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Abstract 

The Total variance approach involves periodically extending a data sequence beyond its normal 
meusurement duration and in such a way that a particular time statistic is expected to have the same 
value with extended data as without. For those statistics which estimate components of broadband 
noise processes, the approach can signi;ficantZy reduce the spread or uncertainty in the result. We 
describe a Total variance approach for improving the confidence of the estimation of the modified 
Allan variance (Mvar) for the five common integer power-low noises and which simultaneously has 
low, easily removable bias. We have found in simulation studies that if a relection-only extension 
procedure is applied to Mvar’s individual estimates, we obtain a new estimate of Mvar which exhibits 
an increase in equivalent degrees of freedom at mid- and long-term integration times. 

1 INTRODUCTION 

This writing assumes familiarity with the modified-Allan variance [l] defined as an expectation 
value of a squared second-difference of averaged time-error measurements, whose maximum-overlap 
estimator will be called “Mvar” [2]. The modified-Allan variance, like the traditional Allan variance 
with its maximum-overlap estimator called “Avar,” is suited to processes with stationary second 
increments. It is designed specifically to extract broadband oscillator and measurement-system 
power-law noise models with spectral densities following [3]: 

S, - const . f”, (1) 

where S, is the spectral density function in terms of fractional-frequency fluctuations {yt} and 
-2 5 cY 5 +2. 

Total variance, called “Totvar” (pronounced tot ‘-v&r) for short, characterizes typical white 
(WH), flicker (FL), and random-walk (RW) frequency modulation (or f”, f-r, fm2 FM) noise and 
drift, in addition to white or flicker phase modulation (PM) noise, with better confidence than Avar 
in terms of equivalent degrees of freedom (edf) [4-61. H owever, like Avar, Totvar cannot distinguish 
white phase modulation (WHPM) noise, cy = +2, from flicker phase modulation (FLPM) noise, 
cr = +l. The response to both is a T- 2 slope, thus Totvar (like Avar, see ref. [7]) separates 
broadband power-law noise into four of the five noise models. Totvar is implemented as follows. 
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A whole data run of length T,,, o f time-difference measurements xt is extended at both the 
beginning and end by attaching a sign-inverted and mirror-reflection copy of the original data 
sequence, referred to as an “odd extension” type because of the sign inversion, in effect creating 
a new virtual sequence xt # of length nearly 3T,,,. Avar is computed using the extended virtual 
sequence and the resulting estimator is denoted Totvar to show that the odd mirror-reflection 
extension procedure is used. In the presence of FLFM and RWFM, Totvar with respect to Avar 
has a modest negative bias in long term which can easily be removed. Totvar is a recommended 
substitute for Avar if long-term measurements of frequency stability are important [8]. 

Mvar distinguishes W’HPM noise, f+2 going as rm3, from FLPM noise, f’l going as T-~, 
and thus characterizes the full range of five integer power-law noise types. This property of Mvar 
makes it ideal for evaluating oscillator instability within synchronization and time-transfer systems, 
measurement systems dominated by phase-noise, and telecommunications networks [9]. 

Since the confidence improves for characterizing oscillator noises using Totvar, why not use its 
routine applied to other time-domain statistics such as, for example, Mvar? The reason is that with 
WHPM noise, the odd mirror-reflection extension introduces gross bias due to a step at the endpoint 
match. The step can be eliminated by omitting the sign inversion, using what is called an even 
mirror-reflection extension. Regrettably, this endpoint match is inappropriate for low-frequency 
broadband noise such as RWFM. With RWFM noise, short-term r-values have significant positive 
bias using the even mirror-reflection extension. The even mirror-reflection extension is nevertheless 
useful, primarily for characterizing synchronization systems in which RWFM is unlikely to be 
present [lo]. 

In exploring ways to reduce bias across all five common power-law noise types while still improv- 
ing confidence in terms of edf, we have found a’ new statistical routine conceptually based on the 
Total variance and its data extension idea to obtain a “Total modified Allan variance.” Rather than 
extending the T,,, -length data run, creating series xf and calculating Mvar at varying r-values 
on this one sequence, we first remove a background slope associated with the subsequence of length 
T = 37 corresponding to each subestimate used to compute Mvar at a particular r-value. This new 
subsequence, denoted {‘xt T}, is then extended by an uninverted, or even, mirror-extension, thus 

creating a new, triple-length subsequence {Ox,“,} used to compute one “Total Mvar subestimate” 
at that r-value. Finally, we average all Total &lvar subestimates obtained from each triple-length 
subsequence and available from the whole data run to calculate a new Mvar estimator called 
“mod-Totvar” (at that -r-value). Although a bit more complicated than Totvar, this procedure 
results in a modestly biased estimate of the modified-Allan variance having significantly increased 
edf covering five integer power-law noise types, thus the range -2 5 cy 5 +2. 

This paper reports results using simulation studies. Section 2 evaluates various types of data 
extensions and establishes the best procedure for a Total approach to Mvar. Section 3 defines the 
method of computing the estimator mod-Totvar (TO, r). Section 4 gives the responses, edf values 
and bias associated with mod-Totvar (70, T) as compared with the classical Mvar (TO, T). Section 5 
discusses why the name “mod-Totvar (TO, 7)" is suitable for the procedure found by the study 
presented here. 

2 TYPES OF DATA EXTENSIONS 

Four candidate extensions are investigated. An original data sequence {xi} is referred to as a 
subsequence consisting of NZE measurements, thus T = (Nzi - l)~o. This is actually a piece of a 
whole data run. It is extended to form a new, larger piece. The four types, each extension method 
(only the right extension is formulated for simplicity), and period are as follows: 
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1. An uninverted or even mirror-reflection, (zN+~ = ZN-i+i), 2T-periodic. 
2. A sign-inverted or odd mirror-reflection, (xN+~ = 22~ - x~_i+i), 2T-periodic. 
3. A straight periodic duplication, (XN+i = xi), T-periodic. 
4. Same as type 3 with end-to-beginning connections, (x~+i = xi - x1 + XN), T-periodic. 

Figure 1 illustrates these extension types. 

I I I 
b-T to b+T to+21 

Elapsed time 

Figure 1: Types of data extensions are: (1) 2T-periodic uninverted or even mirror-reflection, (2) 
2T-periodic sign-inverted or odd mirror-reflection, (3) T-periodic straight duplication, and (4) T- 
periodic duplication with end-to-beginning connections. 

The effect of random endpoint match on Mvar can now be observed by looking at time-shifted 
calculations of Mvar which go beyond sampling interval T, namely into the extended portion, and 
in increments of data spacing 70. It is desirable for the average of all time-shifted Mvar values to be 
least biased for all noise cases relative to the classical Mvar, which is the Mvar value corresponding 
to a null shift. 

Again, the subsequence {xi}, whose duration we have stated is a sampling interval 2’ and whose 
corresponding number of points is Nzi, does not necessarily represent the whole data run. For 
clarity, Tmaz, having N,,,, total number of points, will designate the duration of the whole data 
run. 

2.1 Reduction of Gross Bias: Selecting the Type of Data Extension 

We compute a series of mean values of each subestimate of Mvar and the standard deviation of these 
subestimates as a function of time-shifting through the extended subsequence. For illustration, 
let a subsequence consist of Nz = 769 points with To-spacing. For example, if 70 = Is, then 
T = 768s. Furthermore, set integration-time r = 25670 = 256s, that is, its max of T/T = 
l/3. 1000 different i.i.d. noise realizations of WHPM, FLPM, WHFM, FLFM, and RWFM were 
generated and followed by the application of each of four extension types in the previous section. 
For example, Figures 2 to 4 are results of the type 1 extension and show mean values and associated 
standard deviations (by the error bars) computed at each time shift of 10~0, that is, time shifts 
of OS, lOs, 20s , . ..75Os. 76Os, 77Os, . ..152Os. 1530s. Each mean value is an average of 1000 estimates, 
and the first mean value is at a null shift (OS), which corresponds to the classical Mvar result. This 
value repeats at a time shift of 768s or of 1536s, which respectively correspond to a T-periodic or 
2T-periodic extension type and observed to be one full, or circular, period of the mean value. 
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Figure 2: Time-shifted Mvar mean and corresponding la standard deviation of the mean (by the 
error bars) after extending a simulated subsequence by even reflection (type 1) for subsequence 
noise types white PM (left) and flicker PM (right). 

Figure 3: Same as Figure 2 for white FM (left) and flicker FM (right). 

The departure of the mean-value of Mvar as a function of time shift for various noise types is 
readily visible using this procedure. Our goal is to find a minimum in the difference between the 
classical, or null-shift, Mvar estimate indicated at time shift of 0 and an average of all remaining 
time-shifted subestimates. Each standard deviation, besides showing the uncertainty associated 
with each time-shifted Mvar value, also serves to indicate the degree of correlation in the data at 
that value of time shift as compared to a null shift. 

Extension types 2 and 4 introduce a very large bias in the presence of white PM, which is 
positively peaked at time shifts corresponding to the endpoints. This is because a phase step is 
very likely to occur at the endpoints. This step causes an undesirable positive shift in the mean for 
the extended segments. Types 2 and 4 however give better results with random-walk FM because 
the extended sequence is smooth, like the real data. 

Extension types 1 and 3 work well with white PM, but lack the smoothness typified by random- 
walk FM. Of the remaining extension types (1 and 3), type 1 (even reflection only, whose results 
are Figures 2 to 4) has lower departure, hence lower overall bias, as shown in a comparison in 
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Figure 4: Same as Figure 2 for random-walk FM (left) and using the type 1 extension. For 
comparison, the right plot shows results using a straight T-periodic extension (type 3) for random- 
walk FM. 

Figure 4 for the specific case of random walk FM noise. Moreover, type 1 involves a triply- 
extended subsequence, and achieves a greater edf advantage than type 3 which involves only a 
doubly-extended subsequence. We conclude that a data extension by even reflection (type 1) is the 
best candidate for constructing Total Mvar. 

2.2 The Effect of Frequency Difference and Drift 

Each subsequence is likely to be characterized by an offset in frequency as a linear rate offset 
or linear background in time-deviation data {xi}. This causes the evenly reflected subsequence, 
resulting from a type 1 extension, to have an artificial up-down ramp-function oscillation with 
period 27’. This artifact of the reflection-only extension of the subsequence is shown in Figure 1 
(Type 1). We can remove a linear fit to each subsequence to remove the linear background and 
cancel this oscillation. 

Removing a linear fit to time-error values in a subsequence is permitted because Mvar is invariant 
to an overall shift in both phase and frequency. In other words, a first-degree polynomial ~0 + cri 
which is added to the original subsequence zi does not change an Mvar result. Thus, we are 
at liberty to arbitrarily choose Q and cl in the subsequence. We will choose them primarily 
to suppress this spurious spectral component at frequency 1/2T arising from reflection-only data 
extension. Removing a linear fit suitably does this. 

As a final note, all of the extension types cause Mvar to be more sensitive to linear frequency 
drift, a quadratic function in terms of time deviation, As is the usual practice, an estimate of 
overall drift should be removed‘s0 not to mask the characteristic random noise level. 

3 METHOD OF COMPUTATION 

Given a sequence of time deviates {x~}, n = 1,. . . , Nzmaz, with a sampling period between adjacent 
observations given by TO, we define the r = mre-average time deviate as 

%(m) - ;;$+ (2) 
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Let z,(m) = Zn(m) - 2?&+,(m) + ~~+~~(m). By definition 

mod-ay2(T) = $ (z:(m)), 

where < + > denotes an infinite time average over n and mod-ay2 actually depends on m, specifi- 
cally both rc and 7. For simplicity, the To-dependence of mod-ay2 is usually suppressed as in (3). 
But this To-dependence is central to the advantage of using mod-ay2, and figures prominently as 
we now construct a Total version. z,(m) is computed from a data segment or subsequence of {z,}, 
consisting of 3m points. Define this subsequence ((5,)) = {xi}, i = n, . . . . n + 3m - 1. Offset the 
subsequence by removing a linear trend by making 

‘Xi = Xi - cli > 

where cl is a frequency offset which is removed to minimize C~~?m-l(oxi -ozi)2, to satisfy a least- 
squared-error criteria for the subsequence. In practice, it is sufficient to remove a background slope 
computed by averaging the first and last halves of the subsequence divided by half the interval. 
Now extend the “offset-removed” subsequence {“xi} at both ends by an uninverted, even reflection. 
Utility index 1 serves to construct the extensions as follows. For 1 5 1 5 3m, let 

OX# n-l = OX 0 # 
n+Z-17 xn+3m+1-l = OX n+3m-17 

to form a new data subsequence denoted as {‘XT} consisting of the offset-removed data in its center 
portion, plus the two extensions, and thus having a tripled range of n - 3m 5 i 5 n + 6m - 1 with 
9m points. Now define 

(5) 

where notation ‘z$(m) means that z,(m) above is derived from the new triply-extended subse- 

quence {‘XT}. The braces designate that an average is taken over all available n-values (seeEqn. (7) 
below). 
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Figure 5: Responses for white PM (left) and for flicker PM (right). 
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Figure 6: Responses for white FM. 
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Figure 7: Responses for flicker FM (left) and for random walk FM (right). 

A hat “ C ” denotes a sample estimate of the function. The maximum-overlap sample estimator, 

or moZcr,2(7c, 7, T,,,), ’ 1s what we have been calling “Mvar” and is given by [l, 2,9] 

- 
mod- ,a,2(.To I,T, Tmm = Mvar (70, m, IV,,,,) = 

1 N,,,, -3m+l 

2 (mT0)2 CNzrnaz - 3m + 1) 
c (G&r-4)2 7 (6) 
n=l 

forlsm< N3 1-J and T&z = (Nzrnaz- l)q, where LcJ means the integer part of c. Equation (6) 

is a simple average of Mvar subestimates given by ’ 1 (zn(m))2 in definition (3). “Maximum 
2(mr0) 

overlap” means that subestimates (the summand terms in (6)) are overlapping for m > 1, and are 
spaced by ro from which the simple average will have the best confidence in terms of edf [2]. At 
largest integer m = *, the summation in (6) consists of only one term, the whole data run 
“subestimate,” thus representing one degree of freedom. 

The corresponding subestimates of Totalmod-cV2(rc, T) in definition (5) are given by 

Like Mvar, a maximum-overlap estimator of Totalmod--aY2(rc, r) 
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would be a simple average of its subestimates as 

TotalGd--ay2(To, T, T,,,) = 
1 Nzmaz -3m+ 1 

2 (mT0)2 (Nzmaz- 3m+l) 
c 
n=l 

At largest integer m = *, the outer summation in (7) consists of one term as in (6), but the 
inner summation is comprised of 6m terms. Thus at long-term -r-values corresponding to large 

values of m, Totalgd--aV2 has a sizeable number of estimates which act to reduce the dispersion 
of variance results. This reduced dispersion is quantified by an increase in equivalent degrees 

of freedom (see Section 4.2). Totalzd-a,2 is called “mod-Totvar:) which will be regarded as 
an improved estimator of the modified Allan variance. Note that its confidence will depend on 
data spacing 70. This conceptual difference between mod-Totvar and Mvar means that actual 
measurements should be sampled at a fast rate, at least m(= ~/TO) 1 8, especially for long-term 
-r-values, in order to reap the greatest confidence advantage using mod-Totvar. 

4 SIMULATION STUDY 

4.1 Responses to Power-Law Noises 

Plots in Figures 5 to 7 compare mod-Totvar, classical Mvar, and a theoretical response for the five 
power-law noises. Each plot is based on 100 realizations of a particular noise in which Nzmaz = 
16,384. The theoretical responses are as follows: 

Noise Theoretical response of mod-a: 

WHPM 3h2/(8~‘7~) 
FLPM (24 ln(2) - 9 ln(3)) h1/(87r~7~) 
WHFM hol(47) 
FLFM (271n(3) - 321n(2))h_l 
RWFM 11x2rh_2/20 

where h, is the noise level in terms of the spectral-density of fractional-frequency fluctuations, that 

is, s,(f). 

4.2 Equivalent Degrees of Freedom 

Equivalent degrees of freedom (edf) for statistics such as Mvar depend on m and N,,,,. Table 1 
compares edf between Mvar and mod-Totvar again from 100 simulation trials in which NZmaZ = 
16,384 for each of the five power-law noises. The increased edf using mod-Totvar is significant 

as m gets large corresponding to long-term -r-values. Plots of Figures 5 to 7 include estimation 
uncertainties (by error bars) assigned to mod-Totvar using edf values in Table 1 and chi-square 
distribution properties. These error bars are conservative,since the actual distributions are slightly 
narrower, similar to those found using Totvar at longest integration times [4]. 

4.3 Bias 

From the same set of simulation trials, the bias associated with using mod-Totvar(To, 7) as com- 
pared to Mvar is essentially 0 for WHPM, within the uncertainty of the simulation, and progres- 
sively goes negative for FLPM , WHFM, FLFM, and RWFM noises. A practical convenience is 
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Table 1: Comparison of edf’s of Mvar and mod-Totvar and bias of mod-Totdev with 100 simulation 
trials of {z,} series consisting of N,,,, = 16,384 points each, 7 = n-~-c. 

Simulation Results 

m : 7 in units of 7-a Deg. of Freedom: Mvar 1 mod-Totvar Bias: 1 [l - m”$~~-] x 100% 

m WHPM 
8 3129 I4584 l-1.6% 

16 1363 I2084 l-2.2% 

32 598 I867 l-2.3% 

64 316 (458 (-2.4% 

128 178 I252 l-2.7% 

256 70.5 1101 l-2.5% 

512 42.8 162.6 l-2.5% 

1024 18.1127.7 l-2.2% 

2048 10.8 115.1 l-2.5% 

4096 3.2 15.1 l-3.4% 

5461 0.8) 4.2 l-2.8% 

FLPM WHFM 
1691 I2071 l-9% 2633 I2931 i-14% 

1001 Ill83 j-10% 1087 I 1246 j-14% 

502 I618 I-10% 472 I536 l-14% 

277 ( 334 I-10% 238 (265 (-14% 

95.2 ( 118 I-10% 89.6 I101 l-14% 

62.3 173.2 l-9% 55.8 162.6 l-14% 

39.3 146.1 /-lo% 25.7 / 29 (-14% 

16.7 ( 21 I-10% 14.9 116.7 l-14% 

5.116.3 l-9% 6.6 17.9 j-13% 

2.113.4 l-11% 1.8 / 2.3 l-15% 

0.9) 1.9 j-12% 1.2) 2.1 j-17% 

FLFM 
1709 I1843 l-16% 

910 / 960 I-16% 

441 I472 I-16% 

240 (252 (-16% 

1171125 I-16% 

43.2 / 47.1 I-16% 

25.4 126.8 I-16% 

13 114.3 I-16% 

4 14.5 I-16% 

1.4 I 1.9 I-16% 

1.0 12.0 l-17% 

RWFM 
1537 I1596 I-18% 

780~810~-18% 

366 I381 l-18% 

197 (203 (-18% 

111 Ill5 l-18% 

66.3 168.6 I-18% 

25.3 126.6 l-17.5% 

10.6 I 11.2 j-17% 

4.114.4 l-17% 

1.8 12.2 l-17% 

1.1) 2.0 l-17% 

that mod-Totvar’s bias is modest and uniformly distributed across all T-values. Table 1 gives the 
resulting set of percentage errors in terms of usually reported deviations, that is, percentage error 
between mod-Totdev and classical Mdev. 

5 SUGGESTED NAME: mod-Totvar (7b,7-) 

The terminology “modified” Allan variance, with estimator Mvar, has been used to distinguish 
its function, namely extracting estimates of the levels of five power-law noises, in contrast to 
the standard Allan variance, which separates four of the five. To minimize confusion and be 
consistent with existing terminology, we will refer to the variance of this paper as the “modified 
Total variant<’ shortened to “mod-Totvar” to distinguish it from the standard Total variance. 
Terminology such as “Total Mvar” is also appropriate and would not be confusing, but suggests 
to someone getting acquainted with the total concept that the same procedure for Total variance 
can be used equally for mod-Allan variance, which is not true. Classical Avar and classical Mvar 
have very different statistical properties. Since modification to the standard Total variance routine 
is considerable, the authors suggest the use of the name “modified Total variance: Hence, the 
usually reported square-root of such a plot would be called “modified Total deviation.” 

6 CONCLUSION 

Total estimators have been based upon the hypothesis that, for segment {z(t) : to 5 t _< T}, 

reasonable extensions for t < to and t > T can be formed by tacking on reversed versions of {z(t)} 
at the beginning and end of this part of the function [ll]. We have applied this approach to the 
modified-Allan variance, resulting in improved confidence at mid- and long-term integration times. 
Bias is small and easily removed. 
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