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Abstract 

This paper shows how to distribute GPS-time with ps-accuracy and below even 
in Ethernet-based distributed systems. Our SynUTC-approach’ is based upon a 
simple network controller-level hardware for timestamping data packets as they 
leave and arrive at a node, which comes in two flavors: The memory-based 
times-tamping method exploited by our Network Time Interface (NTI) M-Module 
timestamps data packets as the network controller accesses them in memory. This 
technique can be used for virtually any type of network and network controllers. 
For 10 Mb/s Ethernet, for example, our experimental evaluation revealed a time 
distribution accuracy down to the pus-range. Still, memory-based timestamping 
requires network controllers that cannot store entire packets on-chip, and the 
available configuration parameters must be carefully chosen in order to cope with 
the various hidden sources of timing uncertainty. To escape from those limi- 
tations, we recently developed a novel MII-based timestamping method that can 
be used in conjunction with almost any modern lo/100 Mb/s Ethernet chipset. 
The timestamping hardware sits at the standard MII-interface between network 
controller and transceiver here, and will allow a time distribution accuracy well 
below the ps-range. 

‘The SynUTC-project received support from the Austrian Science Foundation (FWF) grant P10244-eMA, the 
OeNB “Jubil~umsfonds-Projekt” 6454, the BMfWV research contract Z1.601.577/2-IV/B/9/96, the Gesellschuft fiir 
Mikroelektronik (GMe), and the START programme YIl-MAT. See http:// www.auto.tuwien.ac.at/Projects/SynUTC/ 
for further information. 
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1 INTRODUCTION 

Next-generation distributed real-time applications will certainly be equipped with ac- 
curately synchronized clocks at every node. In fact, synchronous data acquisition and 
simultaneous triggering of actuators at several nodes is impossible without such a fea- 
ture. Given the advances in GPS technology, it is no longer an issue to supply highly 
accurate time information to dedicated computing nodes. However, accurately and re- 
liably disseminating GPS-time to all nodes in a distributed system is still a challenge. 

As more and more distributed real-time systems are now being built atop COTS- 
type LANs, the most desirable solution would be using the data network for time 
distribution, as done e.g. in NTP [Milgl]. However, [LWL84] revealed that the worst- 
case synchronization tightness achieved by any clock synchronization scheme depends 
on the worst-case uncertainty (= maximum variability, jitter) E in the end-to-end 
transmission delay. For typical LANs, E lies in the ms-range, which makes it impossible 
to use a simple packet data exchange to disseminate time with ps-accuracy. Additional 
techniques are required for this purpose, which, however, should be compatible with 
existing network controller technology to be useful in practice. 

Part of our research project SynUTC [Sch94] is devoted to this problem. Among 
its results is our Network Time Interface (NTI) [SKM+OO] add-on hardware, which is 
available as an industry-standard M-Module [MUM96]. The NT1 has been built around 
our custom UTCSU-ASIC [SSHL97], which contains most of the hardware support 
required for interval-based external clock synchronization in fault-tolerant distributed 
systems: A high-resolution state- and rate-adjustable clock, local accuracy intervals, 
interfaces to GPS receivers, and various timestamping features. 

In [SN99] and [SKM+OO], we showed that a worst-case E in the 10 +-range can be 
achieved when using the NT1 in a 10 Mb/s Ethernet-coupled distributed system made 
up of Motorola MVME-162 CPUs. Although E can be brought down to the few ps-range 
in more suitable system architectures, it became nevertheless clear that memory-based 
timestamping in conjunction with existing network interfaces is limited both with 
respect to applicability and achievable time distribution accuracy. 

In this paper, we present and analyze a complete algorithm for distributing GPS-time 
with a few ps-range accuracy in our NTI-based testbed. In addition, we introduce a 
novel MII-based timestamping method, which will be employed in a second generation 
lo/100 Mb/s Ethernet-NT1 that is currently under development. The presented ma- 
terial is organized as follows: After a brief overview of the NT1 and its pivotal UTCSU 
in Section 2, we introduce our evaluation system’s hardware and software architecture 
in Section 3. Section 4 is devoted to the particular time distribution algorithm used. 
A brief survey of our novel MII-based timestamping method in Section 5 and some 
conclusions in Section 6 eventually complete the paper. 

2 NT1 FEATURES AND ARCHITECTURE 

The Network Time Interface (NTI) [SKM+OO] has been designed for high-accuracy fault- 
tolerant external clock synchronization in LAN-based2 distributed systems. Apart 
from advanced clock synchronization algorithms, this goal primarily requires hardware 

‘Note that the approach can also be adopted to more general topologies commonly known as WANs-of-LANs, 
provided that all gateway nodes are also equipped with the NTI, cf. [Sch94] and [SS95]. 
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support for exact timestamping 
adjustable clock at each node. 
system. 

of data packets and a sophisticated rate and state 
Figure 1 shows the basic architecture of a 2-node 

,.............._............,.., 
Node B Node A ; 

Figure 1: Basic architecture of a &-node system 

Accordingly, each node must be equipped with a clock device (the UTCSU, see below), 
a CPU responsible for executing the clock synchronization algorithm, and a Communi- 
cations Coprocessor (COMCO) providing access to the network by reading/writing data 
packets from/to shared memory. At least one node must also be connected to a GPS 
timing receiver. 

In purely software-based clock synchronization, timestamping of Clock Synchronization 
Packets (CSPs) at the sending resp. receiving side is done by reading the clock when 
assembling the CSP for transmission resp. in the COMCO’s packet reception interrupt 
service routine. However, as explained in detail in [SKMfOO], this implies that the 
transmission delay uncertainty E includes both the network channel access uncertainty 
and the reception interrupt latency, which can be quite large. To get rid of those, a 
refinement of the DMA-based coupling method originally proposed in [K087] can be 
used. The key idea is to insert a timestamp on-the-fly into the memory holding a CSP 
in a way that minimizes E, as outlined in Figure 2. 

Sender - UTCSU: TTSXMT -I] 

Transmit buffer: 

I 
Receive buffer: Dcru&. SrcA&. RI3 RITS VW Data 

Receiver - UTCSU: TrsRcv -&q 

Figure 2: Packet timestamping 

Whenever the COMCO fetches data from the transmit buffer holding the CSP, it has 
to read across the particular offset that causes a special decoding logic to generate 
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the trigger signal TTSXMT. Upon its occurrence, the UTCSU puts a transmit timestamp 
(TxTS) into a dedicated sample register, which is transparently mapped into a certain 
portion of the transmit buffer and, hence, automatically inserted into the outgoing 
packet. By the same token, when the receiving COMCO writes a certain offset in 
the receive buffer, the trigger signal TTSRCV is generated by the decoding logic, which 
causes the UTCSU to sample the receive timestamp (RxTS) into a dedicated register. 
This timestamp is saved subsequently in an unused portion of the receive buffer. 

This approach works for any COMCO that accesses CSP data in memory. Suitable 
chip-sets are available for a wide variety of networks. It must be stressed, however, that 
COMCOs with a transmit-FIFO that can hold an entire packet defeat memory-based 
timestamping. Moreover, determining E for a particular COMCO usually requires 
experimental evaluation. 

The NT1 provides the above memory-based timestamping facilities -as well as all 
other hardware support required for high-accuracy clock synchronization- on a single- 
height (146 x 53 mm) MA-Module 3. Figure 3 shows the major components on board 
the NTI, which can be accessed from any COTS CPU/COMCO with MA-interface via 
ordinary memory and memory-mapped registers; details can be found in the compre- 
hensive user manual [MNS99]. 

Figure 3: NTI block diagram 

All required decoding and glue logic of the NT1 is assembled in a single, in-circuit pro- 
grammable complex programmable logic device (CPLD) designed using VHDL. It adapts 
the UTCSU and the memory to the MA-Module interface, forwards interrupt requests 
from the UTCSU to the carrier-board, generates the acknowledgment signal termi- 
nating a bus cycle, etc. 

The memory serves as control and data interface between the CPU and the COMCO, 
providing the special functionality for COMCO accesses, as outlined before. It con- 
sists of up to four 64k x 16 bit SRAM chips and supports byte, word, and longword 
read/write accesses. 

The UTCSU-ASIC (Universal Time Coordinated Synchronization Unit) described in [SSHL97] 
and [Loy96] contains most of the dedicated hardware support for clock synchroniza- 

3M--Mod~les [MUM961 implement an open, simple, and robust mezzanine bus interface primarily designed for 
VME carrier boards. MA-Modules a,re enhanced M-Modules, providing a 32 bit data bus and enhanced addressing 
capabilities. 
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tion. Manufactured as an ASIC in 0.7 pm CMOS technology, the UTCSU accommo- 
dates about 80,000 gates on a 100 mm2 die packed into a 208-pin MQFP case. Figure 4 
gives an overview of the major functional blocks. 

Application Unit 
Bus Interface Unit 
Built-In Test Unit 

Local Time Unit 
Network Time Interfacx Unit 

Figure 4: Interior of the UTCSU 

The centerpiece of the UTCSU is a local clock unit (LTU) utilizing a 56 bit NTP-time 
format. 
of 2-24 

Clock time can be read atomically as a 32-bit timestamp with a resolution 
x 60 ns and a 32-bit macrostamp containing the remaining 24 most-significant 

bits + an 8 bit checksum protecting the entire time information. The LTU employs 
an unconventional udder-bused clock design, which uses a 91-bit adder instead of a 
simple counter for summing up the elapsed time between succeeding oscillator ticks. 
Owing to this, the UTCSU can be paced by a quartz oscillator of arbitrary frequency 
fO,, E 1.. .20 MHz; alternatively, an external frequency source like the 10 MHz output 
of a high-end GPS receiver can be used. Moreover, the local clock is fine-grained 
rate adjustable in steps of about 10 ns/s and supports state adjustment via continuous 
amortization as well as leap-second corrections in hardware. 

To support interval-based clock synchronization (see Section 4), the UTCSU contains 
two more adder-based “clocks” in the ACU that are also driven by the oscillator fre- 
quency fO,, . They are responsible for holding and automatically deteriorating the 16-hit 
accuracies cy- and a+, thereby maintaining a bound on the local clock’s instantaneous 
deviation w.r.t. real time. 

A number of external events, supplied to the UTCSU via buffered/opto-decoupled, 
polarity programmable input lines, can be time+accurucy-stamped with local time and 
accuracy upon the appropriate input transition. Optionally, an interrupt can be raised 
on such an event as well. Three different functional blocks in the UTCSU utilize this 
feature: First, trigger signals generated by the decoding logic at CSP transmission 
and reception sample the current local time+accuracy into dedicated UTCSU registers 
in one of the six available SSUs. Second, three independent GPUs are provided for 
timestamping the one pulse per second (lpps) signal -indicating the exact beginning of a 
second- from up to three GPS timing receivers. Finally, nine independent application 
time+accuracy-stamping inputs are provided by the APU. 

Those timestamping features are complemented by several 48-bit programmable duty 
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timers: Whenever local time reaches the programmed time of an armed duty timer, 
an internal or external signal changes state and an optional interrupt is raised. Duty 
timers are required for triggering activity of the clock synchronization algorithm, for 
controlling continuous amortization, inserting/deleting leap seconds, and generating 
application-related events. 

All application-related I/O-pins of the UTCSU, as well as all interfaces to GPS receivers, 
are routed to the GPS and application interface. In addition, the UTCSU’s internal 
time information (“NTPA-bus”).is exported for future expansion modules. Of course, 
high-speed opto-couplers or buffers are provided for all inputs to ensure a decoupled 
and reliable interface. 

3 EVALUATION SYSTEM 

Aiming at the support of existing technology, it was only natural to use COTS compo- 
nents for building up our evaluation testbed as well. As in [SN99] and [SKM+OO], we 
employ4 VMEbus-based nodes consisting of a Motorola MVME-162 CPU and an AcQ 
i6360 or MEN A203 passive carrier-board hosting the NT1 MA-Module. All nodes 
are interconnected via the CPU’s Ethernet port using 10 Mb/s thin-wire technology. 
Figure 5 outlines the basic hardware architecture. 

VMEbus backplane VMEbus backplane 

MVME-162/512A i6360 / A203 
MA.Mod”k CurICr boar.3 

IPPS 

SWUS 

Ethernet 

Figure 5: Evaluation system hardware architecture 

A dedicated wire -the only add-on to Figure 1 required for evaluation purposes- is 
provided for simultaneous sampling of the current time at all nodes. It connects the 
HWSNAP-timestamp inputs of all NTIS and is driven by an output of a dedicated master 
node (NT1 0). 

The evaluation system’s software consists of several layers shown in Figure 6. Two 
layers of driver software written in C make the NTI’s features available to the clock 
synchronization algorithm: The lower-level NZ’I-Handler [SM99] is responsible for ini- 
tialization/configuration of the NT1 and the M-Module carrier-board, as well as any 

“Actually, VMEbus equipment from another research project was re-used for this purpose. Whereas the resulting 
architecture is unlikely to be chosen in practice, it nevertheless constitutes a suitable ‘worst case environment” for 

evaluation. 



Figure 6: Architecture of a pSO9” node using the NTI- and GPS-Driver 

low-level interrupt handling. The upper-level driver layer consists of the NTI-Driver 
and the GPS Device-Driver. 

The NTI-Driver [RSS99] allows the pSOS +m kernel and other software components to 
communicate via the MVME-162’s i82596 Ethernet-COMCO with or without data 
packet timestamping. It actually multiplexes three different interfaces to the COMCO: 

1. 

2. 

3. 

Kernel Interface (KI) : pSOS+” supports multiprocessing by means of remote objects 
(tasks, queues, semaphores, etc.), which are implemented atop of remote procedzlre 
calls (RPCs). To keep the kernel reasonably independent of the underlying net- 
work, a user-supplied KI is required that maps a simple message-passing interface 
to the particular COMCO. 

Network Interface (NI): In addition to kernel services, application tasks can use 
TCP/IP sockets for communication with remote sites if the additional software 
component pNA+ is present. Like the pSOS+” kernel, pNA+ is kept hardware- 
independent by means of a user-supplied NI, which is similar to the KI, but plugs 
into a different message-passing interface. 

Clock Interface (CI): The third component that requires network services is the 
clock synchronization algorithm. Again, a simple message-passing interface CI is 
sufficient here. Note that it is the only one that relies upon the timestamping 
feature of the NTI. 

The GPS Device-Driver [US991 is responsible for interfacing one or more GPS timing 
receiver(s) to a pSOS+“-based target sy stem equipped with at least one NTI. As shown 
in Figure 5, it supports GPS timing receivers that provide an RS232 serial interface, a 
1 pps output and an optional digital status signal. The 1 pps signal announces when 
GPS-time/UTC advances to the next second; the status signal indicates a valid/non- 
valid output. The RS232 data, whichareusually supplied several 10 ms after the 1 pps, 
reveals the point-in-time of the last 1 pps transition, usually along with additional 
status information. The GPS-Driver assumes that the RS232 interface is connected to 
a standard pSOS+” serial channel, whereas the 1 pps and status output are fed to one 
of the three GPUs of the NTI’s UTCSU (recall Section 2 
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The GPS Device-Driver provides the clock synchronization with an easy to use up- 
plication programmable interface (API) through which a GPS receiver can be controlled 
and time information retrieved. After initialization of the NT1 M-Module, the RS232 
interface and the GPS receiver, the driver processes the 1 pps transitions and RS232 
messages and calls a user-supplied callback function that periodically delivers a sub- 
microsecond-accurate timestamp of the last 1 pps transition. Note carefully that this 
accuracy can only be achieved due to the hardware timestamping feature of the GPU. 
Special attention is paid to fault recognition (lost or wrong 1 pps pulses, lost or wrong 
RS232 messages) and error handling, since wrong 1 pps of RS232 message assignments 
would result in a 1 second-range error. 

Viewed at the level of application tasks, the NTI/GPS-Driver and the atop run- 
ning clock synchronization algorithm simply add synchronized clocks to a standard 
pSOSfm/pNAf-environment. Apart from the created CPU and network load, the pro- 
cess of clock synchronization is in fact totally transparent to the application. Still, 
complex distributed timing problems can now be solved by means of the various time- 
stamping and duty timer functionalities of the UTCSU’s APU. 

4 TIME DISTRIBUTION ALGORITHM 

During the last few years of working on the project SynUTC, we established a rea- 
sonably complete framework for fault-tolerant interval-based clock synchronization 
[Sch94], [SS97], [Sch97c], [Sch97b], [Sch97a], [SW99], etc. Real-time t (= GPS-time 
or UTC) is not just represented by an ordinary clock C*(t) at node z here, but rather 
by an interval clock C,(t) = [Cz(t)fa,(t)] made up of the UTCSU’s clock value C*(t) and its 
interval of accuracies a*(t) = [-a;(t),az(t)]. A n interval-based clock synchronization al- 
gorithm is responsible for maintaining any C,(t) such that accurateness w.r.t. real-time, 
i.e., t E C,(t), as well as mutual precision, i.e., I&(t) - CY(t)I < rmaxr can be guaranteed. 

The major advantage of the interval-based approach is a locally available on-line bound 
on the local clock’s deviation from real-time: Since t E C,(t) just means t E [C&(t) - 
o;(t),&(t) + a:(t)], an application can judge whether the instantaneous accuracy is 
sufficient for a certain goal. This feature is particularly interesting for multi-clustered 
applications, since accuracy w.r.t. real-time implies a certain precision even for nodes 
that do not participate in a common-clock synchronization algorithm: If nodes z, 
y in different clusters are both non-faulty, inclusion of t implies that their intervals 
must be overlapping. Hence, clock values Cz(t), Cy(t) cannot be further apart than 
-(o;(t) +&J(t)) I C&) - c=(t) I o;(t) + a;(t). 

The price to be paid for this accuracy information, however, are explicit bounds on 
certain system parameters like transmission delay uncertainty E - and this is where 
the results of an experimental evaluation like [SN99] and [SKMfOO] come into play. 
Figure 7 shows the transmission delay uncertainty E observed for the NT1 in the eval- 
uation system of Figure 5. Thanks to the hardware timestamping capabilities of the 
NTI, the primary transmission delay characteristics5 are independent of the network 
load. It is apparent, however, that excessively long transmission delays occur now and 
then. This forced us to choose a conservative bound for E in the simple algorithm of 
[SKM+OO], which thus suffers from a relatively poor worst-case accuracy. 

In this paper, we show how to improve accuracy by means of a slightly more ad- 

‘Note that the second peak is caused by packets that find the Ethernet busy upon their arrival. 
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25 

20 
Minimum 20.4 ~.ls 

Std.Dev. 1.6 ps 
transmission delay 6,, (ps) 

Figure 7: Histogram of transmission delays (A203 carrier board) 

vanced algorithm using multiple-source time distribution combined with round-trip- 
based transmission delay measurement: Consider a system consisting of m 2 1 P- 
nodes pl,...,p, equipped with a GPS receiver, and one or more S-nodes that are to be 
synchronized with GPS-time. Assume that: 

node p’s GPS receiver has accuracy crp, 

each UTCSU is driven by an oscillator with frequency fo, resulting in a clock 

granularity c = [-G,O] with G = 2-rl”gz(fo)l and a rate adjustment uncertainty 
u = [-u,u] with 2~ = l/f0 (see [SS97, Assum. 2]), 

any node Z’S UTCSU is set up properly to ensure correct deterioration of the 
local interval of accuracies a, when the maximum local oscillator drift is within 
pz = [-p;,p$] (see below) and discrete rate adjustment with u applies (see [SS97, 
Assum. 31)) 

the transmission delay from node z to y is S:, E [Jzy f E,J, with unknown -but 
constant or slowly varying- expectation Zzzy = Jyz + dyz, known unsymmetry dyz, 
and known maximum uncertainty .sZy = [-E;~,,E&], 

at most f 2 0 of the m > 2f + 1 P-nodes may deliver wrong time information to an 
S-node due to GPS failures, P-node failures, excessive transmission delays, etc. 

Table 1 shows the particular parameter settings for our evaluation system when all 
nodes are equipped with an A203 carrier board. 

1 Name Value Meaning 

I fo 10 MHz UTCSU oscillator frequency 

z 
100 ns rate adjustment uncertainty 

2-23 
z 120 ns clock granularity 

PZ p = [-lo-‘, 1 -’ 0 ] maximum oscillator drift 

OP a0 = [-150ns, 150ns] accuracy Motorola VP-Oncore GPS receiver [HS97] 

EZy E = [-3ps, 3~~1 transmission delay uncertainty (see below) 
d ZY d=O average unsymmetry 
A 300 ms maximum transmission delay 

rs I? = 100 ms maximum computation time S-nodes 

rP lTo = 10 ms maximum computation time P-nodes 

Table 1: Parameter settings for our evaluation system (identical nodes with A203 carrier board) 
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Figure 8: Time distribution algorithm: P-nodes Figure 9: Time distribution algorithm: S-nodes 

CL) 

(RI 

CD) 

Lock local clock to GPS-time 

Upon every lpps transition occurring at 
GPS-time ti with Cp(ti) = Ti, 

1. compute 

I, = [ti f QP] + 21 + G 

+TP - Ti + (Tp - Ti)pp 

for TP = Ti + r,.,, where l?r > 0 com- 
pensates the execution time of this 

step, 

2. SetupClockCorrection(TP, 1,). 

Receive round-trip CSP from S-nodes 

Upon reception, at local time Ti, of a 
CSP containing the local time Tsp of 
transmission at S-node s, save (s,T,,,T,9). 

Distribute GPS-time to S-nodes 

Periodically, when Cp(t) = kP in round k, 

1. BroadcastCSP(S, Vs : (s,T,,,T,“)) 

2. k := k + 1. 

Basic operations: 

l BroadcastCSP(X, data) unreliably sends a 
CSP containing data to all X-nodes, ei- 
ther by hardware broadcasting or mul- 
tiple point-to-point transmissions. Each 
CSP is time+accuracystamped with the 
local interval clock upon actual transmis- 
sion. 

l SetupClockCorrection(time, interval) sets 
up the UTCSU’s clock correction duty- 
timer for time time to initiate local inter- 
val clock correction towards interval. 

l CVL(Il, . . , I,) provides a new value for 
the local interval clock. It computes a 
fault-tolerant intersection [Sch97b] and 
[SS99] of its input intervals that tolerates 
at most f faulty or non-existing intervals, 
and selects a suitable point (usually, the 
midpoint) within that interval as the new 
clock value. 

(9 

(G 1 

(Cl 

Send round-trip CSP to P-nodes 

Periodically, when Cs(t) = kP - A in 
round k, BroadcastCSP(P, 0). 

A > 0 must allow reception at any P-node 
before step (D), and should ensure that 
there is no step (L) during this time. 

Get GPS-time’from P-nodes 

Upon reception, at local time T,P, of a 
CSP from node p containing C,, = [Tps & 
cyps] and (s, Ts,,T,S) in round k, 

1. compute AT, = T,P - Tsp, AT, = Tps - 
Tp” and the current transmission de- 
lay estimator 

6 ps = 
AT, - AT, - dps 

2 (1) 

and update the corresponding run- 
ning averages nT,, aT,, &. 

2. compute 

I; = c,, +u+E 

+[&s l Eps] + aT,p, + aT,& 

+TR - T,p + (TR - T,p)p,, (2) 

where j& = [-p,f,p;] and TR = kP + 
A + Ts. A > 0 and P‘S > 0 must allow 
message reception and completion of 
all computations before step (C).3. 

Compute the final correction interval 

At time C,(t) = kP + A in round k, 

1. initiate local clock reading delivering 
C, = [Ts f cr,] and compute 

I, = C, + TR - T, + (TR - T,)p,, 

2. compute 

If = cv~(I~ n I,, . . . , ry n I,), (3) 

3. if If # 0 then 
SetupClockCorrection(TR, If), 

4. k := k + 1. 
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The time distribution algorithm shown in Figure 8 and 9 proceeds in rounds of duration 
P seconds, which are indexed by k 2 1 and scheduled according to each node’s local 
clock. Apart from locking a P-node’s UTCSU-clock to GPS-time upon every lpps 
transition in step (L), each round ends with a CSP exchange (S) 3 (R) and (D) + (G) 
between any S- and P-node, followed by a resynchronization of the S-node’s interval 
clock in step (C). The CSP round-trip is used for both measuring6 the transmission 
delay and for distributing GPS-time. 

The formulas given in Figure 8 and 9 try to preserve a given interval’s accurateness 
by elementary techniques developed in our interval-based framework; see [SS97] for 
an elaborate discussion. For example, to ensure accurateness of the remote clock 
estimation eq. (2), the accuracy interval C,, received from node p must be enlarged by 
sps to account for the variable transmission delay Sbs E r&S &eEps] (delay compensation); the 
terms involving m, and m, compensate drift-induced errors in the computation of xps. 
In addition, when shifting the resulting interval from T,P to resynchronization time T”, a 
sufficient enlargement (deterioration) of the shifted interval is required to compensate 
Cs(t)‘s drift p: E ps. Recall that this drift compensation is performed continuously by the 
UTCSU in hardware as well. 

The remote clock estimations 1: are intersected with the S-node’s own information I, 
and eventually fed into the convergence function CV in eq. (3). This step ultimately 
allows us to neglect the rare excessive transmission delays apparent in Figure 7 and 
choose eps = [-3ps,3ps] in Table 1 instead: Since CV tolerates up to f faulty input 
arguments, a larger f (i.e., a larger m 1 Zf+l) allows to choose a more risky eps without 
increasing the probability of an S-node failure. The intersection with I, constitutes 
a simple clock validation technique [Sch95], which is effective for detecting excessive 
faults even in case of f = 0. Note that accurateness of CV’s arguments is not affected 
by this intersection as long as the S-node s is non-faulty. 

It is not difficult to analyze the worst-case accuracy and precision of our algorithm. 
Since we established in [Sch97b] and [SS99] that the result of a suitable convergence 
function is contained in the intersection of its m - 2f-largest non-faulty input intervals, 
it follows that 1: yields node s’s interval of accuracies cr, immediately after resynchro- 
nization. Plugging in the simplified parameters from Table 1 and the obvious bounds 
m,,m, <A, we obtain 

a,Gcr = (ao+2u+C+lsp) + (u+E+s+(3A+T)p) 

= ao+3u+2~+~+(3A+JY+1s)p. 

Moreover, the interval of accuracies immediately before the next resynchronization is 
bounded by 

cr’=a+Pp+u+G 

for G = [O,G], so that the worst-case precision of any two non-faulty S-nodes in the 
system evaluates to x = la’]. Plugging in our particular parameter values finally gives 
the worstiase accuracy and precision shown in Table 2. It is instructive to compare this 
table with [SKM+OO, Table 31, which shows the corresponding results when correctness 
is secured for any CSP transmission by choosing E = [-3~s 14~~1. It is apparent that our 
more advanced algorithm considerably improves the achievable worst-case accuracy. 

‘Note that we omit the initial, say, lo-20 round-trips needed for setting up the running averages for simplicity. 
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P [s] a PS,PS_ cd [PS,W_ = [PSI 
10 r-3.9,3.71 [-5.0,4.9~ 9.9 
50 .-3.9,3.7; [-9.0,8.9: 17.9 

100 .-3.9,3.7] _ [-14.0,13.9: 27.9 

Table 2: Worst-case accuracy and precision 

Still, the roughly Bernoullian transmission delay distribution in Figure 7 suggests 
that the average-case accuracy should be considerably better than the above worstr 
case results indicate. To verify this conjecture, we developed a pSOS+” evaluation 
application atop of the general software architecture of Figure 6, which allowed us to 
monitor and statistically evaluate the synchronization accuracy of our time distribution 
algorithm: A master node’s duty timer is used to generate periodic state transitions 
at the HWSNAP-signal fed to all nodes in the system (cf. Figure 5) A dedicated task 
at each node reads the timestamps triggered by HWSNAP-transitions and sends it to 
a dedicated evaluation task at the master node for processing. The interested reader 
is referred to [APSOO] for further details and our evaluation results. 

5 NT1 ENHANCEMENTS 

Whereas the ps-range accuracy achieved by our memory-based NT1 implementation 
should be sufficient in most cases, we are aware of some more demanding applications. 
The currently most challenging one is on-line fault location in power distribution grids, 
i.e., the problem of finding out when and, in particular, where a fault (cable break, 
short circuit, partial discharge etc.) occurred in a -usually buried- power cable. One 
promising solution is to attach detectors at the power trunks in each power/transformer 
station, which timestamp the instant when the transient wave emanating from a fault 
location arrives. By relating the timestamps gathered at both ends of a cable, it is 
possible to determine the fault location on-line within a few 10 meters. Still, as the 
transient waves travel about 200 meters/ps, a precision in the 10 ns-range is mandatory 
for this application. 

However, our experimental evaluation [SN99] and [SKMfOO] revealed that memory- 
based timestamping cannot be improved by the required two orders of magnitude: 
Large on-chip FIFOs found in modern COMCOs severely impair E, and if a COMCO 
can store an entire packet in its transmit FIFO, the method does not work at all. 
Another drawback of our current NT1 is the required CPU intervention for moving 
receive timestamps into the CSP, cf. [HSS98]: Since receive time+accuracystamps are 
sampled into dedicated UTCSU-registers, they must be moved into an unused portion 
of the received packet before the next one drops in. The present NT1 uses a high- 
priority interrupt service routine for this purpose, which, however, generates a high 
interrupt load on the CPU in case of back-to-back receptions. Moreover, as M-Modules 
provide a single interrupt line only, any UTCSU-interrupt is forced to be a high-priority 
one. 

In order to circumvent those shortcomings, we recently developed a novel Media In- 
dependent Interface-based timestamping method that can be used in conjunction with 
almost any modern lo/100 Mb/s Ethernet chipset. Figure 10 outlines the basic ar- 



chitecture of our next generation MII-NTI, which will be built as a PC1 board. Note 
that supporting Fast Ethernet technology was considered mandatory, since it is widely 
used in office automation and becomes increasingly popular in other areas as well. 
For example, the Fieldbus Foundation (http:// www.fieldbus. or-g> and the Industrial Automa- 
tion Open Network Alliance (IAONA, http:// www.iaona-eu.com/) are trying to establish Fast 
Ethernet technology in the area of fieldbusses and automation, respectively. 

GPS Recewr 

Application Support 

Figure 10: Basic architecture of the MII-NTI 

MII-based timestamping exploits the fact that almost all Fast Ethernet controllers 
support the standard IEEE 802.3-compliant Media Independent Interface (MII) to physical 
layer devices. The Timestamp Logic outlined in Section 2 is placed into this MI1 data 
path, i.e., timestamps are now inserted on the network side of the COMCO rather than 
on its CPU side. More specifically, controlled by a state machine that recognizes CSPs 
by means of a special type field, time-taccuracystamps are latched from the UTCSU’s 
multiplexed NTPA-bus, serialized and then inserted transparently into the MI1 data 
stream. Since this is also done upon reception, no CPU intervention is required for 
moving the receive timestamps anymore. 

The MII-NT1 neither incorporates the CPU that executes the clock s nchronization 
software nor the Shared Memory that holds the data packets (cf. Figure Y Appropriate 
host components must be present instead, which can access the board via its PC1 
interface. A dedicated Local Bus is provided on board the NT1 to ensure that both 
the Fast Ethernet controller and the UTCSU can be accessed by the CPU. As Fast 
Ethernet chipsets are usually equipped with an integrated PC1 interface, we chose 
PC1 as our local bus and use a PCI Target chip for mediating accesses to the UTCSU. 
However, PC1 boards may only host a single PC1 interface; hence, a PCI-to-PCI Bridge 
is finally used for interfacing to the external PC1 bus. 

All remaining interfaces and devices are implemented in a similar fashion as on the 
current NT1 M-Module. 

We are reasonably convinced that the MII-NT1 will eventually provide a transmission 
delay uncertainty E in the few 10 ns-range. Combined with a faster UTCSU and more 
advanced clock synchronization algorithms, we should therefore be able to achieve a 
precision and accuracy in the 10 ns-range. A forthcoming paper will elaborate on the 
detailed description and experimental evaluation of our solution. 
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6 CONCLUSIONS 

We presented an overview of our SynUTC time distribution approach, which facili- 
tates fault-tolerant distribution of GPS-time even in Ethernet-based distributed sys- 
tems. Rather than equipping each node with a modular GPS receiver, we rely upon 
a small network-controller-level add-on hardware that allows exact timestamping of 
data packets as they leave and arrive at any node. With memory-based timestamping, 
as employed in our NT1 M-Module, a worst-case synchronization accuracy down to 
the ps-range can be achieved. Compared with pure software-based timestamping, this 
constitutes an improvement of three orders of magnitude. Our novel MII-based time- 
stamping method will allow to improve this already remarkable result even further. 
Apart from achieving a synchronization accuracy in the 10 ns-range, it can also be 
applied to 100 Mb/s Ethernet and network controllers with large FIFOs. 

The NT1 in conjunction with interval-based clock synchronization algorithms also over- 
comes both fault-tolerance limitations and practical problems inherent in any “ded- 
icated receiver”-solution: GPS-receivers do deliver wrong lpps pulses now and then 
[HS97], and the large time-to-fix may cause a joining delay of 30 seconds or more for 
newly powered up nodes. Last but not least, the “forest” of antennas required for a, 
say, distributed factory automation system with 100 nodes is difficult to accommodate 
and connect. Our approach simultaneously increases the fault-tolerance degree and 
decreases the number of GPS receivers required in the system - without additional 
(cabling) costs, by using the existing data network only. The only price to be paid is 
some moderate hardware support and decreased precision/accuracy, which is hopefully 
acceptable for most applications. 
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