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Abstract 

Given a sequence of fractional frequency deviates, we investigute the relationship between the 
sumple variance of these deviates and the total variance (Totvar) estimator of the Auan variance. 
We demonsirate that we cun recover exuctly twice the sample variance by renormalizing the Totvar 
estimator and then summing it over dyadic averaging times 1, 2, 4, . . . , 2J along with one additional 
term that represents variations at all dyadic averaging times greuter than 2-?. This decomposition of 
the sample variance mimics a similar theoretical decomposition in which summing the true Allan 
variance over all possible dyadic averaging times yields twice the process variance. We also establish 
a relationship between the Totvar estimator of the AUan vuriunce and a biased muximal overlap 
estimator that uses a circularized version of the original fractional frequency deviates. 

1 INTRODUCTION 
The goal of this paper is to explore the relationship between the sample variance of a sequence 
of fractional frequency deviates {g,, : n = 1,. . * ,  NY], namely, 

and a new estimator of the Allan variance called “Totvar” (“total variance” - see the companion 
article by Howe and Greenhall [l] in these Proceedings for additional details). The Totvar 
estimator is based upon the hypothesis that reasonable surrogates for unobserved deviates yn, 
n < 1 or n > A?!, can be formed by tacking on reversed versions of { y n )  at the beginning and 
end of the origmal series. The Totvar estimator makes use of certain of these surrogate values 
in order to come up with a new estimator of the Allan variance that has better mean-squared 
error properties than the usual Allan variance estimator at the very largest sampling times 
(Howe and Greenhall [l]). Here we show that a renormalized version of the Totvar estimator 
can be used to exactly decompose twice the sample variance. Except for the factor of two (an 
historical artifact due to the original definition of the Allan variance), this decomposition of 
the sample variance is very much similar to the one afforded by traditional spectral analysis 
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estimators, which exactly decompose the sample variance across different Fourier frequencies. 
By comparison our results show that the (renormalized) Totvar estimator decomposes the 
sample variance across dyadic averaging times (ie., averaging times of the form 2j70, where T~ 

is the sample period for {u,,}). Our result thus says that the Allan variance can be regarded 
as an example of an analysis of variance technique, which is one of the most widely used data 
analysis methods in modern statistics. 

The remainder of this paper is organized as follows. In Section 2 we recall that in fact 
a very early estimator of the Allan variance (the nonoverlapped estimator) exactly decomposes 
twice the sample variance for the special cases when ivy is a power of two. Because of its 
poor variance properties, the nonoverlapped estimator is very seldom used, so we discuss in 
Section 3 what is generally considered to be the preferred estimator, namely, the maximal 
overlap estimator. The usual formulation of this estimator does not yield a decomposition of 
twice the sample variance; however, if we view this estimator as the mean-squared output of a 
circular filtering operation, we can augment the estimator with additional terms (namely, ones 
that make explicit use of the circularity assumption) and come up with an biased version of 
the maximal overlap estimator that does yield a decomposition of twice the sample variance 
for any sample size N,. Because of the potential mismatch between ~1 and y ~ , ,  this circularity 
assumption can lead to serious biases. Thus, in Section 4 we consider using the biased maximal 
overlap estimator with the series of length 2N, formed by tacking on a reversed version of 
{y,} at the end of the original series. This new estimator can be written as a renormalized 
version of the Totvar estimator. In Section 5 we summarize our results and conclude with a 
few comments. 

2 THE NONOVEFUAPPED ESTIMATOR OF THE ALLAN 
VARIANCE 
For this section only we assume that the sample size is a power of two ; i.e., we can write 
N3, = 2J for a positive integer J. Given a sequence of T0-average fractional frequency deviates 
{y, : n = I,.. . ,Ny} with a sampling period between adjacent observations given by T~ also, let 
us define the mro-average fractional frequency deviate as 

. m-l 

If we regard {~j , (m)  : n = m, . . . ,Ny} as a realization of one portion of the stochastic process 
{L,,(m) : n = 0, fi, f2,. . .}, the Allan variance for averaging time mi0 is defined as 

where we assume that the stochastic process is such that the expectation above in fact depends 
on the averaging time index rn, but not on the time index n (this will be true if the first 
difference process {L,(l) - F,+l(l)} is a stationary process). 

For m = 2J’ for j = 0,1,. . . , J - 1, let us form the so-called nonoverlapped estimator of 
the Allan variance: 
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For example, if j = 0 so that rn = 1, the above reduces to 

5 

so that each yn contributes to exactly one term in the sum of squares above (hence the origin 
of the name 44nonoverlapped estimator”). At the other extreme when j = J - 1 so that m = 2, 
we have 

The nonoverlapped estimator can be interpreted in terms of an orthonormal transform 
of the column vector y whose elements are given by (yn}. For & = 8, this transform is given 
by the following 8 x 8 mat& 
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(far other N,, the NY x Ny matrix W is formulated in an analogous manner and and is one 
version of the discrete Haar wavelet transform - for details, see, e.g., [4]). Letting w = W y  
and letting (wn} denote the elements of w, it follows that 

w ; + w ; + w ; + w ;  = 48= ,,-*(1> 
w , + w , ~  2 = 48:,-(2) 

w; = 42Z,-(4) 

w; = @2 

Because W is an orthonormal transform, we must have llw112 = lly112, where llxll is the usual 
Euclidean norm of the vector x. It follows that 

For general Ny = 2-’, the corresponding result is 

i.e., summing the nonoverlapped Allan variance estimator over all dyadic averaging times less 
than or equal to 3 yields exactly twice the sample variance (for additional details and some 
historical background, see Section I11 of [3]). 
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3 MAXIMAL OVERLAP ESTIMATORS OF THE ALLAN 
VARIANCE 

1 

The nonoverlapped estimator of the Allan variance is rarely used in practice because it does 
not take advantage of certain “information” regarding a:(rn). To see in what sense this is true, 
let us consider the form of the maximal overlap estimator for m = 1: 

Note that, whereas each y,, appears exactly once in the nonoverlapped estimator of Equation 
(l), the variables B,...,YN,-~ appear twice because now, in addition to terms like [p2 -y1I2, 
[g., - y3I2 and [UE - 95j2 that appear in 6;,-(1), the maximal overlap estimator also includes terms 
like [ys - yzI2 and b5 - g4I2. For general rn the maximal overlap estimator takes the form 

N, L c [ F k b >  - Fk-rn(774l2 * w, - 2m + 1) t2m 

- 2  qt,-(m) = 

Even if we were to restrict the sample size N;. to be a power of two 2J, it can be argued that 
in general 

J-1 

j-0 

so the usual maximal overlap estimator does not constitute an analysis of twice the sample 
variance. There is, however, an interesting way to define a variation on the maximal overlap 
estimator that in fact does yield an exact analysis of variance, as the following argument shows. 

We start with two filters {b,l} and {a,!} defined as follows: 

i, 1 = 0 ;  * 1=0;  
h0.l e -+, I = 1’ , and and GOJ = I = 1; and - {  0, 1 < 0 o r  1 2 2 ;  (a: 1 < 0 o r 1 > _ 2  

(in the wavelet literature, &J}  and {ao$) are two versions of what are called the Haar wavelet 
and scaling filters - for details, see, e.g., [4]). Let &(.) and &,(*) be the transfer functions for 
{L} and {God: 

OD m 
G hre- i 2 x f l  = ic-’rf si.(rf) and Goy) gle-i2rf’ = e-’“f cos(?rf); 

I=-m I = - 0 0  

i.e., &(*) is the discrete Fourier transform (DFT) of {hoJ). Note that we have 

lEo(f)12 + lG0(f)l2 = 1 for all f. (2) 

We want to circularly filter {gn} separately using the filters {ho,l} and { ~ o , l } .  Formally, 
we do SO by defining {&$ : 1 = 0, + .  * ,  N, - 1) and {& : 1 = 0,. . . , N y  - I}, which are said to be 
{ho~} and {GO,[} periodized to length IVY. By definition, 

Y 

t - c x ,  L 



with a similar definition for { j $ } .  If Ny 2 2, we have 

Z = O ;  
2 ,  I = 1; and and & = I: 1 = 1; and - I 0, 2'1 2 1 1 5 N y - l ;  

h;,i -- { 0, 2 5 1 5 N y - 1 ;  

* 1 = 0 ;  

if, however, Ny = 1 so that {&,} and {&} each have but a single term, then &,o = o and G;,o = 1. 
It is an easy exercise to show that the DFT of {&} can be obtained by subsampling the DFT 
for {&,$}; i.e., 

Nm-l 

C 
i=o 

e-i2xklIN u = &( k), k = 0) . * * , Ny - 1 * 0.1 

The finite sequences {&,i} and {I&($-)} thus constitute a Fourier transform pair, a relationship 
we will express as 

{f& : 6 = 0,. .. ,Ny - 1) - {I&(*) : k = 0,. . * ,  N9 - 1). 

Similarly we have 

I 

r 

, 

c 

. 

Let us now define 
Nm-1 Nm-1 

G , n  %$!/+l)mcd Nu and G , n  &y(,-l)mod N,, n = 1,. . . I N,, 

where we define n mod Ny to be n if 1 5 n 5 Ny and to be n + FEN, otherwise, where k is the 
unique nonzero integer such that 1 5 n + kNy 5 IVY (thus -1 mod Ny = N, - 1; 0 mod Ny = IVY; 
1 mod Ny = 1; . * ; Ny mod Nv = N,; Ny -t 1 mod Ny = 1; etc.). By construction we have 

1=0 l=O 

(3) 

i.e., we have expressed the maximal overlap estimator of the Allan variance for m = 1 in terms 
of a sum of squares of the output from circular filtering {yn} with {&,l}. 

An important point to note is that &:-(I) does not involve the entire output from 
the filter: it is missing Go,l oc YN, - yl, which is the only term that explicitly makes use of the 
circularity assumption. Inclusion of this term is one of the two keys to defining a version of 
the maximal overlap estimator that constitutes an analysis of variance. The other key is to 
recognize that 8:,-(2j) for j = 1,2,*.. can be obtained by further filtering of ($0,") so that, 
whereas contains information about the variations of {ynn) at TO averaging times, the series 
{Co,n} contains information about variations of {y,,} at all dyadic averaging times higher than T~ 

(ie., 270, hop etc.). Accordingly, let GO be an N, dimensional vector whose elements are {Go,.,}, 
and define Go to contain {Zo,n}- Letting {&} be the DFT of {y,,}, we have (from a standard 
theorem in filtering theory) 

{GpI - {r?b(k)~,~ and {G,n} - { Z O ( ~ ) Y ~ } *  

, 
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Parseval's theorem tells us that 

which in turn yields 

where we have made use of Equation (2) and a second application of Parseval's theorem. 

Let us now define the following estimator of the Allan variance for m = 1: 

We refer to this estimator as the biased maximal overlap estimator of oi(1) based on {g,,}. It 
differs from the standard maximal overlap estimator (Equation (3)) because of an additional 
term proportional to (YN, - ~ 1 ) ~ .  Although this estimator is in general a biased estimator of the 
true Allan variance, it is in fact unbiased when { g n }  is a white noise process. It satisfies the 
analysis of variance condition 

2 
5:,-(1) + fii,-(2) = 28;, where $,(2) = - ~ ~ 7 0 ~ ~ 2  - G2. 

We can regard the second piece of the decomposition Q,-(2) as being related to variations in 
{ g n }  at dyadic averaging times of 2 and greater. 

Just as { g n }  was split into the components (Goa} and {Gbp}, we now split {Gj,n} into two 
components, namely, {GI,?} and {Gl,n}. The first component (iiil,n} will be used to construct 
an estimator of a;@), while the second component is related to variations in {gn} at dyadic 
averaging times of 4 and greater. The filters that accomplish the desired split are N,-periodized 
versions of ones whose transfer functions are defined by &(2f) and 6&f) - the impulse 
response sequence for these filters can be formed by taking the original filters {b,,} and {fio0,l} 
and inserting a single zero after each element, a procedure that is known as upsampling in 
the engineering literature [4]. For example, since the I 1: 0,1,2,3 and 4 values of the impulse 
response sequence for &(f) are given by i, -4, 0,O and 0, the corresponding values for &2f) 
are given by $, 0, -3, 0 and 0. We can also obtain {GI+} and {GI,,,} by directly filtering {y,,}: 

4 

N,-1 N,-1 - 
w1.n = C gJg(n-l)motiNrn and G , n  = C f i ; J g ( n - q d  N,, n = 1, - - 9 4 9 

l=O l=O 

where (K;} is the circular filter such that 

{%,I - { f i o ( $ ~ o ( $ ) h  likewise, {G;,t} - {Go($ 2k o($). 

Note that the impulse response sequence for {QJ} is the circular convolution of the impulse 
response sequence for GO($ and go(%), i.e., a, $, 0, ... convolved with $, 0, -4, 0, which 

1 

1 

1 
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C 

yields 1 4 ’  1 4’ - 2  4’. -$, 0, ,..(as long as Ny > 4). This latter filter is seen to be proportional to the 
filtering operation commonly used in estimates of 0,(2). 

Define GI as the N, dimensional vector containing {G1,n}, and let 51 contain {Gl,l,n}. By 
a simple variation on the argument used to establish IIi?011~ + 11V011~ = 11y112, we have 

11%112 .f IlS1II2 = 11~o:0112. 

Now define the following estimator of the Allan variance for m = 2: 

This is the standard maximal overlap estimator with three additional terns - these are propor- 
tional to (Pi -t PvW - PN, -~_  Pr,-i) , (Pi + Y2 - PN+ - PN,)~ and ( ~ 2  + ~3 - m - Y N , ) ~ .  h general this 
estimator is a biased estimator of a$). We have the analysis of variance condition 

2 

We can now state the result for general J, a proof of which follows from an easy 
inductive argument. We define 

Nu-1 Nw-1 - 
wj,n= $,ly(n-l)rnodNv and Gj,n= ~ ~ ~ j y ( n - l ) d N u ,  n = 1 ’ - - - ~ N y ,  

1 4  l=O 

where 

and 

An inductive argument can be used to show that 
4 ( 2 i ) .  Letting G, and Ti be Ny dimensional vectors containing {fij,n} and {Zj,n}, define 

2j-Ik - p’-ak - 
($4) - m $ $ ~ o ( + G o ( ~ )  *-Go(*)> 

{$J} - { G o ( ~ ) G o ( ~ ) a ( ~ )  - - *Go(&),. 

is the usual filter involved in estimating 

which is the biased maximal overlap estimator of 0329 based upon {yn} - it differs from the 
standard maximal overlap estimator due to 2j+l- 1 additional terms involving explicit circular 
use of {yn}. For any J, the biased maximal overlap estimators satisfy the analysis of variance 
condition 

where the term .?;,-(2J+1) represents variations in {yn} at dyadic averaging times of 2J+1 and 
greater. 
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4 ESTIMATION OF THE ALLAN VARIANCE USING A 
CIRCULARIZED SERIES 

For most models for (9,) of interest for actual frequency standards, a circularity assumption 
can yield an unacceptably large bias in the estimator 5:,-(29 due to the fact that yl and yN, 
can be quite different. To solve this problem, we construct a series {y;} of length 2Ny 

{ €ha1 15 n 5 N,; and 
$f2Nw+l-nr N y  + 1 5 n I 2Ny. 

For example, if N’ = 3 SO that only yl, are observed, the values of yi, . . . , & are given, 
respectively, by y1,y~,y~,ys,y2,y1. Note that, by construction, the sample mean and variance of 
{pa} and {y;} are identical. We now apply the estimation procedure of Section 3 to {y;} to 
obtain the following estimator of u,2(29: 

and 

where G; is a vector of length 2Ny formed by circularly filtering {&} with the circular filter of 
length 2 4  whose DFI’ is given by 

We refer to GE.,-($) as the biased maximal overlap estimator of 17329 based on the circularized 
series {&} (note, however, that this estimator is in fact unbiased for the special case where 
{pa} is a white noise process). This biased estimator satisfies the following analysis of variance 
condition for all J and all sample sizes Nu: 

Finally we note that there is a very simple relationship between E$,,-(29 and Totvar estimator 
(Greenhall, 1997, private communication): 

where Totvar is defined as in Equation (4) of Howe and Greenhall [l]. 

5 SUMMARY AND COMMENTS 

We have developed a relationship between the sample variance &: and the Totvar estimator 
Totvar(m, Nyl TO) of the Allan variance af(m), where m sets the averaging time mro, N, is the 
number of .ro-average fractional frequency deviates {pJ, and T~ is the basic sampling and 
averaging time of the observed deviates. For any sample size N, and any positive integer J, 
we have demonstrated that 
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where +i.-(2J+1) can be interpreted in terms of variations in {pa} at all dyadic averaging times 
greater than 2-’. We have also shown that the Totvar estimator is related to a biased maximal 
overlap estimator of the Allan variance that is based upon {y;}, which is a sequence of length 
2N, formed by tacking onto {gn} a reversed version of itself. 

In closing, we make the following comments about our results, some of which will be 
expanded upon in future research. 

It can be shown that, if {yn} is a portion of a realization of a stationary or nonstationary 
process {Y,,} for which the Allan variance is well-defined, then we have 

c 4 2 9  = 24, 
j=O 

where ui is the process variance of {K} (this is taken to be infinite if {Y,} is nonstationary). 
The iFi,,-(29 estimator is the first “modern” estimator of the Allan variance to mimic 
this important property. 

Because higher order Daubechies wavelet filters also satisfy Equation (2), the above 
development extends trivially to higher order wavelet variances (the Allan variance is 
essentially twice the Haar wavelet variance). These higher order wavelet variances are 
suitable substitutes for some of the variations on the Allan variance that have been 
proposed and studied in the literature (an example is the modified Allan variance). For 
details, see [2]. 

In addition to plotting i$.,-(2j> versus 2irO on a log-log scale, we suggest that @;.-(2I+l) 

be plotted (with a separate symbol) versus 2 - ’ + * ~ ~  - this will indicate how much of 26; has 
not been accounted for by estimates of the Allan variance, 

In theory J can be made as large as desired, but there will be serious biases in 5iy2.,m(25) 
for any J such that Because of its close relationship to Totvar, the results of 
Howe and Greenhall [l] indicate that 5:.,-(29 outperforms traditional estimators of the 
Allan variance for averaging times close to $. 
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