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Abstract 

In Global Navigation Satellite Systems (GNSS), the on-board time has to be modeled and predicted 
in order to broadcast the time parameters to final users. As a consequence, the time prediction 
performance of the on-board clocks has to be characterized. 

In order to estimate the time uncertainty of the on-board oscillator, a linear or parabolic fit 
is performed over the sequence of observed time difference and extrapolated during the prediction 
period. In 1998 the Centre National d’Etudes, Spatiales (CNES) proposed specifications of orbit 
determination and time synchronization for GNSS-2. The needs of synchronization were specwed 
as the maximum error of the time difherence prediction from the extrapolated fit. 

Using our work about the estimation of uncertainties in time error extrapolation, we have 
translated these time domain specifications into a noise level limit or a n  Alan deviation limit. Of 
course, these limits depend on the main type of noise for integration time of about 1 day and on the 
type of adjustment which is performed (linear for cesium clocks and quadratic for other oscillators). 

A table summarizing these limits is presented. These values are compared to experimental results 
obtained with different types of oscillators (quartz, rubidium, and cesium). 

INTRODUCTION 
In Global Navigation Satellite Systems, the on-board time has to be ‘modeled and 
predicted in order to broadcast the time parameters to final users. As a consequence, 
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the time prediction performance of the on-board clocks has to  be characterized. 

In order t o  estimate the time uncertainty of the on-board oscillator, a linear or parabolic 
fit is performed over the sequence of observed time difference and extrapolated during 
the prediction period, i. e. when the satellite is out of visibility. In 1998, CNES pro- 
posed specifications of orbit determination and time synchronization for GNSS-2. The 
needs of synchronization were specified as the maximum error of the time difference 
prediction from the extrapolated fit. 

The question is then: how is this maximum error related to  the noise levels of the 
clock? Despite several papers deal with this question [l, 2, 3, 4, 51, a new approach 
was chosen here because we are not only interested in the asymptotic trend of this 
maximum deviation, but also in its evolution close to  the interpolated sequence. 

In this paper, we will call Time Interval Error (TIE) the differences between the ex- 
trapolated parabola and the real time deviation ~ ( t ) .  By definition, the TIE  samples 
are then the residuals to  this parabola. However, in the following, we will limit the 
use of the word “residuals” to the differences between the interpolated parabola and 
the real time deviation ~ ( t ) .  

The TIE is due to two effects: the error of determination of the parabolic parameters 
and the error due the noise of the clock. Obviously, both of these errors may be 
positive or negative, and the ensemble average of the TIE is equal to  zero. Moreover, 
it can be easily shown that  the statistics of the TIE is Gaussian. Consequently, we only 
have to  estimate the variance of the TIE in order to completely define its statistical 
characteristics. 

Moreover, the removal of a quadratic fit from the time deviation sequence cancels out 
the non-stationarity problem of very low frequency noises [6, 71, and the variance of 
the TIE  (Le. the “true variance”) converges for all types of noise without considering 
a hypothetic low cut-off frequency. 

In order to determine an estimation of the TIE, we will already redefine the interpo- 
lation method. Then, we will compare the equations giving the theoretical estimates 
of the variance of the TIE  to  simulations and to  real data. 

ASSESSMENT PRINCIPLE OF THE INTERPOLATION AND 
EXTRAPOLATION ERRORS 
Interpolating Functions I 
Rather than performing a classical linear or quadratic fit, we used the Tchebytchev 
polynomials [8,  71: 

where e ( t )  is the noise, i.e. the purely random behavior of ~ ( t ) ,  {@o(t) ,@l( t ) ,@2(t)}  are the 
first 3 Tchebytchev polynomials and the parameters {Po, PI, P2) have the same dimension 
as ~ ( t ) ,  i.e. time. 

~ ( t )  = Po@o(t) + Pl@l(t) + P2@2(t) + e @ ) .  (1) 
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Estimation of the Residuals 

The variance of the residuals u,2 may be estimated by [S, 71: 

Correlation of the Samples , 
Obviously, the long-term behavior of the TIE depends greatly on the type of noise. 
The autocorrelation function R,(t) of the z ( t )  data  contains the information about this 
type of noise. The power spectral density (PSD) S,(f) is the Fourier Transform of the 
autocorrelation function E, ( t) .  

Taking into account fi, the low cut-off frequency and fh, the high cut-off frequency, 
the autocorrelation function may be written [7]: 

R,(tj - t i )  = S,(f) cos [27rf(tj - t i ) ]  df. l: 
We will use the power law model of S,(f): 

(3) 

Calculation Method of the TIE 
By hypothesis, we consider that  the TIE is the difference between the true time devi- 
ation z ( t )  at  time t, and the extrapolation of the parabola (previously estimated from 
t o  t o  tN-l) up to  this time t > tlv-1: 

TIE(t) = x(t) - e o a 0 ( t )  - fl1al(t) - tz@z(t)  and t > tN-1.  (5) 

Thus, the quadratic ensemble average of TIE may be estimated by: 

(TIE2(t)) = ( z z ( t ) )  + ($) @(t) + (F?) @?(t) + (3;) 
-2 [(s(t)?o) @ O W  + ( r ( t ) A )  @l(t) + ( z ( t ) A )  W)]  
+2 [(Foe+ @O(t)@l(t) + ( F o f i z ) @ o ( t ) @ z ( t )  + ( 9 A )  @ l ( t ) W ) ]  . (6) 

Consequently, for each type of noise, we have to  know: 

0 ( z z ( t ) )  = R,(t), the autocorrelation function of z ( t )  ; 

0 the  3 variances ( p ; )  = u& ; 

0 the  3 covariances (pipj) = Cov(Pi,Pj): actually, only (@z) # 0; 

0 the  3 covariances z(t)Pi = Cov (x(t),Pj). ( * >  
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THEORETICAL RESULTS 
Only the final results are given here, but the calculation details are available upon 
request t o  the authors. 

In the following, Tm designates the measurement time, i. e. the duration of the 
interpolated sequence: 

and Tp is the prediction time whose origin is the beginning of the extrapolated sequence 
(and the end of the interpolated sequence). 

T, = N T ~ .  (7) 

Case of a Quadratic Interpolation 
Variance of the residuals 

From (2) we got the following results versus T, = Nro: 

White FM : 

Flicker FM: 

0 Random walk FM: 

All the above equations were obtained under the assumption N >> 1, i. e. T, >> 7 0 .  

Estimation of the TIE using the noise levels 

The theoretical calculation of (6) yields the following variances versus the measurement 
time T, and the prediction time Tp: 

0 White FM: 

0 Flicker FM: 
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0 Random walk FM: 

All the above equations were obtained under the assumption N >> 1. Thus, under this 
assumption, the dependence versus N cancels out: the variance of the residuals only 
depends on the length of the interpolated sequence T,, and the variance of the TIE 
only depends on the ratio 2, whatever the number of samples N is. 

Case of a Linear InterpoIation 
Cesium clocks are not affected by a quadratic drift. If such clocks are used, we may 
limit the fit t o  a linear interpolation. In this case, for long term, the main contribution 
t o  the TIE will be due t o  the error on the parameter PI and then will be lower than 
for a quadratic interpolatian. It is then strongly recommended t o  extrapolate the time 
deviation of a cesium clock from a linear fit. On the other hand, the variance of the 
residuals will be higher because a quadratic adjustment remains closer t o  the time 
data  than a linear one. 

Variance of the residuals 

0 White FM: 

0 Flicker FM: 

0 Random walk FM1: 

All the above equations were obtained under the assumption N >> 1, i. e. T, >> 7-0. 

Estimation of the TIE using the noise levels 

0 Flicker FM: 

'The random walk FM is treated here for homogeneity, but a cesium clock is never affected by this type of noise. 
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0 Random walk FM1: 

All the above equations were obtained under the assumption N >> 1, i.e. Tm >> TO. 

Estimation of the TIE Using the Variance of the Residuals 
The relationships (11) to (13) and (17) to  (19) needs an explicit knowledge of the noise 
levels k,. However, for very-long-term interpolation (several days), we may be sure of 
the  dominant type of noise: the flicker FM for a cesium clock or the random walk FM 
for a quartz oscillator. 

Thus, the variance of the TIE may be directly estimated from the variance of the 
residuals. 

As an example, the variance of the TIE for a random walk FM and a quadratic fit 
may be rewritten from (13) and (10): 

(TIE2(Tm, T,)) M 2 4  

However, such a method is less precise than the use of a correct estimation of the noise 
levels. This is due to the statistics of the estimate of the variance of the residuals (see 
, sect ion " C 0 N F I D E N  C E IN T ERVA L S " ) . 

Relationships With the Time Variance 
The Time Variance (TVAR), and its square root, the Time Deviation (TDEV), are 
commonly used for time analysis [9]. Table 1 gives the relationships between the 
variance of the  residuals u," and TVAR(r) for an integration time T = Tm = Nro. It is 
interesting to  notice that ,  for a given type of noise, the ratio u,~/TVAR(T) is constant. 

EXPERIMENTAL VALIDATION 
Monte-Carlo Simulations 
In order to  verify the equations (11) to (13) and (17) to (19), we simulated time 
deviation sequences of different types of noise (white FM, flicker FM,and random walk 
FM) and we used quadratic and linear fits. For each type of noise, 10,000 realizations 
were calculated with 

0 the  same noise level: IC-2 = 1.4.  10d4s, k3 = 3 . 3 .  or IC-4 = 5.0.  10-l2s-l for the 
quadratic fit, le-2 = 3.5. 10T3s, k3 = 4.8.  or = 3.3. 10-lls-l for the linear fit, 
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0.30 
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1 

4[27ln(3) - 32ln(2)] 
0.51 0.18 
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315 
1 

231 
0.066 

- 

6r4k-4r3 
315 

2 
77 

0.16 

- 

Table 1: Comparison between the Time Variance TVAR(r) and the variance of the residuals u,” for different 
types of noise and for quadratic and linear interpolation. 

0 the same number of data: 65,536, 

0 the same number of data  taken into account for the fit: N = 8640, 

0 the same time of estimation of the TIE: Tm+Tp equals to  (8640, 9900, 11350, 13000, 
14900, 17000, 19500, 22400, 25700, 29400, 33700, 38600,T24300, 50700,58100,65535). 

The noise levels were chosen for getting a variance of the residuals equal to 1. 

Figure 1 shows the curves corresponding to the square root of equations (11) t o  (13) 
and (17) to  (19)compared to  the standard deviation estimated from the 10,000 simu- 
lations. The simulations exhibit a quite good agreement with the theoretical curves. 

The asymptotic behaviors are reached a t  the end of the log-log graphs. The benefits 
of the linear interpolation are obvious. 

Real Clocks (Quartz US0 and Atomic Clocks) 

Figure 2 compares the long-term behavior of a real ultra-stable quartz oscillator (de- 
noted “quartz l” in table 2) to  the bounds given by the estimated standard deviation 
of the TIE (the square root of Equations (11) to (13)). 

The da ta  from the oscillator are time deviations sampled with a sampling period TO = 10 
s, obtained a t  CNES Toulouse (France) with their own reference clocks (Cs H P  5071A 
option 001 and H-maser EFOS-16). 

Allan variance revealed that 2 types of noise must be taken into account: white FM 
(ho = s, i.e. k-2 = 2,5 + s) and random walk FM (h-2 = 1 , 5 .  s-l, i.e. 
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Clock 

Quartz 1 
Quartz 2 
Quartz 3 

R b  1 
cs 1 
cs 2 

u e  UTIE UTIE 
theo. exp. theo. 

(from h a )  
(ns) (4 (ns) 
1.4 7.1 6.2 
9.2 56.5 52.0 
11.0 55.7 59.0 
1.3 6.2 5.7 
1.6 5.5 5.5 
0.5 1.9 1.6 

h-z 1 h-i  TIE 
theo. 

(from ue)  

6.6 
56.0 
59.5 
7.1 
5.6 
3.0 

(4 ( s - l )  L 2.2. 10- 
1.4.10-29 
1.4.10-29 
1.2.10-31 

0 
0 

1.6.10-25 
6.4.10-25 

0 
0 

2.1. 

h0 

(4 
7.5.10-23 

0 
0 

5.3.10-22 
1.5. 
1.1.10-22 

h-i ho r e  n e  UTIE 
exp. theo. exp. 

(ns) (ns) (4 
0 1.5.10-” 2.0 2.1 4.1 

2.1.10-28 1.1.10-22 0.8 0.6 1.5 

(4 

Table 2: Comparison between measured and estim--ted values 
quadratic interpolation. 

UTIE UTIE 
theo. theo. 

(from h a )  (from r e )  

4.6 4.5 
1.4 1.8 

( n 4  (4 
I + 3.0.10-14 

‘Je 

exp . 

(4 
1.4 
9.6 
10.2 
1.2 
1.7 
0.6 

fu ,  a UTIE for several clocks with a 

Table 3: Comparison between measured and estimated values of ue and UTIE for two cesium clocks with a 
linear interpolation. 

k - 4  = 4 .  s - l ) .  Thus, the bounds of Flgures 2 were obtained by using the square 
root of the sum of (11) and (13). This fit was performed over a 24hour  sequence, but 
the interpolated sequence was shifted along the 90hour  data  sequence. At each step 
(ro ~ 1 0 s )  of this shift, the fit was extrapolated over 3.5 hours. The TIE  measured at 
this instant (T, =3.5 hours) was plotted (solid line) and the interpolated sequence was 
shifted again. 

The TIE  bounds of the left figure (dashed lines) were estimated from the noise levels 
as innfgure 2. In the right figure, the TIE bounds were estimated from the variance of 
the residuals, which was calculated at  each step of the shift. In this case, we assumed 
that  the random walk FM was dominant and we used the square root of (20). 

The experimental TIE curves remain generally in the theoretical bounds. The few 
moments where the TIE is outside the bounds is fully compatible with the statistics 
of TIE  (see next section). 

Table 2 shows experimental results obtained with several clocks and a quadratic in- 
terpolation. The noise levels were estimated from Allan variance measurements. This 
table compares “u, exp.? 
the estimate of ne obtained from the square root of ( 8 ) ,  (9), (10) and the noise level 
coefficients. 

This table compares also ‘‘VTIE exp.? the measured error between the parabola ex- 
trapolated over 3.5 hours and the real-time deviation of the clock at  this instant, with 

the standard deviation of the residuals, with (‘6, theo.7 

52 



“oTIE theo. (from k,)” estimated from the square root of (11)) (12), (13)) and with 
“UTIE theo. (from o,)” estimated from the square root of the expression using the 
variance of the residuals such as (20). 

Table 3 shows the same type of results but limited to  the cesium clocks and with a 
linear interpolation. 

Here also, the agreement between measurements and estimates is quite good. 

On the other hand,Table 2 and 3 confirm that  the standard deviation of the residuals 
is higher for a linear interpolation than for a quadratic one, whereas it is the opposite 
for the standard deviation of the TIE. 

CONFIDENCE INTERVALS FOR THE INTERPOLATION AND 
EXTRAPOLATION ERRORS 
Figure 2 shows that  the real TIE may be outside the bounds of the estimated (;TIE. 

Thus, it is important t o  know the probability for the real T IE  to  be inside or out- 
side these bounds. Moreover, it may be useful to  improve the TIE bounds by using 
confidence intervals. This may be achieved by studying the statistics of the TIE. 

We want to  obtain a coefficient cp ensuring the following confidence interval: 

-cp .&IE  < TIE(Tm, TP) < +cp . &TIE with ,B% of confidence. (21) 

By definition, cp follows a Student distribution with v degrees of freedom [lo]. Con- 
sequently, for,building the confidence interval (Zl), we have to  use the Student coeffi- 
cients for cp. These coefficients are given in tables [lo]. 
However, it is then necessary to  know the number of degrees of freedom of the Stu- 
dent distribution, or, and this is equivalent, the number of degrees of freedom of the 
x2 distribution followed by (TIE2(Tm, Tp)). Obviously, this number depends on how 
(TIE2(Tm,Tp)) is estimated, i. e. from the variance of the residuals or from the noise 
levels k,. 

Estimation From the Variance of the Residuals 

Equation (20) shows that  (TIE2(Tm,Tp)) is the product of a random variable 8: by a 
constant number. Thus, the distribution of (TIE2(Tm,Tp)) is the same as the distribution 
of $2, i. e. a x2 distribution. 

From Monte-Carlo simulations, we observed that the degrees of freedom of the distri- 
bution of 8: only depend on the type of noise but, curiously, neither on the number of 
da ta  N ,  nor the sampling period ro. 

We measured the following degrees of freedom v for the x2 distribution of 8: : 

0 White FM: v M 8; 

0 Flicker FM: v M 3; 

0 Random walk FM: v M 2. 



Table 4: Degrees of freedom of 6; and $TIE,  and confidence coefficients cp for 70% and 95% versus the types 
of noise [IO]. 

Therefore, the cp Student coefficient must be chosen with these degrees of freedom, 
according to  the type of noise. Table 4 gives these coefficients for a 70% confidence 
interval (10) and for a 95% confidence interval (20). 

Large Estimation From the Noise Levels 

In this case, the degrees of freedom of (TIE2(T,,Tp)) are equal to  the ones of the esti- 
mated noise level 1, and then depend on the accuracy of its estimation. For instance, 
if was estimated by using the Allan variance, its degrees of freedom depend on 
the length of the sequence and on the number of sample used by the Allan variance 
[ll, 121. If this sequence is long enough, the degrees of freedom may be much greater 
than the values obtained from the variance of the residuals. The degrees of freedom 
have to  be estimated at  each noise level measurement [ll, 121. 

Therefore, if the noise levels are precisely determined, the estimation of  TIE is far 
better by using this method than from the variance of the residuals. 

CONCLUSION 
The first application of this work may be the selection of clocks according to  their time 
stability performances. We may fix a limit for the maximum acceptable 6, and TIE  
for a given interpolation sequence and extrapolation time. Let us consider that  for 
an interpolated period Tm=24h and for an extrapolated time Tp=3.5h, we fix : 6, <2.1 
ns and TIE<5ns. The use of Equations (8) to  (13) allows us to  translate the above 
specifications into specifications on the noise levels ka (for instance, for a random walk 
FM, these specifications become k - 4  < 3.7 10-33s-1). Furthermore, these specifications 
may be translated again in term of Allan variance over 1 day (in the case of the 
random walk FM, it yields a,(24h) < 3 .  10-13). Thus, we can obtain a very simple 
criterion by using the Allan variance, ensuring that the specifications for 0, and TIE 
will be respected. 

Besides the interest of this method for navigation satellite systems, it may be used for 
defining a new method for very-long-term stability analysis. 

A clock may be continuously measured during a few days (e.g. a time deviation 
measurement with a sampling period of 1 minute during 10 days). From these data,  
the noise levels of this clock could be precisely determined and a quadratic fit could 
be carried out. Thus, if the clock is continuously running in the same conditions, it 
could be possible to  extrapolate the difference of this clock with the parabolic fit after 
a few months or ‘ 1  year. 
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This analysis could be helpful to  low-accuracy purposes of time keeping, for instance 
for industrialists who periodically send their clock to an accreditation laboratory, or 
for applications which need a large autonomy. 
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Figure 1: Comparison of the estimation of the standard deviation of the TIE calculated from the equation 
(ll), (12), (13), (17), (18), (19) (solid lines) and estimated over 10000 realizations of simulated noise for 
a quadratic interpolation (0, x ,  and 0 )  and for a linear interpolation (*, 0 and +). In order to use the 
same scale, the noise levels were defined in such a way that the variance of the residuals is equal to one 
(IC-2 = 1.4.  10-4s, k-3 = 3.3 loF8 and k-4 = 5.0. 10-12s-1 for the quadratic interpolation, IC-2 = 3.5. 10-3s, 
k-3 = 4.8. and k-4 = 3.3 . 10-lls-l for the linear interpolation). The error bars corresponding to 
the estimates of the simulated noises are too small to be plotted on this graph. The right plot shows the 
differences between the theoretical curves and the simulation points: the larger error is equal to 5% but most 
of them are below 1%. 
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Figure 2: Estimation of the TIE for an ultra-stable quartz oscillator. The fit was performed over a l-day 
sliding window. The TIE was measured 3.5 hours after the fitted sequence (solid line). The TIE bounds 
(dashed lines) were estimated from the noise levels (left) or from the variance of the residuals (right). 
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