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Abstract 

Resulis are presented of studies of different types of optimal and qua&optimal Kalman filters 
based on crystal and rubidium oscillators using reference timing signals from the Motorola GPS UT + 
Oncore Timing receiver. Filter equations are considered for different definitions of their coe#icients, 
and the filter output signal and its statistics are investigated in time under real conditions. Various 
Kahnan algorithms and corresponding optimal filter structures intended for crystal and rubidium 
oscilkors are discussed. Three-dimensional Xalman filters intended for optimal estimation of time 
error, frequency o&t, and frequency aging are considered based on the oscillator signal model. One 
application is the synchronization needs of digital communication networks and metrology. Results 
are given for the measured data and estimates are compared with respect to a quartz crystal oscillator. 
Practicrrl results are considered of the Kalman jilter’s use in application to an oven-controlled quartz 
crystal oscillator (OCXO) with an AT-cut resonator. Plots of the original and filtered processes are 
discussed for the different approaches to definition of the Kalman fiber coefficients. Estimates are 
also given for the filtering errors and the processing rate. 

INTRODUCTION 

Fast and accurate optimal Kalman filtering of the time error, frequency, and frequency offset of slaved 
sources (crystal and rubidium) is extremely important to create frequency and time standards looked after 
GPS timing signals. It is known that excillent accuracy less then lo-l2 is obtained in practice 
approximately through 24 hours, based on a smoothing filter. It is the reason why efforts are now 
underway in direction of the fast Kalman algorithm creation to obtain the same accuracy for the minimal 
processing time. Allan and Barnes in [l] showed that the filtering effect strongly depends on a measuring 

time interval A and that it must be of 100. . . 1000 sec. Later, series of reports have been devoted to the 
Kalman filters application,especially for phase, time,and frequency real-time estimates with prediction [2- 
5]. The papers are based on the Kalman fundamental approach [6] for the discrete-time optimal linear 
signal estimation with a white Gaussian noise and developed later by many authors in [7-81, for instance. 

The report addresses to the results of the various discrete-time Kalman algorithms (one-, two-, and three- 
state) use for the estimation of synchronization errors being based on the timing signals of Motorola 
Oncore UT+ Receiver. Once the purpose was to compare the various Kalman algorithms,then the results 
were found for one OCXO unit with an AT-cut resonator. WIule doing so,we dealt with many measured 
and estimated functions of the time error, freauency, and aging related to the OCXO and rubidium 
standard. It allowed comparison‘ and selection of appropriate optimal filter structure separately for each 
type of an oscillator and for measurement ana synchronization tasks. As it was expected, different 
algorithms gave different filtering errors. Only when the frequency drift showed a quasi-stationary nature 
did it not matter what type of Kalman filter was used. On the contrary, in the non-stationary case 
only vptlmal filtering and control algorithms provide sufficient accuracy. Here the major point is the 
timing model of the steered source. One must expect that a rubidium source of frequency may be 
disciplined by GPS signals with relatively small error in comparison with the crystal one,because of good 
a priori prediction of the phase behavior in time. We study major of these possibilities in the report. 
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DISCRETE-TIME KALMAN FILTER MODEL 

The oscillator or clock discrete-time equations are given by observation and state vectors [9] 
4, = H,h, +u, + n,, , (1) 

L = LL, f n,, , (2) 

where v = 0, 1, 2, . :. corresponds to discrete-time t, and measuring time interval A = 1, - !“_I , tv = k(tv) is 
m-dimensional observation vector formed by the reference short-term noisy GPS timing signals and the 
oscillator, h, = h(t,) is n-dimensional oscillator state vector (time, phase, frequency, aging, . ..), H, = 

H(I,.) is n?xn dimensional measurement matrix, uV = u(tV) is m-dimensional vector contains the control 

signals, A, = A(&) is nxn dimensional state transition matrix, no” = no(&) and nhv = nA(t,) are jointly 
independent vector white noises with zero expectations and covariance matrixes V, = V(L) and Y’, = 
Y(tV) are of mxm and nxn dimensions correspondingly 

v, = .%JCJ 9 (3) 

Y = &n,,n:J. (4) 

As usual, they deal with single observations and estimate some states of an oscillator or clock. It means, 
by expansion that if m < n then one may use the following algorithm of linear Kalman filtering based on 

(1) and (2) 

i, =A,_,~,_,+K,(~,-u,-H,A,_,~,_,), (5) 

R, =(I-K,H,)&, (6) 

R, = A._,R._,A:_, + ‘-I”, , (7) 

K, = Gi,~j: (H$,H; + VJ-1 , (8) 

where i, = A(?“) is a vector of oscillator state estimates, I is unit matrix, and R, = R(L) is the error 

covariance matrix. Solution (5) is justified for a common case and may not be simplified, as a rule. 
Nevertheless, in simple particular cases, one-dimensional algorithms may be sufficient. Setting n = m = 1 
in (5)-(8) we come to the following general form for the estimate 

1;” = P”_,C, + W& -% - H,P”_1~,_,) ) (9 

1 1 -= H,Z 

Pt-,L + DL’ + zTv ’ 

(10) 
RJ 

rt 

kv =%7 

(11) 

OV 

where ail the denotes correspond to the vector case. 

ONE-DIMENSIONAL ESTIMATES 

Based on (5)-(8) we consider below some particular algorithms of one-dimensional Kalman filters 
intended for frequency estimation only in crystal and rubidium oscillators if GPS timing signals are used 
as the reference ones. All results given are obtained with the Motorola Oncore UT+ Receiver. 

STATIONARY KALMANFILTER 

Let py = p, D,., = D)., H, = H, u, = u, and Dov = DO be the constant values in time and the limit RJ, = lim k 
“‘DC 

be known. In this case, the following equation forms the Kalman estimate 

~,,=pi,,,_i+H~(~“-u”-HP~“_~), 
0 

(12) 

432 



which is the stationary and non-optimal one, strictly speaking. Taking, as usual, that H = 1, j3 = 1, and 

u = 0 we transfer to the most simple form of the stationary Kalman filter 

i, = i,_, + % (C” - n,_,), 
0 

(13) 

where R,, is defined from (10) with c + 00 and K = &_, by the equation Rf + R,D,, = D,,D,, . As 

follows from simplification, such filter must bring small error in the steady state mode only. The results 
obtained by the filter (13) are denoted in the Figures as the 1”’ estimate. 

QUASI-• PTIMALKALMAK FILTER 

If wetake that p,, = 1, H, = 1, and uV = O> then we come to the following solution 

i, = i,_, + k,(j” - fi,_,) 9 (14) 
1 1 1 -_= 

R R,_, + D,, + D,, ' 

(15) 

k"+-. (16) 

OV 

If DA, = Dk and Do,, = Do in (14)--(16) are the constant magnitudes, then the quasi-optimal Kalman filter 

appears. Here we may take the following assumptions. Let Dbv = DA0 and DO” = Do0 be equal to the values 
known initially. For this case, we obtain the function marked in the Figures as the 2”d estimate. We also 

may evaluate the variances Dhv = Dx and DO” = DO, based on the regression line and obtain Kalman 

estimate starting from the certain discrete point. In Figure 1, we denoted this case the 3rd estimate. 

OPTIMALKALMANFILTER 

Optimal estimates are obtained by (14)-(16) if all the necessary parameters of the observation and 
frequency behavior are known for the arbitrary time point. We get such values (strictly speaking, it is also 

quasioptimal ones) based on the regression line 

y, =<+%p,,(t,-i), i=O,m 
c:r 

(17) 

where s = E{<,} and i = E(t,} are .expectations of 5, and t, respectively, erg = E{(<, -E)‘> and 
- 

0; = E((t, -i)'> are the corresponding variances, ps, = a(<, - EN, -a is the correlation coefficient. 
o:5=‘r 

Procedure (17) takes first m points of the process for definition of the filter parameters by the following 

way. We put down k(O) E h,_, = y,; then we find out d& = 5, - y, and obtain the values Dov = E(dtt} , 

(18). We further take the variance of the regression function (17) as o:, = M((y, - y)‘} and get 

DA, = Oh,, + 05, (19>, where Dhos is expected variance of an oscillator frequency. Let us note that 

function L&, depends on the regression function slope that results in the filter dynamic properties (inertia 

and inaccuracy). Finally, we take the initial value &_, = Dhm . The optimal estimates are denoted as the 41h 

ones in the Figures. 

EXPERIMENTALRESULTS 

Figures l-3 show the observation 5” formed by the OCXO frequency averaged over the time interval A 

= 100 set with the GPS timing signals. Here we also show the measured frequency function fV obtained 
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with use of the rubidium standard. We take it to compare with the received Kalman estimates and to 
evaluate the expected filtering errors for different algorithms. To get generalization we use the same 
observation for the all Kalman filters,noting that many experimental data havebeen processed in reality. 

Both 1”’ and 2”d estimates are based on the same constant values Do” = DO = 5.10-i’, D;,, = D;i = lo-**, and 

start zero point ho = 0. In opposite, 3rd estimate is started approximately after three hours of regression 

processing and based on the automatically defined values h(0) E h,_, = y,,, , DO" (1 S), and Dx, (19) 

obtained by the linear regression function (17). Another benefit of the regression function (17) usage 
jointly with the one-dimensional algorithm (14)-(16) is the possrbility of optimal Kalman filter creation. 

The procedure is similar to the abov+considered (17)-(19). The difference is following. Here we use 

the sliding regression estimates of DO", Dxv, and ~L,J based on which estimates iv+, are provided through 

the Kalman algorithm (14)-(16). Figure 3 shows the optimal function (41h estimate) jointly with the 
curve obtained by the quasi-optimal filter (Srh estimate). The major difference between those two. 

algorithms is following. In the 4& case we use, the variance function Dlv = si + &, where fix is &e de_ 

shed filtering effect_ and Dxv is the additional increment dependingon the estimate function rate so that 

iiV = (h, - h,_,)/~ . In the 5’h case, only equality D,, = ox is substituted. 

TWO-DIMENSIONAL ESTIMATES 

Let us address to the two-dimensional Kalman filter pursuing the aim to get jointly the estimate 7” of 

frequency f, and estimate GV of its aging rate CL,, and to obtain the prediction 7,. Based on (l)-(S) we 

write [9] 

5” = IV% + no, 7 (18) 

A, = A,_,&_, + nhv , (19) 
where 

I-I, =[l 01, (20) 

A, = 

(21) 

(22) 

n,, is a white Gaussian noise with discrete-time covariance V,, = Day = E(n&} = N,, /2A and n,, is a 

vector white Gaussian noise with covariance matrix [8, 31 yky = !$A 
A’/3 A/2 

i 1 Al2 1 
, where No, I2 and 

NcLy / 2 are two-side continuous spectral densities of the noises n,” and nav. Correspondent prediction is 

formed through estimates jV and -&-, by ?,,, = jV + A&., . Figure 3 shows the predicted curve (61h 

estimate) jointly with 41h estimate, for comparison. Here we see that the error in transient of prediction is 
more appreciable in comparison with the one-dimensional optimal case. Nevertheless, both optimal 
estimates obtain rather similar errors for the stationary observation data through 20 hours. So, in 
principle, direct frequency estimate is sufficient for prediction; that is extremely important for the 

synchronization needs when the GPS timing signal is not available. 

THREE-DIMENSIONAL ESTIMATES 

Here we address to the most accurate Kalman algorithm based on the oscillator timing model [lo]. 
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MATHEMATICALMODELOFTHEOSCILLATORTIMINGSIGNAL 

In the ideal case the total phase @id(t) of an ideal timing signal is presented by 

9, (9 = 2~v”,nlr 

where: vnorn is called nominal frequency. Correspondingly, total instantaneous phase model of actual 

timing signals cP(fJ is modeled as: 

O(t) = 0, + ~xv,,, (1 + yo)r + nDvnomt2 + y.(r) 

(23) 

(24) 

where: 00 is the initial phase offset, y. is the fractional frequency offset from the nominal value v,,, 
(mainly due to finite frequency settability of the clock); D is the linear fractional frequency drift rate 

(basically representing oscillator aging effects); q(t) is the random phase deviation component. Based on 
the definition of time error and the above model (24), the following model for time error x(t) results: 

(25) 

Assuming that for the measurement of X(I) the independent clock configuration applies and that the 

reference clock is properly chosen (i.e. all its degradation sources yo,ref, Dref , and (~&f) are negligible as 
compared to those of the clock under test), the x(t) model reduces to: 

D PW x(t) = x0 +y,t+jt* +- 
2~vnom 

(26) 

When the synchronized clock configuration applies and all slave clocks involved in the distribution of 
timing (including the clock under test) are operating in locked mode, yo,ref = y. and Dref = D can be 
assumed; the x(t) model then reduces to: 

x(t) = x0 + 
P(t) - f&f (4 

2~vllorn 
(27) 

THREEDIMENSIONALKALMANFILTER 

Based on the oscillator timing model (26) and the corresponding Kalman filter, one may expect the best 
filtering effect if the model and the filter are matched. Let us consider this possibility in detail using the 

model (26) and the algorithm (5)-(8) to create the corresponding three-dimensional Kalman filter. 

Decomposing the time error function X, into the series, we write 

x, = x,_, + Y~_~A + 0.5a,_,A2 + nxv, (28) 

where y, = y,_) + cr,_,A + ~7~ is a frequency, and a, = a,,_, + nur, is a linear component of frequency aging. 

It allows us to write the equation of the filter state in a form of (2) where 

hy =[-# A,, =[i a A;2]:nX,, ;!5!. (2% 

One-dimensional observation equation (1) is defined as 

5” = [<,,I 3 H,, = [I 0 01, no, = b,,l . (30) 

Correspondingly, the Kalman filter equations are defined by (5)-(8), where for independent and 
incorrelated noises we get 
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me Ynv =S~,,A+S~Aj13+S,,As/20; Yzlv =Y,:2v =S,.A2/2+S,,A4/8; Y21y = $A+ &,A3 I3 ; 

Yjj,, = S,l,A ; Y~,y = Y,:3r = S=yA3 ‘6; Y~zy = Y~3y =S,,A2i2; S, = N,l2, S, = N,/2 and S,, = NoLyI2 

are correspondent two-side spectral densities of the continuous noises depending on the time interval A in 
a general case. If to account an aging noise,onIy then matrix (32) yields 

Y”=+AE ;;; :;:]+‘A[; ; i]. (33) 

Corresponding prediction equations are obtained by the above-considered algorithm being based on the 

estimates of 2,) ;, and &, as follows 

%*, = i, + ;,A + 0.5&A’, 

yv+, = jiy + &A, (34) 

z VCl =&“. 

The equations (34), at bottom, are the working ones for the holdover operation mode of the slaved 
oscillator when GPS signals are not available [I 11. 

The results are given below for the Kalman algorithm (28)-(34) use for the synchronization error 

estimation. We consider the OCXO phase (time error) measured for A = 100 set based on the GPS timing 

signals of the Motorola ONCORE UT+ Receiver. Here digital sequence x, (the oscillator phase reduced 

to the time interval error) is the initial time error data that is processed by three-dimensional Kalman filter 

(28)--(34). As a result, we get the estimates i, , 5,) and &“. Frequency estimate i, is compared with its 

accurate magnitude obtained by direct measurement with the use of the reference time signal of lsec of 
the rubidium standard in the same time scale. Figure 5 shows the initial observation (time error) x, jointly 

with its Kalman estimate i, and expected error calculated as the difference E, = x, -i,, . Flowing from 

the physical sense, spectral density of the fluctuation of the aging speed within the noise matrix (33) is 

taken as S,, = 0.5N,,A = 4. lo-” Hz’ for the process. With this, the expected root-mean-squire time 

deviation (TDEV) and maximal time interval error (MTIE) ‘are estimated as oD = 282.7 ns and 

&la, = 39680 ns. Thus, in principle we getthepossrbility to reduce the time error by digital PLL to 

axe,, /CT, z 140 times. Figure 6 exhibits the measur,ed function of the relative frequency behavior of the 

same OCXO jointly with the Kalman estimate. Ifwetake the measured data as the reference data, then the 

difference function may be taken as the error function, where TDEV equals oEv = 146.1 O-'" for the 

considered case. Correspondingly, TDEVs of the measured and estimated curves are crym = 325. IO-l2 and 

cr,, = 286.1 O-“ . Hence, the expected frequency control effect yields a,, =c+s,. =1.96 and 

a vm = cym lo,), = _. 3 4 with respect to the measured and estimated data correspondingly. Finally, Figure 7 

shows estimates obtained for the frequency aging. Mean value of a, equals Cr, = Ela,,} = -2.7 * lo-" Is 

upon the .observation interval. TDEV for a, is equal to CT, = 3.4. 10-141c, and the ratio of the two 

statistical estimates is 0, / Cr, = 12.4 that is due to the extremely small SNR<<l. 
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CONCLUSION 

We have considered several Kalman algorithms intended for the time error, frequency, and aging 
estimation of the slaved oscillator being based. on the Motorola GPS Oncore UT+ Timing Receiver. 
General findings of the studies are following. The best results of the parameter estimation are obtained if 
the timing model of the oscillator is known and matched with the filter dimension. Thus, selection of the 
proper Kalman algorithm has to be done at the early stage of the filtering and control to get the best 
effect. In this regard, three-dimensional algorithm is the most efficient for the rubidium oscillator and 
brings less good results for the crystal one,as the function of the crystal oscillator frequency behavior in 
time has the complex nature and is less predictable. 

It follows that the stationary one-dimensional filter obtains accurate estimate with rather great noise. The 
quasi-optimal one with unknown initial statistics shows big error at the beginning stage of the process. 
Approximately the same, results give the optimal one- and two-dimensional filters. Therefore, one- 
dimensional filters seem to be preferable for the., fast and relatively accurate estimate of the only 
parameter (frequency, for instance). Two-dimensional ones allow prediction of the freauency offset and, 
therefore,are more preferable for synchronization tasks. Three-dimensional Kalman filters exhibit small 
inertia (negligible dynamic error) and high accuracy jointly with prediction of the time error for the 
holdover operation mode. This filter is well’ matched with a time model of the rubidium standard, and 
increase of the filter dimension is required in the case of’ a crystal oscillator, as usuai. The filter 
adaptation gives good results for one- and two-dimensional algorithms. Contrarj’ly, high .adaptation 
efficiency for three-dimensional filters take place in the case only when the time error function exhibits a 
step character. Let us mark that such a case is not the usual one for the rubidium oscillators. 
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Figure 1. The Kalman estimates of the OCXO frequency, GPS-based observation, and measured data. 
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Figure 2. Magnified scales correspond to estimates obtained by the Figure 1. 
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Figure 5. GPS-based three-state Kalman estimates of time error xev = 2, (a), frequency offset yv = >, 

and measured data (b), and frequency aging rate av = &, (c), 
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