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Abstract 
The statkiical analysis of irregularly spaced data or the handling of series with missing data asks 

for particular care because results may be biased In particular, in PTTI applications, two poi& 
seem to be addressed: 

the noise analysis in t e r m  of Allan or related variances; 
the estimation of a missing datum on aparticular date. 

Both these issues are examined in the particular case of the current TWSTT measurement, by 
means of an analytical and theoretical approach that can be of more general interest. Some 
numerical estimates based on the TWSTT measures are eventually reported. 

1 INTRODUCTION 

Time and frequency comparisons repeated with an irregular periodicity are today the possible 
results of the new clock comparison technologies or the new working principles of atomic 
frequency standards. For example, the TWSTT (Two-Way Satellite Time Transfer) is currently 
operated on Mondays, Wednesdays, and Fridays, thus with a time interval between measures of 
2, 2, and 3 days. But the problems of handling unevenly spaced data is of more general interest, 
for example in case of optical synchronization links, in case of inter-satellite links, and in case of 
the repeatability analysis of the new frequency standards which do not work continuously. The 
statistical treatment of unevenly spaced data deserves some attention. In particular, in this paper, 
the issues of noise analysis and of missing datum estimation are investigated. 

As far as noise analysis is concerned, type and amount of noise are commonly estimated by the 
use of the Allan or a related variance. Such estimation requires a series of equally spaced data. 
When data are not equally spaced they are usually filled in by means of some reconstruction 
technique, e.g., linear interpolation. The reconstruction technique induces a modification on the 
true noise of the data series, but it should give the possibility to identify the real noise, at least in 
some spectral bandwidth. By the introduction of the Allan covariance matrices and by using the 
transformation laws of such matrices, the effect of interpolating missing data was inferred with 



an analytical treatment and its effect on typical clock noises was previously reported [I]. In this 
paper some other possibilities of estimating ADEV without or with minor data manipulation are 
also presented. 

The second task of interpolating a missing measure on a particular date is here approached with 
the double aim of smoothing the noise added by the comparison link and of retaining the clock 
noise for a correct evaluation of the clock behavior. The uncertainty of the reconstructed data is 
also evaluated by means of the least square theory and the use of the Kalman filter. 

Finally, the above procedures are applied to some TWSTT measures performed in the last 
months to provide an example of application and a preliminary evaluation of TWSTT data. This 
work was performed in the frame of a collaboration with the CCTF Study Group on TBrSTT 121. 

2. NOISE ANALYSIS 

When dealing with time and frequency measure sequences, the statistical tools commonly used 
to characterize the noise are the Allan variance or the associated Time variance (TVAR). These 
tools must be applied on equally spaced series. In case of unevenly data series, first of all it is 
thus necessary to obtain some evenly spaced sequences. With the aim of developing a general 
treatment, an analytical formulation was preferred instead than a simulative approach. This gives 
the advantages of allowing an insight on those parameters that most affect the results and of 
examining with a minimal effort another measurement periodicity or another noise case or a 
different reconstruction technique. The analytical processing requires the introduction of 
covariance matrices and the noise properties are examined by the transformation laws of such 
covariance matrices. In particular, the Allan covariance matrix and the TVAR(2) matrix are 
introduced. Mathematical details and discussion are reported in El]. 

Three possible approaches are examined in the case of a statistical analysis of unevenly data 
sequence: 
1) identifying some regularities in the irregular sequence; 
2) considering the original data as equally spaced by a "fictitious" zb In the particular case of 

the current TWSTT measures an equal separation with an average gap of 2 ~ 2 . 3 3  days 
between the data can be assumed; 

3) reconstructing the missing data on Tuesdays, Thursdays, Saturdays and Sundays with some 
specific interpolation rules, in order to obtain a daily spaced series. 

2.1 CHECKING FOR SOME REGULARITIES IN THE IRREGULAR SEQUENCE 
This approach consists in the research of those possible regularities that are present in.the 
unevenly series. The interest is to highlight in the sequence those particular triads of phase 
samples spaced in such a way as to permit the estimation of a single two-sample variance i.e. a 
single phase second difference. Let's remind ourselves, in fact, that the ADEV estimation is 
performed by averaging a certain number of phase second differences A2x as: 



The three phase measures x(t), x(t+z) and x(t+2z) must be subsequent and spaced by the same z 
interval. Other second differences A2x can be obtained from following triads of phase measures 
even if not subsequent to the first considered triad. The ADEV determination in fact asks for the 
estimation of the variation of the mean frequency averaged over two subsequent z intervals. 
Then, other phase second differences A2x can be estimated over whichever 22 interval provided 
that another series of three phase measures, evenly spaced by a z interval, is available. As an 
example, the case of the integration time equal to 2 days can be considered (Figure 1). For each 
week, the estimation of two adjacent mean frequencies is possible (one averaged between 
Monday and Wednesday and one between Wednesday and Friday). This implies that for each 
week it is possible to estimate one second difference A2x. The higher is the number of weeks in 
the sequence, the higher the number of the possible A2x estimations to determine the final 
estimation of the ADEV(2 days) and the better the degree of confidence. 

Analogously this is possible for any z= 2, 5, 7, 9 ,... , 7n, 7nk 2 days. The case of z= 7, 14, ... 7n 
days is trivial because for example all the Monday measures form a sequence of weekly equally 
spaced data. In this case, moreover, the overlapping estimation technique can be applied and also 
the MDEV and TDEV can be estimated. In case of z = 2, 5,  9, .. 7n -t 2 days, the triad of phase 
measures are not subsequent; therefore the overlapping ADEV and the classical estimation of 
MDEV and TDEV is not possible. In such cases, apoint estimate of TDEV was proposed 121. In 
case of a missing measure, the only consequence is that a particular triad of phase measures 
cannot be used and the number of possible estimates A2x is decreased, but if the number of 
measurement weeks is large, the confidence on the ADEV estimation can be assured. In 
conclusion, with an accurate analysis on the measurement date regularities, it is possible to find 
out specific values of z for which ADEV estimation can be determined directly from real data, 
without any manipulation. 

2.2 CONSIDERING DATA AS EQUALLY SPACED BY AN "AVERAGE" 2,. 

A second approach when dealing with irregularly spaced data series is based on the assumption 
that all the data are indeed equally spaced with an average gap. In the case of the current two- 
way measurements, an artificial separation of ~,,=2.33 days can be assumed for the values in the 
sequence. In each week, in fact, three measures are available and 7 / 3 9 - 3 3  days. 

The effects of this treatment on the noise recognition depend on the kind of noise and on the true 
separation between data. If WPM is considered, the noise analysis turns out to be always correct 
because data are completely uncorrelated and there is no difference in considerkg them at a 
certain date or another. Only in case of TDEV evaluation, attention is to be paid because TDEV 



values depend on the stated rr, value. With other noise types the assumption, instead, is nearly 
correct when the data aperiodicity is small. Otherwise the result may be highly biased. In the 
particular case of the TWSTT periodicity, it was found [2] that, in case of WFM and RWFM, 
such technique leads to a noise overestimation for small r. Since the repetition rate of TWSTT 
has only a slight aperiodicity, the bias in the results is only a minor one, but other data sequences 
affected by different aperiodicities could present more critical problems if treated as equally 
spaced. 

Despite the fact that the evaluation technique with an "average" .r, is quite simple and allows the 
use of the commonly made software that requires evenly spaced data, some underhand pitfalls 
can cause significant errors. For example, always in the case of the TWSTT periodicity, the 
average spacing of 2.33 days can be assumed when all the scheduled measures are performed, i.e. 
each Monday, Wednesday, and Friday. In reality it may happen that some measures fail or that 
entire measurement weeks are absent. The easiest procedure is to make a list of all the available 
measures regardless of their dates and to evaluate the ADEV with an overlapping procedure as if 
the data were equally spaced by an average .r, (estimated by total measurement period divided by 
the number of actual measurements). This can be very dangerous. In case of colored noises, the 
noise identification can be misleading, because data spaced for example by one or more weeks 
are treated as if they were spaced only by two or three days. 

2.3 MISSING DATA RECONSTRUCTION 
A third approach consists in the reconstruction of the missing data by using interpolation 
techniques. This solution was examined in [I], and also in [3]. It presents the disadvantage that 
results are biased because the interpolation acts as a filter. The results obtained in the case of 
WPM, WFM, and RWFM, considering the current TWSTT periodicity and a straight line or a 5' 
order polynomial interpolation of the missing data, are illustrated in [I]. Here only the example 
of white PM is reported in Figure 2, from which it can be seen that the technique of a fictitious 
r0=2.33 days seems to lead to overestimation, while the interpolation leads to underestimation of 
the true noise, particularly for small values of the integration time. It is worthwhile to stress that 
the overestimation of the first method is due to the dependency of TDEV on z, value, while with 
colored noises, the overestimation is effective. 

3. THE ESTIMATE OF MISSING DATA AND UNCERTAINTY EVALUATION 

Particular applications need the knowledge of the clock comparison exactly at a certain date 
which is not in the measurement schedule. The complete evaluation of the missing data asks for 
its estimate and also for the uncertainty of such estimate. 

To this aim, it is necessary to know: 
1. the uncertainty on the measured values and the kind of noise due to the comparison 

technique; 



2. the dynamical model describing the evolution in time of the clock difference and the noise 
affecting the clocks over the observation intervals of interest. 

Let's consider, for example, in the typical TWSTT sequence, measurements performed on 
Monday and Wednesday, but the necessity of estimating the clock difference on Tuesday. As a 
first step let's consider the simple case of measurements affected by negligible uncertainty. Two 
hypothesis are then assumed: 
1. measurements with negligible uncertainty; 
2. clocks affected by phase random walk (i.e. white FM) and clock difference (e.g. UTC[i]- 

UTCCj]) described by the following equation: 

where z represents the interval of one day, x(t) the clock difference, y the relative frequency 
deviation, and ~ ( t )  a random Gaussian noise yielding the white FM and thus the random walk 
PM. The latter assumption is reasonable in case of cesium clocks compared daily. From one day 
to the following one the dominant noise driving the clock behavior is a white FM, resulting in a 
phase random walk. It is also assumed that the relative frequency deviation y is known. That may 
not always be true because they also has to be estimated from the measures. The estimation of y 
can follow different ways (long or short observation interval, different number of measures.. .) 
and we will not discuss here this topic. If comparison measures are available for a certain period 
of time (e.g. months), it is reasonable to assume that the frequency deviation can be easily 
estimated and thus, for the Tuesday interpolation, it may be supposed known. The situation is 
thus depicted in Figure 3 where the knowledge on Monday and Wednesday is "perfect," but in 
the middle the random behavior of the clocks can follow different paths. The estimate of the 
clock state and its uncertainty follows from the theory of random walks. 

A random walk is a process defined by the accumulation of independent random steps and it is a 
particular Markov process [4], whose peculiarities is that the knowledge of the future state 
depends only on the present state and not on the past. In case of clocks, it means that the 
"position" on Tuesday depends only on the position on Monday and not on the previous 
behavior. The knowledge of the Monday value is then sufficient to estimate the possible state on 
Tuesday. Since the state on Wednesday is also known by measurement, estimation on Tuesday 
can also be seen as a "backward" estimation problem. From the theory of least squares and its 
dynamical version (Kalman filter) it can be demonstrated that the best estimate iTu, of the 
Tuesday value, knowing Monday and Wednesday measures and with the assumptions above, is 
the average value (corresponding to a straight line interpolation) between the measures of 
Monday and Wednesday. Such estimate is described by a Gaussian probability density centered 

on the average value i T u e = ( ~ n + ~ v e d ) / 2  and its uncertainty is given by urue = &, where 

o w ,  is the "diffusion coefficient" describing the daily random walk and that can be easily 



estimated by observing [IS] that cr:w = AVAR(r).-r , with dimensions of [GL] = ns2/day, when x is 
measured in ns and z in days. The estimation of the Tuesday value is thus obtained as depicted in 
Figure 4. 

Let's now consider a more realistic case with the following assumptions: 
1. measurements with an uncertainty due to the comparison system, corresponding to a white 

PM (thus uncorrelated from one measure to the following and uncorrelated from clock noise) 

with zero average and variance crk ; 
2. (as before) clocks affected by phase random walk (i.e. white FM) and clock difference (e.g. 

UTC(i)-UTCCj)) described by the following equation: 

In this case, the measurements are executed with an uncertainty 0, ; therefore the knowledge of 
the clock state on Monday and Wednesday is not perfect. From Monday to Wednesday, the 
evolution of the clock state is always described by random walk in phase. The best estimate is 
also in this case obtained by the average of the Monday and Wednesday values, but the 
uncertainty of this estimate contains also the contribution of the measurement uncertainty, 
leading to a final Tuesday uncertainty u~~~ equal to: 

In this situation also the previous and following measures become useful. By the knowledge of 
clock behavior and the characteristics of the involved noises, the measures performed before that 
Monday can be inserted in a Kalman filter and the estimation of the clock state on that Monday 
can improve. That means reducing the uncertainty on the knowledge of the clock state on 

Monday, i.e. reducing the G, by the use of previous measurements. Let's indicate by crb,, i.e. 
"best estimate," the resulting uncertainty on the knowledge of the clock state on such particular 
Monday. If the model is correct the following relationship holds: 

crb.e < Oms 

The same can be done backwards, for improving the knowledge of the Wednesday state by 
filtering the measures at disposal after that particular Wednesday. We are now in the same 
situation of the beginning but with the estimates on Monday and Wednesday affected by a minor 

uncertainty Nevertheless the clock random walk between Monday and Wednesday is 
unchanged and unaffected by the knowledge of previous and following data. The previous and 
the following data can be used to reduce the uncertainty of the Monday and Wednesday 

estimates, but nothing can be done to reduce the noise contribution 0,. Therefore the best 
estimate of the Tuesday datum is always obtained by the average he = [ ( X M ~ ~ + X W ~ ~ ) / ? - ]  with 

uncertainty given by J(G;W ' D;/ as depicted in Figure 5. 



Let's now briefly examine the case of a reconstruction on Saturday or Sunday datum based on 
the Friday and Monday measures. In the case of measures without uncertainty, the best estimate 
of the Saturday value is obtained from the linear interpolation of the Friday and Monday values, 
but, if the measures are affected by an uncertainty om,, the estimate on Saturday is not directly 
the linear interpolation of Friday and Monday data, but it has a term depending on the a,, and the 
frequency deviation y also. The best estimate isat of the Saturday value can be written as: 

and it can be seen that, in case o,,=O, the estimate reduces to the linear interpolation given by : 

The uncertainty usat on such best estimate can be written as: 

the same expressions are valid for the Sunday reconsbxction, by interchanging the role of Friday 
and Monday. 

The assumptions herewith considered can be quite realistic in the case of TWSTT comparing two 
high performance Cs clocks. Actually, the model of the clock noise could be incomplete because 
a pure random walk was considered with frequency deviation y assumed to be known and fed as 
an external input. In case the frequency offset had to be estimated inside the same estimation 
process, the estimate would depend on the technique chosen for the estimation of the frequency 
deviation. In this case a complete Kalman filter has to be examined and some runs can give an 
estimate on the uncertainty of reconstructed values [2]. 

If the frequency offset is not known, the Kalman filter has to estimate both frequency and phase 
offsets between clocks, so some uncertainty is added on the Tuesday estimate because there is 
one more state element to be estimate and thus introducing uncertainty. Therefore, by adding in 
the model an unknown frequency deviation, the result is that the Tuesday estimate is obtained 
with larger uncertainty than the case here evaluated. The cases presented above can then be 
considered as the case leading to the minor uncertainty on the Tuesday reconstruction. Let's 
recall that the estimate is optimal only if the model, concerning clock dynamics and noise as well 
as measurement noise, is correct. 



4. RESULTS OBTAINED USING THE TWSTT MEASURES 

The developed theory was applied to TWSTT experimental measures supplied by the TWSTT 
Study Group, through the BIPM, and concerning three different data sequences as summarized in 
the following table 

First Last Days in Weeks in 
Datum datum the period the period 

01 -08-97 08-05-98 28 1 40 
01-08-97 08-05-98 28 1 40 
2 1-02-97 06-05-98 440 62 

The results on experimental data are to be considered examples of how the theory can be applied 
and which can be the consequent estimates in the frame of particular assumptions, with the aim 
of helping the following development and understanding of particular aspects of TWSTT and the 
use of their measures. 

4.1 NOISE ANALYSIS 
In order to evaluate the noise affecting these series, the three different approaches described in 
Sec. 2 were followed. In the case of ADEV evaluation, with the method referred as "true 
ADEV," i.e. the first of the outlined methods (Sec. 2.1), only the measures at disposal were used 
without any prior manipulation. The other two methods need some kind of missing data 
reconstruction, in fact also by using the method of a fictitious ~,=2.33 days, the missing 
scheduled measures (i.e. on Monday, Wednesday, and Friday) need to be reconstructed to 
preserve the spacing of 2-2-3 days between measures. This was done by linear interpolation, 
because it seemed safer than leaving the "holes" and evaluating a new average q,. The new 
sequences obtained are affected only by the typical uneven periodicity of the TWSTT. The last 
method (Sec. 2.3) asks for a complete reconstruction (i.e. also of Tuesday, Thursday, Saturday, 
and Sunday) in order to obtain a daily sampled data series. ADEV and TDEV were estimated 
according to the three procedures [2] .  

Let's here examine only a particular interesting result concerning only the "true ADEV." From 
an inspection of Figure 6 some important hints can be obtained. First, the ADEV behaviors are 
very similar to the high performance HP clock stability, indicating that, at least on such 
observation intervals, the noise added by the TWSTT link is negligible and clock instabilities are 
dominating. This is particularly true for the sequences TUG-PTB and TUG-NIST, where a first 
part due to white FM is recognizable. In the second part of the plot something similar to a flicker 
FM appears and &at could be perhaps due to the combined effect of true clock noise together 
with the steering or clock correction effect. If it is assumed that the ADEV of the sequences 
TUG-PTB and TUG-NIST represent clock noise, it is possible to trace the slope corresponding to 
white FM and estimating the white FM level of clock noise over z=1 day. This leads to the 



estimation of ADEV(1day) = 3.1 0-14 . 

On the other hand, the ADEV corresponding to the sequence PTB-NIST shows the typical clock 
instability behavior except maybe for the first point on 2=2 days, which seems a bit higher than it 
.should be if belonging to a white FM slope. Since we don't have here other information on the 
measurement system noise, let's assume that this first point belongs to a white PM slope 
representing the noise added by the comparison link. This is a conservative estimate of the 
synchronization noise; the actual noise could be lower. Also, this is an hypothesis on the TWSTT 
noise, and other hypotheses would be possible. The white PM assumption is certainly the 
simplest and often it is reasonable, but the final statement concerning TWSTT system noise 
come from experimental evidences and not from assumptions. Since we are here interested in the 
evaluation of missing data, such hypotheses are necessary for the following treatment, but results 
are valid only as long as the assumptions of the theoretical model can reasonably represent 
reality. 

If a white PM is assumed, by tracing the corresponding slope, a value of ADEV(1dq) x 3 .  is 
obtained, representing the noise added by the measurement system. Since, in the following 

evaluations, the classical variance D& of the measurement system is needed, it can be evaluated 
by remembering that in case of white PM the classical variance is equal to TVAR(2,) and that, 
when 2=2,=1 day, ADEV(r,)=MDEV(r,). Therefore, 

4.2 MISSING DATA EVALUATIONS 
The second problem of estimating UTC(i)-UTCCj) values on a certain date is also addressed in 
the fiarne of the following working assumptions: 
1. measurements with an uncertainty due to the comparison system, corresponding to a white 

PM (thus uncorrelated from one measure to the following and uncorrelated from clock noise) 

with zero average and variance oi, ; 
2. clocks affected by phase random walk (i.e. white FM) characterized by a "diffusion 

coefficient" a: and known relative frequency deviation y. 

From the noise analysis illustrated in the previous section and in particular from the discussion 
concerning Figure 6 ,  some estimates of the noise are assumed, with the aim of providing an 
example on how the estimation of the missing data can be performed. Therefore, the following 
numbers are not to be considered definitive, but only an illustrative example. 
As far as the noise of the comparison link is concerned, it was estimated that: 



As far as the clock noise o;w is concerned, it was estimated that ADEV(1day) = 3-10-14. By 

recalling the relationship, 02 = AVAR(r).r, with dimensions of [DL] =ns2/day, it can be 
estimated: 

With these noise values, it appears that the best estimate of Tuesday value, when measurements 
are performed on Monday and Wednesday, is the average value of the Monday and Wednesday 
measures with uncertainty UTue: 

while the best estimate of the Saturday value, when measures are performed on Friday and 
Monday depends on the value of the relative frequency deviation y, and its uncertainty is: 

5. CONCLUSION 

The statistical problems that arise in the treatment of irregularly sampled data were investigated 
and some possible procedure to overcome such problems were proposed. Firstly, the ADEV and 
TDEV analysis can be performed by following three approaches: 
1) finding some regularities in the irregularly sampled sequence. For example, in case of 

TWSTT, for 272, 5,7,9, 12, 14 ... days the ADEV can be evaluated without any manipulation 
of data; 

2) proceedings as if the data were equally spaced of a fictitious r0=2.33 days. Particular care is to 
be taken: results are correct only in case of pure white PM, if not the noise is overestimated; 

3) interpolating missing measures with the aim of obtaining a daily spaced sequence. Noise 
results depend on the real noise and on the data reconstruction which filters the faster noise 
frequencies. Therefore, for small values of z, ADEV and TDEV are underestimated. 

The second aim is the best estimate of the clock difference on a certain date when TWSTT 
measurements are not available and the uncertainty of such estimate. By using the theory of least 
squares and the Kalman filter it was possible to evaluate the best estimate and its uncertainty, 
which depends on the noise of the TWSTT measure as well as on the random noise of the clocks 
and on the clock model. To provide an example, the following working assumptions were 
formulated: 



- TWSTT comparison noise corresponding to a WPM; 
- clock noise over one day corresponding to a WFM; 
- relative frequency deviation of the compared clocks known with negligible uncertainty. 
In this frame the best estimates of the missing data and the uncertainties were inferred. 

It is worthwhile to remember that different level of noise or different models would lead to 
different estimates, therefore each particular situation has to be suitably evaluated, accordingly to 
the main lines here developed. In particular, the final uncertainty added by the measurement 
system should be derived from experimental tests and not only be based on assumptions. As a 
last remark, if the measurement was performed on the requested Tuesday or Saturday, the only 
uncertainty would be due to the measurement system. 
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Figure 1- Estimation of ADEV(2 Dw~). Measures are Figure 3. Random walk behavior between Monday 
executed on Mondqy, Wednesday and Friday. For any and wednesdW. 
A2x estimation, the three consecutive measures are 
considered for each week. 

Figure 4. Least squares estimation of Tuesday value 
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Figure 5 .  Least square estimate of Tuesday value in case of measurement~uncertainty. 
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Figure 6 .  True ADEV estimates for the three dzferent links with the slope of the white PM 
and white FM. 



Questions and Answers 

ROBERT DOUGLAS (NRC): For the uncertainty in the hydrogen maser comparison, were you including 
the flicker floor noise? 

PATRIZIA TAVELLA (EN):: Actually, I used white frequency and a drift, because I had some drift 
specifications on the hydrogen maser, which I used. I spoke with persons making the measurements, and I 
asked for the actual measurement, which seems to have a flicker. Since all these evaluations are done in 
an analytical way, the flicker is dd3cult to be treated analytically. I suppose that even if we consider 
something that is worse than flicker, for example, random walk frequency, it will be at such a lower level 
that in any case it will be negligible. The random part of the hydrogen maser will be negligible, I guess. 




