NTP. The idea of using
the TAI leap second offset is built into Mills’s documentation of the standard. The tables are
there, and obviously, we encourage other people to do it as well. We’re not an enforcement
agency.

But yes, it would be nice if this became an official standard, and we can only propose it in
order for it to become an official standard. But we are committed to maintaining the system
as prescribed. If you look at Mills’s documentation, you can see the details of how these are
defined. They are fundamental to NTP Version 4 because they are used for other purposes.
That is, they are part of the authentication and the digital signature system. So there are many
types of extension fields besides this issue of leap seconds. There is a lot of other stuff, there
are a lot of other capabilities that you might need an extension field for.

DENNIS McCARTHY (USNO): Two things. One, I would just like to say that I agree that
this would go a long way towards helping some problems. But it still doesn’t alleviate the basic
fundamental issues. So I didn’t want people to have a feeling that this solves all the problems
and now we can go on.

LEVINE: No, I didn’t mean that at all.

McCARTHY: Yes, but I think it does help some of our software users that complain about
UTC.

The other thing I was wondering is what about the possibility of having this table actually be
maintained by something like IERS or BIPM or something like that where this would be an
international conventional table of some sort. You know, you wouldn’t have to worry about
somebody updating it; it would just be there at the IERS or BIPM.

LEVINE: I think that is a fine idea. I would do everything I could to encourage whoever
wanted the table to take the table. It’s there, it’s available by public ftp from our servers. If
anybody thinks it is useful, go for it.

McCARTHY: Yes, we will have an IERS directing board meeting in 2 weeks or something. I
was thinking that maybe we could even bring that up for discussion.

438

LEVINE: That’s fine. Now, the only thing that is somewhat special about this table is that its
time stamps are in NTP format. And so, if you want to convert them-to Julian day numbers,
you divide by 86,400 and add 15020, and we all know how to do that. And that’s all it would
take.

WLODZIMIERZ LEWANDOWSKI (BIPM, France): I would like to add that the BIPM could
come to such a table. That could be discussed during the next CCTF meeting, and the dates
are now official. It will be held on June 20 and 21, 2001. So I believe that the leap second will
again be a subject of CCTF, and such issues that you have raised here could also be discussed.

439J440

