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Abstract 

In navigation satellite systems, it is necessary to determine the difference between the on-board 
time and the reference time for each s@eUite. This ofiet can be estimated in real time by filtering 
time measurements collected over a ground station network and has to be extrapolated when the 
satellite is out of visibilitg of this network. This analysis has been carried out at the CNES in the 
GNSS2 and GALZLEO context and leads to speci&ations on adjustment and extrapolation errors 
of the on-hoard time. 

The purpose of this paper is the estimation of the difference between the extrapolation and the 
real on-board time. 

4fter the description of the method, an example is given using reul data, and the predicted 
exfrapolation uncertainties are compared to the real extrapolation errors. 

INTRODUCTION 

In 1998, CNES proposed a new concept of orbit determination and synchronization 
for navigation satellite systems tll. In this architecture, an on-board filter processes 
measurements collected over a dedicated ground station network and uploaded in quasi 
real-time, in order to compute the ephemeris and the on-board synchronization. When 
the satellite is out of visibility from the ground station network, this synchronization 
has to be predicted. The maximum duration of extrapolation is 3.5 hours with the 
station network considered by CNES. 

In order to estimate the time error of the on-board oscillator when the satellite is 
hidden. a parabolic fit is performed over the sequence of observed time error data, and 
extrapolated during the hidden sequence. 
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The needs of orbit determination and synchronization were specified as the maximum 
deviation of the time error from the extrapolated parabola. The question is then: how 
is this maximum deviation related to the noise levels of the oscillator? Several papers 
have already addressed this question PI PI @I, but a new approach was chosen here 
because we are not only interested in the asymptotic trend of this maximum deviation, 
but also in its evolution close to the interpolated sequence. 

In this paper, we will denote by “Time Interval Error” (TIE) the difference between 
the extrapolated parabola and the real time error z(t) (seeFigure 1, left). By definition, 
the TIE samples are then the residuals to this parabola’(seeFigure 1, right). 

The TIE is due to two effects: the error of determination of the parabola parameters 
and the error due the noise of the oscillator. Obviously, both of these errors may be 
positive or negative, and the ensemble average of the TIE is equal to zero (seeFigure 
2, left). Moreover, it can be easily shown that the ensemble statistics of the TIEare 
Gaussian (see figure 2, right). Consequently, we only have to estimate the variance of 
the TIE in order to completely define its statistical characteristics. 

Moreover, the removal of a quadratic fit from the time error sequence cancels out the 
non-stationarity problem of very low frequency noises (see the moment condition in 
PI), and the variance of the TIE (i.e. the ‘&true variance”) converges for all types of 
noise without considering a hypothetic low cut-off frequency. 

In order to determine an estimation of the TIE, we will first redefine the interpolation 
method. Then we will compare the equations giving the theoretical estimates of the 
variance of the TIE to simulations and to real data. 

INTERPOLATION METHOD 
Interpolating Functions 

Let us consider a sequence of N time error data z(t), regularly spaced with a sampling 
period ro: {z(tO), z(tr), . . . ,z(t~_~)}, and ti = i~o. 

Rather than carryin g out a classical quadratic least squares interpolation: 

z(t) = CO + Clt + Cd + e(t) (1) 

where e(t) is the noise, i.e. the purely random behavior of z(t), we use the first three 
Tchebytchev polynomials PI [61 as interpolating functions (seeFigure 3): 

2 

6% - 6(-v - 1); + (IV - 2)(-‘V - 1) 1 . 

The interpolation we use is then: 

(2) 

z(t) = PO+,(~) + Pl@l(t) + F&(t) + e(t). (3) 
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where the parameters {PO, PI, P2} have the same dimension as z(t), i.e. time. 

The classical parameters {Co, Cl, CZ} of (1) may be. easily deduced from the parameters 

{PO. PI, Pz} of (3). 

Besides their dimensionless nature, the advantage of using these interpolating functions 
stems from their normality and orthogonality. which greatly simplify the estimation of 
the parameters PO, Pi,and P?,as well as their statistical characteristics, as will be shown. 
Moreover, the Tchebytchev polynomials minimize the truncation errors, because their 
covariance matrix is optimized for avoiding bad conditioning problems. 

Properties of the Interpolating Functions 

Let us define the vector di associated to the interpolating function ai as: 

ai 

G;i= 

i . 1 : . 

Qi(tN-1) 

(4) 

It is then possible to build the matrix [a]: 

( 

@o(to) @l PO) %(to) 

[Q] = (5, 61 52) = i i i . (5) 

@O(tN-1) @l(tN-1) %(tN-I) 

One of the main properties of the Tchebytchev polynomials lies in the orthonormality 
of the vectors associated to these interpolating functions: 

where [Is] is the unit matrix (3 x 3). 

Estimation of the Parameters (PO, PI, Pz} 

Let us define the vector .? as: 
x00) 

x’= 

i 1 

; . (‘iI 

x(tN-1) 

This vector may be modeled by: 
x’=[qF+E (8) 

where P’ is the vector whose components are the three parameters we want to estimate, 
and 2 the vector containing the purely random part of _?: 

and E= 

In order to estimate 3, we have to calculate: 

(9) 
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FromEquation (6) and because the ensemble average ([@]rg) = 0, an estimator of P’ is 

b defined by: 

j = [@]V. (11) 

Thus, the estimate pj of the parameter Pj is easily obtained by calculating: 

ESTIMATION OF THE TIME INTERVAL ERROR (TIE) 
Estimation of the Residuals 

From ( ll), the residuals may be defined as a vector d: 

E = 2 - [q$. (13) 

The variance of the residuals C: may be estimated by: 

From (13) and because the ensemble average (9[4]b) = 0: 

(R’.d)=(_fV)-p-G). 

(14) 

(15) 

The scalar product ( > 
ZrX’ is N times the variance IJ$ of the z(t) data and the scalar 

product is the sum of the variances of each estimate i)o, k, and &. Thus, the 

variance of the residuals may be estimated by: 

Correlation of the Samples 

Obviously, the long-term behavior of the TIE depends greatly on the type of noise (from 
fs4 PM to white PM). The autocorrelation function R,(t) of the z(t) data contains the 
information about the type of noise. Since it is the Fourier transform of the spectral 
density S,(f). R,(t) may be estimated by using: 

fh 
R,(t) = 2 

J 
cos(2~f~)Sz(f)@ (17) 

fr 

where fi is the low cut-off frequency and fh the high cut-off frequency. 
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Calculation of the TIE 

By hypothesis, we consider that the TIE is the difference between the true time error 
c(t) at time t, and the extrapolation of the parabola (previously estimated from to to 
t,~-~) up to this time t > t~_l: 

TIE(t) = x(t) - Poao(t) - P*aqt) - Pp&(t) and t > tN_I. 

Thus, the quadratic ensemble average of the TIE may be estimated by: 

(18) 

(TIE’(t)) = (z’(t)) + (Ijo?) Q;(t) + (p;) G’;(t) + (&?)‘D;(1) 

-2 [(.c(@o) @o(t) + (t(tP?) ‘PI(t) + (z(@*) O?(t)] 

+2 [(“olji) @o(Vl(t) + (POP?) ‘Po(Vz(t) + (~&)%(t)%(t)] . (19) 

Consequently, for each type of noise, we have to know: (z’(t)) = R,(t), the autocorre- 

lation function of z(t); the 3 variances @ = us,; the 3 covariances 
(> 

and the 3 covariances (z(t)A) = Cov (x(t), Pi). 

RESULTS AND DISCUSSION 

Theoretical Results 

Since we are interested in the long-term behavior of oscillators, we only estimate the 
TIE for the 3 lower frequency noises: white FM, flicker Fwand random-walk FM. The 
theoretical calculation of the above quantities yields the following variance: 

l White FM: 

l Flicker FM: 

(TIE2(t)) x “‘;$ s$- ?$+692$-424N$+136N2$-2oN3;+N4 

+$$ln(i-F) (,$-,N$-+9N2$-sN3~+N4)]. (21) 

l Random walk FM: 

lllONc + 933N*-;; - 294N3 
t* 

ho” 
76 

;+23N4 . 
) 

(22) 

All the above equations were obtained under the assumption N >> 1. 

Estimation of the TIE Using the Variance of the Residuals 

The relationships (20) to (22) need an explicit knowledge of the noise levels k,. How- 
ever, for very long-term interpolation (several days), we may be sure of the dominant 
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type of noise: the flicker FM for a cesium clock or the random-walk FM for a 
oscillator. 

Thus, the variance of the TIE may be estimated directly from the variance 
residuals : 

l Flicker FM: from (16) we obtain 

and from (21) and (23): 

quartz 

of the 

(23) 

(TIE’(t)) = 692$ - 424,-s + 136N$ _ 20~3; + N4 

+N$+9N2$-jN3;+N4 . )I (24) 

l Random-walk FM: from (16) we obtain 

CY2 z 
n4N3k 4~3 - 0 

315 

and from (22) and (25): 

(T@(t)) = ?$ (450; - lllON$ + 933N’; - 294N3; + 23N4) 

(25) 

(26) 

It may be noticed that, for a fixed value of o,, 2 the asymptotic ratio of Equation (26) 
over Equation (24) is exactly equal to 3 when t tends toward infinity. 

However, this method is less precise than the use of a correct estimation of the noise 
levels, due to the statistics of the estimate of the variance of the residuals. We have 
observed experimentally that this estimate is x 2 distributed with a small number of 
degrees of freedom (3 for a flicker FM and 2 for a random-walk FM). Consequently, 
the standard deviation of the TIE, i.e. the square root of equations 
follows a Student law. Thus, the bounds given by the square root of 
and (26) still contain 68% of the realizations, but the 95% confidence 
more than 3 times higher. 

Comparison with Simulaiions 

(24) and (26), 
Equations (24) 
mterval (2g) is 

In order to verify the Equations (20) to (22), we simulated time error sequences of 
different types of noise (white FM, flicker FM and random-walk FM). For each type 
of noise, 10,000 realizations were calculated with the same noise level’ (k-2 = 1.4. 10V4s, 

k-3 = 3.3. lo-’ or k-4 = 5.0.10-“s-‘), the same number of data (65,536), the same number 
of data taken into account for the fit (8640), and the same time of estimation of the 
TIE ($ equals to (8639, 9900, 11350, 13000, 14900, 17000, 19500, 22400, 25700, 29400, 33700, 38600, 

44300, 50700, 58100, 65535)). The noise levels were chosen such that the variance of the 
residuals equals 1. 

‘We denote k, the noise levels of the time error spectral density S=(f), and ha+2 the corresponding noise levels 
of the frequency deviation spectral density S,(f). These coefficients are related by: ha+2 = 4a2k,. 
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Figure 4 shows the curves corresponding to the square root of equations (20) to (22) 
compared to the standard deviation estimated from the 10,000 simulations (i.e. half 
the width of the Gaussian ofFrgure 2). The simulations exhibit a quite good agreement 
with the theoretical curves. 

Application to Real Oscillators 

Figures 5 to 8 compare the long-term behavior of 2 real quartz oscillators to the bounds 
given by the estimated standard deviation of the TIE (the square root of equations 
(20) to (22)). 

The data from the oscillators are time errors sampled with a sampling period r. = 10 s. 
The fit was carried out over the first 24 hours of each sequence and extrapolated over 
the whole sequence (6 days for oscillator 1 and 90 hours for oscillator 2). 

For oscillator 1. the Allan variance yields h-2 = 4. lO_” s-l, i.e. k-4 = 10m30 s-l. Thus, 
the bounds ofFigure 5 were obtained by using the square root of (22). On the other 
hand, the variance of the residuals of the interpolated part (i.e. the first 24 hours) 
is aa = 1,4. lo-” s2. Thus? the bounds ofFigure 6 were obtained by assuming that the 
random-walk FM was dominant and by dsing the square root of (26). 

For oscillator 2, the Allan variance revealed that 2 types of noise must be taken into 
account: white FM (ho = lo-‘? s, i.e. k-2 = 2,5. 10wz4 s) and random walk FM (h_’ = 
1,s. 10s31 s-l, i.e. k-4 = 4. 1O-33 s-l). Thus, the bounds ofFigure 7 were obtained by 
using the square root of the sum of (20) and (22). On the other hand, the variance of 
the residuals of the interpolated part (i.e. the first 24 hours) is u,’ = 1,4. 10-18 s?. In 
this case also, we assumed that the random-walk FM was dominant, and the bounds 
ofFigure 8 were obtained by using the square root of (26). 

The experimental TIE curves remain in the theoretical bounds except for Rgure 6. 
This is quite compatible with the statistics of TIE since 32% of the realizations should 
be outside the bounds. 

CONCLUSION: A New Strategy for Long-Term Stability Analysis 

Besides the interest of this method for synchronization prediction, it may also be used 
for defining a new method for very long-term stability analysis. 

An oscillator may be continuously measured during a few days (e.g. a time error 
measurement with a sampling period of 1 minute during 10 days). From these data, 
the noise levels of this oscillator could be precisely determined PI 161 and a quadratic 
fit could be carried out. Thus, if the oscillator is continuously running in the same 
conditions, it could be possible to extrapolate the difference of this oscillator with the 
parabolic fit after a few months or one year. 

This analysis could be helpful in low accuracy time keeping applications, for instance 
for industrialists who periodically send their oscillator to an accreditation laboratory. 
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Figure 1: Quadratic fit over a time error sequence of white FM (left). The fit is performed over the first 

quarter of the sequence. The residuals of this fit (right) correspond to our definition of the TIE. 
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Figure 2: Dispersion of the TIE for 20 realizations of the same white FM process (left). The histogram of 
10000 realizations of the TIE estimates (here for t = 40,000s) exhibits a Gaussian behavior. 
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Figure 3: The first 3 Tchebytchev polynomials calculated for N = 100 data. 

Figure 4: Comparison of the estimation of the standard deviation of the TIE calculated from the equation 

(20) to (2’2) (solid lines) and estimated over 10,000 realizations of simulated noise (circles, squares, and 

triangles). The lower curve was obtained with white FM (circles), the middle one with flicker FM (squares), 
and the upper one with random walk FM (triangles). In order to use the same scale, the noise levels were 
defined in such a way that the variance of the residuals is equal to one (/c-z = 1.4. 10m4s, k-g = 3.3. 10m8, 
k-4 = 5.0. lo- l?s-l). The error bars corresponding to the estimates of the simulated noises are too small 

to be plotted on this graph. 
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Figure 5: Oscillator 1. Evolution of the TIE after the fitted sequence. The fit was performed over 1 day with 

a sampling period of 10s. The estimation of the TIE (dashed line) was performed fromEquation (22) by 
3o -’ using a noise level estimate: k-4 = lo- s . On the right, the plot is an enlargement of the first 4 hours. 
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Figure 6: Oscillator 1. Same as fig. 5. The estimation of the TIE (dashed line) was performed from 
Equation (26) by using the variance estimate of the residuals gz = 1,4 . 10-i’ s’. On the right, the plot is 

an enlargement of the first 4 hours. 
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Figure 7: Oscillator 2. Evolution of the TIE after the fitted sequence. The fit was performed over 1 day 

with a sampling period of 10s. The estimation of the TIE (dashed line) was performed fromEquations (20) 
and (22) by usin, 0 the noise level estimates: k-2 = 2,s. 1O-24 s and k-4 = 4 . 1O-33 s-l _ On the right, the 

plot is an enlargement of the first 4 hours. 
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Figure 8: Oscillator 2. Same as fig. 7. The estimation of the TIE (dashed line) was performed from 

Equation (26) by using the variance estimate of the residuals uz = 1,4. 10-i’ s’. On the right, the plot is 

an enlargement of the first 4 hours. 
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