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Abstract 

We describe a method based on the Total deviation approach whereby we improve the confidence of 
the estimation of the Hadamard deviation that is used primarily in GPS operations. The Hadamard- 
total deviation described in this paper provides a significant improvement in confidence indicated by 
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an increase of 1.3 to 3.4 times the one degree offreedom of the plain Uadamard deviation at the 
longest averaging time. The new Hadamard-total deviation is slightly negativdy biased with respect 
to the usual Uadamard deviation, and T values are restricted to less than or equal to T/3, to be 
consistent with the usual Uadamard’s definition. We give a method of automatically removing bias 
by a power-law detection scheme. We review the relationship between Kalman fiber parameters and 
the Hadamard and Allan variances, illustrate the operational problems associated with estimating 
these parameters, and discuss how the Uadamard-total variance can improve management of present 
and future GPS satellite clocks. 

1 INTRODUCTION 

Using a type of Hadamard variance, the goal of this paper is to reduce the uncertainty of long-term 
estimates of frequency stability without increasing the length of a data, run. For measurements of 
frequency stability, the two-sample frequency variance known as the Allan variance was generalized 
to an N-sample variaace weighted with binomial coefficients by R. A. Baugh [l]. The case of the 
three-sample frequency variance that is used here is the Picinbono variance [a] times $. However, 
in this paper, it will be called a Hadamard variance (following Baugh’s work) that is defined as 
follows. Given a finite sequence of frequency deviates { g n , n  = I , .  . . , Ny,,,}, presumed to be the 
measured part of a longer noise sequence and with a sampling period between adjacent observations 
given by TO, define the T = mT0-average frequency deviate as 

Let H,(m) = g,(rn) - 2&+,(rn) +jjn+2m(rn) be the second difference of the time-averaged frequen- 
cies over three successive and adjacent time intervals of length 7. Define the Hadamard variance 
as 

1 
HOy2(T) = 6 (H:(m)) , (2) 

where < . > denotes an infinite time average over n, and H O ~ ~  depends on rn. 
The GPS program office uses this particular time-series statistic for estimating Kalman al- 

gorithm coefficients according to  [3], which coefficients will be discussed in a later section. The 
Hadamard deviation H O ~ ( ~ )  is a function that can be interpreted Like the more efficient Allan de- 
viation as a frequency instability us. averaging time 7 for a range of frequency noises that cause 
different slopes 011 H O ~ ( T ) .  This is shown in figure 1. For estimating Kalman drift noise coefficients, 
H O ~ ( T )  is inherently insensitive to linear frequency drift and reports a residual “noise on drift” as 
a T; slope, or what is commonly called random run FM (FELFM). This is in contrast to the- Allan 
deviation, which is sensitive to drift and causes a T+’ slope. If the level of drift is relatively high, 
it masks the underlying random noise. It is customary to estimate and remove overall frequency 
drift. Depending on the method of drift removal, this procedure can significantly alter the Allan 
deviation in the longest term T region of interest, so estimating underlying noise can be a formi- 
dable task for any given data span. On the other hand, the Hadamard deviation is unaffected by 
removing overall frequency drift. For this reason, it is the preferred statistic in situations in which 
the frequency drift may be above the random noise effects, which is the case with the use of Rb 
clocks in the GPS Block I1 satellite program. We do not imply that systematics such as frequency 
drift c~an be ignored. Indeed, satellite clocks are changed and these systematics must be learned as 
quickly as possible to ensure a smooth changeover. 
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Figure 1: The Hadamard deviation (root Hvar) shows FM power-law noises as straight lines in 
addition to PM sources of noise for .r-domain power-law exponent ,u (that is, HCT;(T) K TP) range 
of -2 2 ,u 5 3. We define a new estimator that can be interpreted identically called Hadamard- 
total deviation (root TotHvar) and that has significantly improved confidence at long term. The 
Hadamard-total deviation is insensitive to linear frequency drift that can mask characteristic ran- 
dom noise typically encountered here in the region where T = one-week and longer. The goal is to 
identify p even-integer power-law noises and accurately estimate their levels in order to set system 
parameters associated with the GPS Kalman filter. 

Throughout this writing, we will make comparisons using the traditional best statistical estima- 
tors, denoted by “Hvar” and (‘Avar” referring to the maximum-overlap estimators of the Hadamard 
and Allan variances. Section 2 reviews the “total” approach to  improving statistical estimation. 
Sections 3 and 4 give two methods of computing total Hadamard variance) designated as TotHvar, 
using measurements first of fractional frequency deviations and then of time deviations. Then we 
quantify the advantage of TotHvar over Hvar in Section 5 ,  giving formulae for computing bias and 
equivalent degrees of freedom (edf) of TotHvar. Section 6 gives a method for efficiently determining 
the noise type at a given .r-value for automatically correcting the bias and determining confidence 
intervals for the range of noises considered by TotHvar. Section 7 reviews how an estimate of 
.r-domain frequency stability is used to  set Kalman filter parameters (or 4’s) used in GPS opera- 
tions, problems associated with the application of either the traditional Allan variance or Hvar to 
the Kalman filter, and how TotHvar serves as a unifying solution. Finally, Section 8 discusses a 
past scenario in GPS operations in which TotHvar is applied to real data showing the benefit of 
improved estimation of long-term frequency stability. 

2 THE “TOTAL” APPROACH 

The total estimator approach has been developed to improve confidence of major statistical tools 
used in analyzing and characterizing instabilities in phase and frequency of oscillators and syn- 
chronization system [4-91. Making a “total” estimator of eqn. (2) involves joining each real data 
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subsequence, namely the subsequence of yi that goes into each Hn(m) term, at both its endpoints 
by the same original data subsequence so that it repeats. This creates a new extended version of 
each yi subsequence that may be extended by a forward or backward repetition, with or without 
sign inversion, thus with four possible ways to extend. From numerous simulation studies, we have 
determined that an extension by even (uninverted) mirror reflection of linear-frequency-detrended 
Hn(m) subsequences yields the largest edf gain and least bias for the range of noise types identified 
by standard Hvar. 

3 COMPUTATION USING y,-SERIES 

Hn(m) is computed from a 3m-point data segment or subsequence {gi}n 7 {yi, i = n, . . . , n + 31n - 
1). Before applying any data extensions, we must remove a linear frequency trend (drift) from each 
subsequence by making 

where c1 is a frequency offset that is removed to  minimize xi=, ( yi - O Y ~ ) ~ ,  to satisfy a least- 
squared-error criterion for the subsequence. In practice, it is sufficient to compute this background 
linear frequency slope by averaging the first and last halves of the subsequence divided by half 
the interval and subsequently subtracting the value. Now extend the "drift-removed" subsequence 

at both ends by an uninverted, even reflection. Utility index 1 serves to construct the 
extensions as follows. For 1 5 15 3m, let 

O y i  yi - C l i ,  

nf3m-1 0 - 

to  form a new data subsequence denoted as consisting of the drift-removed data in its center 
portion, plus the two extensions, and thus having a tripled range of n-3m 5 i 5 n+6m- 1 with 9m 
points. To be clear, we now have extended subsequence {OY,#}n = {OD?, i = n-3m,. . . , nf6m-1).  

Define 

Nymax f o r l < m <  1 - 1, where IC] means the integer part of c and notation "H,#<m) means that 

Hn(?n) above is derived from the new triply-extended subsequence {"yf}. The symmetries of the 
extension and the Hvar filter allow the computational effort to be halved. Let k = [3m/2]. We 
need to calculate #yp only for n - IC 5 i 5 n + k + 3m - 1, and #H: (m) only for n - k 5 i I n  + k .  
Then 

n+3m-1 n+lc-1 
("H: (m))2 = 2 (*H: (m)>2 + (*H;-~  (m))2 + ?H;+~ (m))2 ,m even, 

i=n-3m i=n-lc+ 1 

i=n- k 
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4 COMPUTATION USING z,-SERIES 

The methodology described above can be written in terms of calculations on residual time differences 
between clocks, namely an zi-series (to adhere to usual notation), recalling that 

Thus in the total approach applied to xi-series, the data extensions on subsequences of xi will be 
constructed in such a wav that 

in agreement with section 3 above. This has the effect of requiring an odd mirror extension and a 
third-dzference operator when considering subsequences of xi. The Hadamard variance discussed in 
section 3 as a second-difference operator on 7-averaged 2~~ values can now be re-expressed in terms 
of a third-difference operator on time-error 2;-values. The sample variance (or mean square) of 
these third differences falls neatly into a class of structure functions, namely the variance produced 
by a diffqrence operator of order three [lo]. The modified Allan variance can also be treated as a 
third-difference variance [ 1 I]. 

The 2;-subsequence that corresponds to  the Qi-subsequence starting at n is {xi, n I i 5 n + 3m}, 
which has 3m + 1 terms. Compute the detrended subsequence 'xi according to  

272 - Gz+lc - Xn+3m-k + %+3m 

k (3m - k )  1 

1 
O X i  = xi - 2 ~ 2  (i - n) (i - n - 3m), n 5 i I n + 3m. 

Define the extended subsequence {Ox?, n - 377~ 5 i 5 n + 6m} by 

o$ = Ox;, n 5 i 5 n + 3m, 
o #  x , - ~  = 2 (Oxn) - O x , + l ,  1 I I 53m, 

o #  = 2 (Ozn+3,) - 0xn+3m-l, 1 I 1 5 3m. 

Then 

where OH# (m) has the same meaning as in Section 3. Now the Hadamard-total variance is com- 
puted from (4) as before with N,,,, = N,,,, - 1. Because of symmetry we need #xp only for 
n - k 5 i I n + k + 3 r n l  and (5) applies. 

5 BIAS AND EQUIVALENT DEGREES OF FREEDOM 

We consider the random frequency-modulation (FM) noises since these dominate at long-term 
averaging times where we can capitalize on the improved confidence of using the total approach. 
To analyze phase-modulation (PM) noises, one would usually use Total TDEV [6] rather than 
the Hadamard deviation. For brevity, let TotalHrri(m, TO, N,,,,) be TotHvar (T, T ) ,  where T = 
mro, T 1 Nym,,ro. The normalized bias and edf for TotHvar are given by 
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-1  = a ,  1 E {TotHvar (T, T ) }  
E { Hvar (7, T ) }  nbias (7) = 

edf (7) = edf[TotHvar (7, T ) ]  = 
bo + b i T / T ’  (7) 

where E{.} is expectation of {.}, 0 < T 5 $, T 2 1670 (to be explained), and a, bo, and bl are given 
in Table 1 for the five F’M noise types considered by the Hadamard variance. a is the corresponding 
power-law exponent of the fractional-frequency noise spectrum Sy(f) oc f a .  In the context here, 
its valid range is -4 _< a 5 2. E {TotHvar (7, T ) }  relative to  E {Hvar (7, T ) }  in (6) is independent 
of T and T ,  dependent on noise type, and biased low, giving a the negative sign in Table 1. The edf 
formula (7) is a convenient, empirical or “fitted” approximation with an observed error below 10% 
of numerically computed exact values derived from Monte-Carlo simulation method using the bo and 
bl coefficients of Table 1 and with the error decreasing with averaging factor rn = T/TO increasing. 
In fact, (7) should be used only if data-sampling period 70 is sufficiently short compared to the 
averaging time T by 7 / 7 0  2 16. Otherwise, there are not enough points for the data-extension 
procedure in the total estimator to have significant advantage over the plain Hadamard estimator. 
In other words, the To-dependence of the total estimator of (4) plays a significant role, whereas the 
weaker 70-dependence of the maximum-overlap estimator of plain H C ~ , ~ ( T )  given by (2) is generally 
suppressed as in (2). It is well known that maximum-overlap statistical estimators will increase 
edf, hence confidence, and the degree of data overlap is dependent on sampling interval 70 relative 
to  7 [12,13]. Real data should be sampled as fast as practical for a given averaging time. This 
is especially true in order for the data extension of each subsequence to be effective in the total 
approach. 

Assuming chi-square distribution properties and edf computed by (7) and the values of Table 
1, confidence intervals will be conservative since the distribution is actually narrower than chi- 
square. Although not quantitatively investigated, the narrowing of the distribution is proportional 
to  increasing averaging factor m = T / T ~ .  Fortunately with real data runs, 7n is, of course, always 
largest at longest-term. Depending on the noise type, we have seen narrowing by as much as 15% 
for m G 100,000. 

To show the improvement in estimating the Hadamard function, Table 2 lists the exact values 
of edf from theory for computations using TotHvar ‘us. plain Hvar for the longest averaging factor in 
which 7 = T/3. This point is the last point in the estimate, and the improvement in confidence using 

Table 1: Coefficients for computing (6) and (7), normalized bias and edf of TotHvar. 

Noise Abbrev. a a bo b l  
White FM WHFM 0 -0.005 0.559 1.004 

Random Walk FM RWFM -2 -0.229 0.938 1.696 
Flicker Walk FM FWFM -3 -0.283 0.974 2.554 
RandomRun FM R W M  -4 -0.321 1.276 3.149 

Flicker FM FLFM -1 -0.149 0.868 1.140 

TotHvar is substantial, particularly for the general case of WHFM noise. TotHvar is a significantly 
improved estimator that offsets much of the criticized inefficiency in using the sample Hadamard 
deviation as opposed to the sample Allan deviation in the presence of common WHFM noise in 
frequency standards. 
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edf TotHvar(T/3 T ) }  Table 2: Exact gain for rmam = T/3. 

Noise edf gain of TotHvar (T/3,  T )  
WHFM 3.447 
FLFM 2.448 
RWFM 2.044 
FWFM 1.676 
RRF’M 1.313 

6 POWER LAW DETECTION 
It is important to  be able to  determine which power-law noise type is present for a given T-vdue in 
the range -4 5 a 5 0 so that TotHvg’s bias can be removed automatically. Similarly, before the edf 
can be determined to establish confidence intervals and set error bars for a stability measurement, 
it is necessary to identify the dominant noise process. This section describes a noise-identification 
(noise-ID) algorithm that has been found effective in actual practice, and that works for a single 
7-point over the full range of -4 5 Q 5 2. It is based on the Barnes B1 function [14], which is 
the ratio of the N-sample (standard) variance to the two-sample (Allan) variance, supplemented 
by applying this function to  frequency data, and the R(n) function [15], which is the ratio of the 
modified Allan to  the normal Allan variances. 

The B1 function has as arguments the number of frequency data points N ,  the dead time ratio 
r (which is set t o  I), and the power-law 7-domain exponent p. The B1 dependence on p is used 
to determine the power-law noise type for -2 5 p 5 2 (WHPM and FLPM to  FWFM). For a B1 
that is consistent with a p -2 result, the Q = 1 or 2 (FLPM or WHPM noise) ambiguity can be 
resolved with the R(n) ratio using the modified Allan variance. 

For the Hadamard variance, the noise determination must be extended to p = 3 (or Q = -4, 
RRFM). This can be done by applying the B l  ratio to  frequency (instead of the usual phase) data 
and adding 2 to the resulting p. This procedure is called “*B1” herein. Since the *Bl procedure 
simply applies the Barnes B1 ratio to frequency data instead of phase data, its use is as before, but 
now its range is effective from WHFM to R W M  noise. (This is analogous to simulation of RRFM 
data by treating RWFM phase data as frequency data.) 

The overdl noise identification process is as follows: 

0 calculate the standard and Allan variances for the applicable r averaging factor, 

0 determine the expected B l  ratios for a = -3 through 1 or 2, 

0 set boundaries between them and find the best power-law noise match, 

0 resolve an Q = 1 or 2 ambiguity with the modified Allan variance and R(n), or 

0 resolve an Q = -3 or -4 ambiguity with “Bl. 

Table 3: Formulae for B l ( N , r  = 1,p). Substituting frequency data into the usual phase-data 
measurement of B1 ratio will shift these formulae to the p + 2 range, thus covering R;RFM. 
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Noise p B 1 =  
2 ( N ) ( N + l )  FWFM 

FLFM 
WHFM -1 1 

RWFM 1 h 7 2  
N ZnN 

0 2 ( ~ - 1 )  2n2 

N2-1 WH or FL PM -2 l .5 (N)(N- l )  

For a data run of length N ,  Ta.ble 3 gives five specific i'ormulae for B1 corresponding to ,u = 
-2, -1, 0, 1, and 2. Table 4 summarizes the power-law detection scheme and gives the boundaries 
for demarcating each noise type. The boundaries between the B1, *B1, and R(n) functions are, 
in general, set as the geometric means of their expected values, and the actual measured ratio is 
tested against those values downward from the largest applicable p. For example, if, during the 
testing, the measured B1 ratio is greater than the square root of the product of the expected Bl  
values for RWFM and FLFM noise, it is determined to be the former (a, = -2, RWFM). 

figh levels of frequency drift should be removed to  best identify the underlying noise process 
by this method. Also, the R(n) ratio cannot, of course, be used for 7 = TO averaging factor (in 
which c&e it is 1 for all noise types). Finally, at the very longest averaging factor or last -r-point, 
it is better to use the previous or T - TO point to  estimate the noise type. This algorithm has 
been used in commercial frequency-stability software [16] for the past decade with good success. 
It allows bias corrections and error bars to be calculated automatically during an analysis for all 
of the common time-domain stability statistics (including the new Hadamard total variance here) 
over the full range of noise types and for essentially all T averaging times. 

7 THE KALMAN NOISE MODEL AND THE GPS OPERA- 
TIONS PROBLEM 
'The time update of clock states in the Master Control Station (MCS) Kalman prediction algorithm 
is based on an average of the the most recent measurement of these states for each individual clock, 
modeled simply by random noise acting on phase z ( t ) ,  frequency ~ ( t ) ,  and frequency drift x ( t ) .  
With this model, the measured power-law a exponents of the frequency-fluctuation noise spectrum 
take on only the values 0,-2, and -4, corresponding to WHFM, RWFM, and RRFM, or p = -1, 
1, and 3 in the 7-domain. Hence, we want to precisely extract the level of these noises for each 
clock using the most efficient method possible, which heretofore has been the sample Allan variance 
with drift removed from the data run, and more recently the sample Hadamard variance, because 
of its logical link to  the model. If white PM (WHPM) is a significant noise component, and for 
completeness, the Q = 2, p = -2 case corresponding to WHPM is included as a separate error. 

The parameters used by the MCS within GPS system operations are denoted as Kalman filter 
4's. By convention, each filter parameter qi, i = 0 , 1 , 2 , 3  corresponds respectively to  7-domain 
power law exponents p = -2, -1,1,3. For the Hadamard variance, the relationship is [3] 

2 
H C ~ ~ ( T )  = d v H P i v  + 4 $ H F M  + 6 h F M  + ~ R R F M  

- 10 - 
3 
- + q 1 r - l  + iq2r + &q373. 

For the Allan variance, the relationship is [17] 

og2(7) == 3 q 0 T - ~  + q17-I + &27 [ + & q 3 ~ ~ ]  , (9) 

where the inclusion of the RRFM noise term as [+&q3r3] is a point of contention for two reasons. 
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Table 4: Power-Law Noise Identification. 

1 Noise 
I RRFM 

Q 1 p 1 ID by Remarks 
-4 I 3 I Bl&*B1 Use *B1 to  resolve Q = -3 or -4 ambiguity 1 

I I I I I 
- 1  

I Decision boundarv: {Bl(FWFM) + Bl(RWFM)) / 2 

~ 

“ C  1 , >  I 

FWFMI -3 1 2 1 Bl&*Bl 1 
Decision boundary: {Bl(FWFM) + Bl(RWFM)} / 2 
RWFMI-2 I 1 I B1 
Decision boundary: sqrt {Bl(RWFM) x Bl(FLFM)} 
FLFM 1-1 I 0 I B1 
Decision boundary: sqrt {Bl(FLFM) x Bl(WHFM)} 
WHFMI 0 1-1 1 B1 
Decision boundary: sqrt {Bl(WHFM) x Bl(FLPM)} 
FLPM I 1 1 -2 1 Bl&R(n)l Use R(n) to  resolve a = 1 or 2 ambiguity 
Decision boundary: s a d  CBl(FLPM) x Bl(WHPM)) 

Use *Bl to  resolve Q = -3 or -4 ambiguity 

I 

Noise ID Methods: B1 = Barnes Bl(N, r, m) bias function with r = 1 [14]. 
*B1 = B1 applied to  frequency data as phase data with p = p + 2. R(n) = 
ratio, mod Allan variance/Allan variance. 1151. 

First, estimating q3 by (9) using real data is unreliable because M F M  is inconsistent by the 
definition of the Allan variance. Second, ref. [17], from which the term derives, does not compute 
the Allan variance; instead, it computes the optimal mean-square prediction error variance of 
g(to, t o  + 7) based on {z ( t ) ,  t 5 t o } ,  for frequency noise spectra with a = 0, -2, and -4. For these 
reasons, we advise omitting the RRFM term entirely from (9). The other terms of (9) happen to 
be correct for Allan variance. 

The GPS Hadamard variance is defined to be equivalent t o  the Allan variance for WHFM, 
which is confirmed in comparing (8) and (9); however the variances differ by a factor of two for 
RWFM, therefore they cannot be used interchangeably under normal circumstances and involving 
drift-free stochastic processes. 

Tuning the Kalman filter depends on the ability to “q” each individual clock according to 
estimates of its noise. The GPS Block IIR satellite program incorporates Rb atomic oscillators 
that are characterized by a mix of various levels and types of random noise and with frequency 
drift that may be significantly above noise. This kind of oscillator mix is difficult to manage using 
Avar and (9)’ which must be used based on drift-removed frequency residuals. However, reverting 
to  using “frequency-drift insensitive’’ Hvar and using (8), the confidence becomes a factor of about 
$ less near the last and crucial long-term T~~~~ = T/3  value owing to the plain sample Hadamard’s 
edf of one less as compared to Allan’s edf. For the proper perspective, note that we are in the 
one-week averaging 7-region with a last real-time data run of about one month, thus edf = 1- 
2; so estimating filter q’s is somewhat subjective. Figure 2 illustrates a summary of estimates of 
frequency stability for each GPS satellite clock as published in reports issued by the Naval Research 
Laboratory [18]. 

Table 2 shows that the new TotHvar (T/3,T) edf is multiplied by a factor of 1.3 to 3.4 over 
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plain Hvar (T/3, T). TotHvar can be applied directly and reliably, while retaining the efficiency of 
the sample Allan variance without the difficulty associated with real-time drift removal. 

The work of this paper has impact on two GPS operational issues. The first is that the time 
needed to estimate the Hadamard variance is substantially reduced. For example, to  obtain a 7 = 
one-week estimate of the Hadamard variance with, say, the last 40 days of measured data, the Total 
approach using TotHvar obtains ,a one-week estimate with the same or better confidence in about 
26 to  34 days of measured data. The second issue is that satellite data are obtained by the linked 
common-view method [ 191, and the delay in receiving the monitor station tracking data is currently 
at 2 to 3 days. Thus, it is important to  extract maximum information from data at hand. 
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Figure 2: Hadamard-deviation frequency stability of individual GPS satellite clocks ‘us. USNO 
Master Clock for the period 1 January t o  1 July, 2000 [HI. 

8 EXAMPLE 

Figure 3 is data of SV24, a Block IIA GPS satellite. Total Hadamard deviation, plain Hadamard 
deviation, and Allan deviation are compared with increasing data spans starting at 7 days and 
extending to 28 days and shows how each of these statistics behaves as it evolves. As is generally 
the case, TotHdev performs better at estimating the longest-term noise level than plain Hdev for 
measured data spans as indicated by estimated levels from later (longer) data spans. 

9 CONCLUSION 

We have developed a significantly improved estimator of the three-sample Hadamard frequency 
variance based on the so-called “total” approach and denoted as TotHvar, for use in GPS operations 
and analysis. Practically speaking, we have reduced the long-term estimation uncertainty in terms 
of edf by a factor of 1.3 to 3.4, depending on the noise type, and we have presented a way to 
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Figure 3: Total Hadamard deviation, plain Hadamard deviation, and Allan deviation for SV24 
satellite clock data as the data run increases from 7 days (front plot) to  28 days (rear plot). The 
last (rightmost) values of TotHdev for shorter data runs anticipates the underlying noise level of 
longer runs compared to plain Hdev (arrowed lines are projected off 28-day data run). The Allan 
deviation’s response to frequency drift masks the long-term noise level. 

automatically remove the moderate negative bias of TotHvar by a power-law detection algorithm. 
Having confidence greater than plain Hvar and even equal to  or greater than Avar, TotHvar is a 
statistic that permits tuning of the MCS Kalman filter with more accurately chosen clock-estimation 
parameters (or 4’s) that are linked to the most recent measurements of frequency stability of 
each clock. The increased confidence from TotHvar and shorter data processing delays will play 
significant roles in adequately managing future GPS system events. 
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Questions and Answers 

MASSIMO TINTO (JPL): I have a quick question. The Hadamard function, in a sense, can 
be seen as the Allan variance of the Allan variance because you’re taking the difference of the 
difference. From your definition, you have Y (T) minus Y (T) plus 7, minus the shift of 1 by 
7. So have you thought about doing the Hadamard of the Hadamard, so going to the third 
order? So going a step further from what you have done and see if that will also give you 
some extra- 

DAVID HOWE: I haven’t. The problem with going to higher differences is that the efficiency 
goes down for the kinds of noise processes which are characteristic of the clocks, because you 
lose degrees of freedom as you have to use longer data lengths to estimate averaging times. 

TINTO: Oh, I see. 

STEVE HUTSELL (USNO AMC): Dave, I was wondering if you could comment on the 
increase of the effective degrees of freedom. How much of it was due to the overlapping 
technique and how much of it was due to the extension in the total technique? 

HOWE: All of this was due to the extension, That gain was due to the extension entirely 
because the numbers were taken at the last point. There is not overlapping at the last point. 

Now, that does raise the point that, as a practical matter, total and overlapping estimators rely 
heavily on sampling as fast as practical. You understand that you take estimates and you shift 
by T ~ ,  your sampling interval. Total takes advantage of that more fully than overlapping, but 
that has been true for quite a while. 
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