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Abstract

Results are presented of studies of different types of optimal and quasi-optimal Kalman filters
based on crystal and rubidium oscillators using reference timing signals from the Motorola GPS UT +
Oncore Timing receiver. Filter equations are considered for different definitions of their coefficients,
and the filter output signal and its statistics are investigated in time under real conditions. Various
Kalman algorithms and corresponding optimal filter structures intended for crystal and rubidium
oscillators are discussed. Three-dimensional Kalman filters intended for optimal estimation of time
error, frequency offset, and frequency aging are considered based on the oscillator signal model. One
application is the synchronization needs of digital communication networks and metrology. Results
are given for the measured data and estimates are compared with respect to a quartz crystal oscillator.
Practical results are considered of the Kalman filter’s use in application to an oven-controlled quartz
crystal oscillator (OCXO0) with an AT-cut resonator. Plots of the original and filtered processes are
discussed for the different approaches to definition of the Kalman filter coefficients. Estimates are
also given for the filtering errors and the processing rate.

INTRODUCTION

Fast and accurate optimal Kalman filtering of the time error, frequency, and frequency offset of slaved
sources (crystal and rubidium) is extremely important to create frequency and time standards looked after
GPS timing signals. It is known that excéllent accuracy less then 1072 is obtained in practice
approximately through 24 hours, based  on a smoothing filter. It is the reason why efforts are now
underway in direction of the fast Kalman algorithm creation to obtain the same accuracy for the minimal
processing time. Allan and Barnes in [1] showed that the filtering effect strongly depends on a measuring
time interval A and that it must be of 100...1000 sec. Later, series of reports have been devoted to the
Kalman filters application, especially for phase, time,and frequency real-time estimates with prediction [2-
5]. The papers are based on the Kalman fundamental approach [6] for the discrete-time optimal linear
signal estimation with a white Gaussian noise and developed later by many authors in [7-8], for instance.

The report addresses to the results of the various discrete-time Kalman algorithms (one-, two-, and three-
state) use for the estimation of synchronization errors being based on the timing signals of Motorola
Oncore UT+ Receiver. Once the purpose was to compare the various Kalman algorithms, then the results
were found for one OCXO unit with an AT-cut resonator. While doing so,we dealt with many measured
and estimated functions of the time error, freauency, and aging related to the OCXO and rubidium
standard. It allowed comparison and selection of appropriate optimal filter structure separately for each
type of an oscillator and for measurement ana synchronization tasks. As it was expected, different
algorithms gave different filtering errors. Only when the frequency drift showed a quasi-stationary nature
did it not matter what type of Kalman filter was used. On the contrary, in the non-stationary case
only vptima filtering and control algorithms provide sufficient accuracy. Here the major point is the
timing model of the steered source. One must expect that a rubidium source of frequency may be
disciplined by GPS signals with relatively small error in comparison with the crystal one, because of good
a priori prediction of the phase behavior in time. We study major of these possibilities in the report.
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DISCRETE-TIME KALMAN FILTER MODEL

The oscillator or clock discrete-time equations are given by observation and state vectors [9]

E, =HA, +u, +n,,, 1)

A=A _A,, +1n,, (2)
where v=0, 1, 2, ... corresponds to discrete-time #, and measuring time interval A =1, - 1,1, & = E(1) is
m-dimensional observation vector formed by the reference short-term noisy GPS timing signals and the
oscillator, A, = A(z,) is n-dimensional oscillator state vector (time, phase, frequency, aging, ...), H, =
H(t,) is mxn dimensional measurement matrix, u, = u(z,) is m-dimensional vector contains the control
signals, A, = A(#,) is nxn dimensional state transition matrix, mo, = mo(ty) and m;, = my(z,) are jointly
- independent vector white noises with zero expectations and covariance matrixes V, = V(z,) and ¥, =
¥(z,) are of mxm and nxn dimensions correspondingly

Vv =E{n0vngv}’ (3)
\Pv = E{nkvniv} : (4)
As usual, they deal with single observations and estimate some states of an oscillator or clock. It means,

by expansion that if m < n then one may use the following algorithm of linear Kalman filtering based on
(1) and (2)

A=A AL +K,E -, ~H AR, | 5)
R, =(1-K H)R,, (6)
R,=A, R, Al +Y¥,, 7
K,=RHHRH]+V,)", (3)

where 4 =x(r,) is a vector of oscillator state estimates, I is unit matrix, and R, = R(#,) is the error
covariance matrix. Solution (5) is justified for a common case and may not be simplified, as a rule.
Nevertheless, in simple particular cases, one-dimensional algorithms may be sufficient. Setting n = m = 1
in (5)—(8) we come to the following general form for the estimate

}:v = Bv—liv—l + kv(év - uv - Hva—liv—l) > (9)
2
ot A (10)
Rv BV—]K/—] + DXV DOV
R,
=H, 2 )

Ov
where all the denotes correspond to the vector case.

ONE-DIMENSIONAL ESTIMATES

Based on (5>—(8) we consider below some particular aigorithms of one-dimensional Kalman filters
intended for frequency estimation only in crystal and rubidium oscillators if GPS timing signals are used
as the reference ones. All results given are obtained with the Motorola Oncore UT+ Recetver.

STATIONARY KALMAN FILTER

Let B, =B, D,y = D;, H, = H, u, = u, and Do, = Dy be the constant values in time and the limit R =lim R,

be known. In this case, the following equation forms the Kalman estimate

5\'\'=B5\'v—)+H%’—(§v_uv_HBiv-1)’ (12)

o]
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which is the stationary and non-optimal one, strictly speaking. Taking, as usual, that H =1, =1, and
u =0 we transfer to the most simple form of the stationary Kalman filter

fod o B 1) 0

where R, is defined from (10) with r > and R =R, by the equation R} +R D, =D, D, . As
follows from simplification, such filter must bring small error in the steady state mode only. The results
obtained by the filter (13) are denoted in the Figures as the 1% estimate.

QUASI-OPTIMAL KALMAN FILTER

It wetake that B, = 1, A, = 1, and u, = (,then we come to the following solution

by =hl +EE, R, (14)
1t 1 (15)
Rv Rv—] +Dlv DOv

k=R (16)
DOV

If Dy, = Dy and Dy, = Dy in (14)——(16) are the constant magnitudes, then the quasi-optimal Kalman filter
appears. Here we may take the following assumptions. Let D,, = D, and Dy, = Dy be equal to the values
known initially. For this case, we obtain the function marked in the Figures as the 2" estimate. We also

may evaluate the variances D,, = D, and Dy, = D;, based on the regression line and obtain Kalman
estimate starting from the certain discrete point. In Figure 1, we denoted this case the 3" estimate.

OPTIMAL KALMAN FILTER

Optimal estimates are obtained by (14)—(16) if all the necessary parameters of the observation and
frequency behavior are known for the arbitrary time point. We get such values (strictly speaking, it is also
quasi-optimal ones) based on the regression line

- O _ .
yi=é+_c£p§1(ti_t)’ 1=0’m (17)

where £=E{£} and 7=FE{s} are expectations of & and 7z respectively, 02=E{(§,-E)2} and

; = E{(t,~1)*} are the corresponding variances, p, = E{(, = &)t =1} s the correlation coefficient.
o0, :

Procedure (17) takes first m points of the process for definition of the filter parameters by the following

way. We put down A(0)=A,_ = y,sthen we find out g8, =& -y, and obtain the values D, = E{d:?},

(18). We further take the variance of the regression function (17) as o) = M{(y - )’} and get

D,, =D, +c,, (19), where D

Aos

is expected variance of an oscillator frequency. Let us note that
function D, depends on the regression function slope that results in the filter dynamic properties (inertia

and inaccuracy). Finally, we take the initial value R _, = D, . The optimal estimates are denoted as the 4"
ones in the Figures.

EXPERIMENTAL RESULTS

Figures 1-3 show the observation &, formed by the OCXO frequency averaged over the time interval A
= 100 sec with the GPS timing signals. Here we also show the measured frequency function f, obtained
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with use of the rubidium standard. We take it to compare with the received Kalman estimates and to
evaluate the expected filtering errors for different algorithms. To get generalization we use the same
observation for the all Kalman filters, noting that many experimental data havebeen processed in reality.
Both 1% and 2™ estimates are based on the same constant values Dy, =Dy = 5-10"9, D,, =D, = 10'22, and
start zero point Ao = 0. In opposite, 3™ estimate is started approximately after three hours of regression
processing and based on the automatically defined values A(0)=A,_ =y,, Dov (18), and D;, (19)
obtained by the linear regression function (17). Another benefit of the regression function (17) usage
jointly with the one-dimensional algorithm (14)—(16) is the possibility of optimal Kalman filter creation.
The procedure is similar to the above—considered (17)—(19). The difference is following. Here we use

the sliding regression estimates of Dy,, Dy, and A, based on which estimates iv,, are provided through

the Kalman algorithm (14)—(16). Figure 3 shows the optimal function. (4" estimate) jointly with the
curve obtained by the quasi-optimal filter (5 estimate). The major difference between those two
algorithms is following. In the 4* case we use the variance function D, = D, + D,,, where D, is the de-

sired filtering effect, and va is the additional increment dependingon theestimate function rate so that

D, =(h,~%,,)/A.Inthe 5" case, only equality D,, = D, is substituted.
TWO-DIMENSIONAL ESTIMATES

Let us address to the two-dimensional Kalman filter pursuing the aim to get jointly the estimate f’v of

frequency £, and estimate &, of its aging rate o, and to obtain the prediction };v Based on (1)—(8) we
write [9]

év = Hvlv +n0v’ (18)
)"v = Av-—l)\’v—] +nkv 4 (19)
where
H,=[1 0] (20)
A, ={ V} 2n
aV

1 A
A = , (22)

o 3]

. . . . A . . 24 .
n,, 1s a white Gaussian noise with discrete-time covariance V,, = D,, = E{n,} = N,,/2A and m,, is a

vector white Gaussian noise with covariance matrix [8, 3] ¥, = Noy A[A /3 872

2 Al2 1
N,, /2 are two-side continuous spectral densities of the noises n,, and n_,. Correspondent prediction is

} where N, /2 and

formed through estimates /}v and -, by fm = J}V+A&v. Figure 3 shows the predicted curve (6

estimate) jointly with 4% estimate, for comparison. Here we see that the error in transient of prediction is
more appreciable in comparison with the one-dimensional optimal case. Nevertheless, both optimal
estimates obtain rather similar. errors for the stationary observation data through 20 hours. So, in
principle, direct frequency estimate is sufficient for prediction; that is extremely important for the
synchronization needs when the GPS timing signal is not available.

THREE-DIMENSIONAL ESTIMATES

Here we address to the most accurate Kalman algorithm  based  on the oscillator timing model [10].
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MATHEMATICAL MODEL OF THE OSCILLATOR TIMING SIGNAL

In the ideal case the total phase ®;4(2) of an ideal timing signal is presented by .

©,4(1) = 21Vt (23)
where: Vyon is called nominal frequency. Correspondingly, total instantaneous phase model of actual
timing signals @(?) is modeled as:

()=, +2nv,, (1 +y e +nDv, .1* +0(t) (24)
where: @ is the initial phase offset, y, is the fractional frequency offset from the nominal value vyop
(mainly due to finite frequency settability of the clock); D is the linear fractional frequency drift rate

- (basically representing oscillator aging effects); ¢(f) is the random phase deviation component. Based on
the definition of time error and the above model (24), the following model for time error x() resuits:

x(e)= x, + (,Vo - %,m} 2 —2D’°f 1+ @(Q;V(me () (25)

Assuming that for the measurement of x(f) the independent clock configuration applies and that the
reference clock is properly chosen (i.e. all its degradation sources Yo rer , Drer » and @g(?) are negligible as
compared to those of the clock under test), the x(#) model reduces to:

nom

D, o)
x(t)=x0+yot+?t2+'2—;v— (26)

When the synchronized clock configuration applies and all slave clocks involved in the distribution of
timing (including the clock under test) are operating in locked mode, yorr = yo and D.r = D can be
assumed; the x(¢) model then reduces to:

o) = rer (1)

27Vpom

x(t) = xo + @7

THREE DIMENSIONAL KALMAN FILTER

Based on the oscillator timing model (26) and the corresponding Kalman filter, one may expect the best
filtering effect if the model and the filter are matched. Let us consider this possibility in detail using the

model (26) and the algorithm (5)—(8) to create the corresponding three-dimensional Kalman filter.
Decomposing the time error function x, into the series, we write

x,=x,_ +y,,0+05x,_ A +n_, ' (28)
where y, =y, +a, ,A+n, isafrequency, and a, =a,_, +n,, is a linear component of frequency aging.
It allows us to write the equation of the filter state in a form of (2) where

x, 1 A A2 N,
A=y, | 4=|0 1 A ,.n)w= n, | - (29)
a, 0 0 1 v
One-dimensional observation equation (1) is defined as
e.=le]. #,=l 0 0] n,=[n,]. (30)

Correspondingly, the Kalman filter equations are defined by (5)—(8), where for independent and
incorrelated noises we get
I N -
szE{nOVngv}zDO\':SOVX: ZZ =O.¢27\" (Jl)
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‘}Jllv \IJIZV \{JIBV
¥, = E{n?\vn{v} =Y, ¥, Y| (32)

. \Ij31" WBZV \P33V
rne ¥, =S, A+S N/3+S A/205 ¥, =¥, =S, 8/2+5,47/8; ¥, =S .A+S A/3;
¥, =505 %, =Y, =S /6, ¥, =¥, =S,4/2; S,=N_,/2,S,=N,/2 and S, =N, /2

are correspondent two-side spectral densities of the continuous noises depending on the time interval A in
a general case. If to account an aging noise,only then matrix (32) yields

A/20 A/8 A6 . 0 00
w =Napl g8 A3 Ar2 =Zea0 0 0 (33)
A6 A2 1 0 0 1

Corresponding prediction equations are obtained by the above-considered algorithm being based on the
estimates of x,, y, and @, as follows
X., =% +pA+050 A,
;v-b] =3, +&vA= (34)
&'v-o-] = &v *
The equations (34), at bottom, are the working ones for the holdover operation mode of the slaved
oscillator when GPS signals are not available [11].

EXPERIMENTAL RESULTS

The results are given below for the Kalman algorithm (28)»—(34) use for the synchronization error
estimation. We consider the OCXO phase (time error) measured for A =100 sec based on the GPS timing
signals of the Motorola ONCORE UT+ Receiver. Here digital sequence x, (the oscillator phase reduced

to the time interval error) is the initial time error data that is processed by three-dimensional Kalman filter
(28)—(34). As a result, we get the estimates x,, y,, and &,. Frequency estimate j is compared with its

accurate magnitude obtained by direct measurement with the use of the reference time signal of 1sec of
the rubidium standard in the same time scale. Figure 5 shows the initial observation (time error) x, jointly

with its Kalman estimate x, and expected error calculated as the difference ¢, = x, — x, . Flowing from

the physical sense, spectral density of the fluctuation of the aging speed within the noise matrix (33) is
taken as S, =0.5N,,A=4-102HZ" for the process. With this, the expected root-mean-squire time

deviation (TDEV) and maximal time interval error (MTIE) are estimated as o, =282.7ns and
Ax_, =39680ns. Thus, in principle we get the possibility to reduce the time error by digital PLL to
Ax,, /o, =140 times. Figure 6 exhibits the measured function of the relative frequency behavior of the

same OCXO jointly with the Kalman estimate. If wetake the measured data as the reference data, then the
difference function may be taken as the error function, where TDEV equals ., =146-10""" for the

considered case. Correspondingly, TDEVs of the measured and estimated curves are ¢, =325-107 and

, =286 07'2. Hence, the expected frequency control effect yields a,=6,/5,=196 and
a,,=0,,/0,, =2.4 with respect to the measured and estimated data correspondingly. Finally, Figure 7
shows estimates obtained for the frequency aging. Mean value of &, equals &, = E{ot,}=-2.7-107" /s
upon the observation interval. TDEV for o, is equal to 6, =3.4-107"/c, and the ratio of the two

statistical estimates is o, /&, =12.4 that is due to the extremely small SNR<<I.
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It follows that the stationary one-dimensional filter obtains accurate estimate with rather great noise. The
quasi-optimal one with unknown initial statistics shows big error at the beginning stage of the process.
Approximately the same results give the optimal one- and two-dimensional filters. Therefore, one-
dimensional filters seem to be preferable for the.fast and relatively accurate estimate of the only
parameter (frequency, for instance). Two-dimensional ones allow prediction of the freauency offset and,
therefore,are more preferable for synchronization tasks. Three-dimensional Kalman filters exhibit small
inertia (negligible dynamic error) and hich accuracy jointly with prediction of the time error for the
holdover operation mode. This filter is well’ matched with a time model of the rubidium standard, and
increase of the filter dimension is required in the case of ‘a crystal oscillator, as usual. The filter
adaptation gives good results for one- and two-dimensional algorithms. Contrarily, high .adaptation
efficiency for three-dimensional filters take place in the case only when the time error function exhibits a
step character. Let us mark that such a case is not the usual one for the rubidium oscillators.
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Figure 1. The Kalman estimates of the OCXO frequency, GPS-based observation, and measured data.
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Figure 2. Magnified scales correspond to estimates obtained by the Figure 1.
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