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Abstract 

We give results of recent work on a newly developed frequency stability characterization, 
called Total variance, whose main advantages are improved confidence at and near the longest 
averaging time of half the data duration, and lower sensitivity to drift removal. Properties given 
here, for the standard FM noise types, include mean, degrw of freedom, frequency response, 
and empirical distribution function. 

1 Introduction and Conclusions 

This paper is about characterizing common, difficult to characterize frequency noise modulations 
found at long-tern averaging time T in the output signal of many laboratory frequency standards. 
It ~ssumes a familiarity with the Allan variance and its characterizations of white, flicker, and 
random walk FM noise models (WHFM, FLFM, and RWFM) [l]. 

A shortfall of the currently recommended 121 Allan variance for r, denoted here by Avar (T), 

is that the usual estimators of it are highly variable at luge r [l, 3, 41 and are sensitive to the 
method of drift removal [S] .  We report statistical properti= of a new kind of frequency variance, 
inherently dependent on measurement duration T as well as 7, called Total variance and denoted 
hereafter by Totvar (T, T) (pronounced tijt ‘-v&r). We quantify the improvement in the uncertainty 
on frequency-stability estimation from the use of Totvar (T, T) rather than Avar (T) In the presence 
of FM noises. The square root of this variance, called Total deviation and denoted by Totdev (7,T) 
or the recommended [2] notation CF~,TOTAL(T), cam be interpreted like the Allan deviation U ~ ( T ~  

but with improved confidence at long-term T ,  as pointed out in earlier papers [6, 71 and quantified 
in this paper for FM noises. We do not address the important property that Totvar(r,T) appears 
to have considerably less sensitivity to the method of drift removd than Avar (T)  [S]. 

The main advantages of Totvar over Avar are improved confidence at and near the longest 
averaging time of T = T/2, and lower sensitivity to drift removal. By theory and simulation we 
have computed its mean, variance, and empirical probability distribution in the presence of the 
three FM noise types. Variance results are given in terms of equivdent degrees of freedom [9]. In 
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the presence of white FM noise modulation, Total variance is an unbiased estimate of the Allan 
variance for all r, yet has three degrees of freedom instead of one at r = T/2. For d l  three noise 
types, the mean and edf of Totvar are given by simple exact or empirical formulas. A comparison of 
the empirid distribution of Totvar(T/2, T) with the appropriate chi-squared distribution indicates 
that confidence intervals based on chi-squared levels are conservative. 

In the established tradition of time and frequency statistics, frequency stability is described 
in t e s  of finitedifference variances that are ensemble or infinit4me averaga of stationary, 
ergodic increments of phase [12, 13, 141. In particular, the theoretical Allm variance is a number 
that depends only on r ,  while its conventional estimators are random variables that depend on 
both T and T, the largest possible r being T/2. Total va,ria,nce is a random variable that, along 
with all its properties, inherently depends on both 7 and T. Moreover, Total variance can report 
values beyond the usual Allan vdance last-r value of r = T/2; its dues at r > T/2 might be 
used to augment the normal last-.r value of frequency stability reported at T = T/2. 

We compute the frequency response of Total variance as a function of r by averaging the 
squares of the Fourier transforms of Total variance sampling functions, and find that it resembles 
the frequency response of Allan variance. The results of these investigations indicate that Total 
variance, while it has an interpretation like that of the Allan variance, also has lower variability 
and less sensitivity t~ drift removal. 

2 Equations for Totvar (7, 2’) 
The purpose of this section is to give a precise definition of Totvar(7,T) for an N,-point time 
deviation record with sample period 70. In the following description, the indices m, n, and N, are 
related to time by 7 = mro, t = to  + nr0, and T = N,To, where is the time origin and without 
lass may be made equal to 0. 

We start with time-deviation data Zng n = 1 to Nz, with normalized frequency deviations 
y,, = ( ~ ~ 4 - 1  - zn) /TO, n == 1 to Ny = N, - 1, Extend the sequence {gn} to a new, longer virtual 
sequence {yz} by reflection as follows: for n = 1 to Ng let 3; = vn;  for j = 1 to Ny - 1 let 

(1) * -  * -  2h-j ’Uj, Y Z V ~ + ~  - YiV*+I-j* 

An equivalent operation can be performed on the original time-deviation sequence {zn} to produce 
an extended virtual sequence {xz} as follows: for n = 1 to Nx let xk = s,; for j = 1 to Nx - 2 let 

XT-j = 2x1 - x]+ j ,  Xf;v,+j  = 2XN= - XNz-jm (2) 

This operation, depicted in Figure 1, is called erctension by rtflection about both endpoints. The 
result of this extension is a virtual data sequence x:, n = 3 - N, to 2N, - 2,  having length 3N, - 4  
and satisfying y: = (xi+l - z:) /TO, n = 3 - N, to 2N, - 3. 

We now define 

(3) 

for 1 5 m 5 N, - 1, that is, r can go to (N, - 1) TO instead of the usual limit of L(Nz - 1) /2J TO. 

The previous notation Totvar (T, T) is to be regarded as equivalent to (3) with the dependence on 
70 suppressed. Totvar can also be represented in terms of extended fractional frequency fluctuation 
averages as 

Nu-1 

(4) 
1 

T o t m  (m, N,, TO) = C (Z (m) - G-m (m)12 9 
2 (NY - 1)  n=l 
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where 
It can be verified that Totvar, like Avar and its estimators, is invariant to an overall shift 

in phase and frequency; that is, if a first-degree polynomial co + c1n is added to the original data 
set xn, then Totvar does not change. 

We expect the Total variance to be applied mstly to long phase records in which the 
FM noises dominate the PM noises (white and flicker PM). Then, it is convenient for theoretical 
purposes to approximate Totvar (m, N,, 70) by a continuoustime analog called Totvarc (7, T), in 
which the sum in (3) is replaced by an integral and dependence on TO is eliminated. The time 
deviation is now a continuous-time proces x (t), given for 0 5 t 5 T. Extend x (t) to x* (t) 
as follows: for 0 5 t 5 T let x* (t) = x ( t ) ;  for 0 < u 5 T let x* (-u) = 22 (0) - x (u) and 
x* (T + u) = 2x (T) - x (T - u). Then x* (t) is given for -T 5 t I 2T. The continuous analog of 
Totvar is defined by 

(m) = (z:+~ - zg) / (mn). 

( 5 )  

€or 0 < r 5 T. 
The expressions above are quite Werent from their equivalent Allan variance expressions. 

Mainly, Totvar (r, T) reports a value for an interval T within data length T based on more samples 
of the second-difference of phase (or firstdifference of average frequency) using a rearranged and 
extended series of the original data series {x,,}. It does this by a multiple sample on the phase 
using a larger, virtual set of data which is an odd, or reflected, extension at the beginning and end 
(left and right) of the origind real set. Figure 1 illustrates the extension and, hence, the resulting 
circular or repeating representation. 

Analyzing a larger virtual data set built from the original data set has been a tool in 
frequency-domain signal processing for many years. An assumption of periodicity replaces the 
recurrent behavior (in a time-series sense), a consequence of the ergodic principle [15]. In particular, 
a range of frequency values (Fourier components) from 0 < f < fh can be extended by a mirror 
reflection through f = 0 so that “negative frequencies” are added to an original. data set, resulting 
in -fh < f < fh. In the context of timeseries analysis, rather than doing extensions of the original 
vector {G,) and applying the straght second-difference, we alternatively can resample within the 
original vector; see Section 4 for an algorithm that requires no extension of the data array. 

3 Totvarc (7, T) as an Estimator of Avar (7) 

3.1 Mean and Variance 

For computing theoretical moments it is convenient to use the continuous-time random variable 
Totvarc(~,T) as a surrogate for the discretetime random variable Totvar(r,T), for the Same 
reason that the calculus of integrals and derivatives is less intricate than the calculus of sums and 
differences. The mean and variance of Totvarc (7, T) in the presence of the three standard power-law 
FM noises were computed by the g e n e r d i  autocovariance method [4] under the assumption of 
Gaussian, mw-zero second differences of phase; no frequency drift or drift removal is allowed. The 
mean E [Totvarc (7, T)] is compared to A w  (T); the variance is most conveniently communicated 
through the equivalent degrees of freedom (edf), defined for a random variable V by 

2 (EV)2 
vax(V) ‘ edf (V) = 
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The results, sbme of which are exact and mme of which are empirical fits to numerically computed 
results, can IE expressed as 

E [Totvvarc (7, ?')I =l-a- T O < T S -  T 
Avax (7) T' 2 '  

1 edf[Totwtrc (r, T)] = bf, - c, 0 < T 5 - 
7 2 '  

(7) 

where a, b, and c are given in Table I. These results were checked by simulations of Totvar (m, N,, TO), 

with N, = 101. 

S b l e  1. Values of a, b and c for FM noises 
~~ 

Noise a b C 

FLFM 1/(31n(2)) 24 ( l n ( 2 ) / ~ ) ~  0.222 
RWFM 314 140/151 0.358 

WHFM 0 3/2 0 

The simple, exact form (7) for the mean of Totvar can be interpreted as a scaling property 
of power-law noise. It turns out this way because the shapes of the sample functions for T o t w  and 
Avar (see Section 4) depend only on T. For T/2 < T 5 T the sampling function shapes depend also 
on T; yet, it is noteworthy that (7) persists all the way to T, but only for white FM and random 
walk FM. The edf results are empirical, with an observed error below 1.2% of numerically computed 
values; for white FM, though, the edf result appears to be exact, although this is unverified, 

For white FM noise proces~es, Total Variance is an unbiased estimate of the traditional Allan 
Variance (square of frequency change vs. 7) for all averaging times (7's). Its primary adwzntage,as 
surmised from (8) and Table 1,is a considerable improvement in the confidence of that estimate at 
longer averaging times. For example, 10 OOO seconds of frequency measurements means that T can't 
go beyond 5000 seconds (T/2) to get one single estimate of frequency-change over the data duration 
(last half minus first half) using Avar. The edf result (8) for white FM yields the equivalent of 
three independent estimates (edf = 3) by using Totvar and its multi-sampling function, which is 
discussed in the next section. The improvement of edf in the presence of FLFM and RWFM (2.097 
and 1.514, respectively) is not as dramatic, but substantial nevertheless. For T = T/4, T/8, etc., the 
confidence measures of Allan and Total confidence approach each other, until they are essentially 
the same at 2'/16. For small values of 7/T, the time-deviation record is extended only a short 
distance at both ends, and hence Totvar (T, 2') differs little from the fully overlapped estimator of 
Avar(7) 191. 

3.2 Distribution Functions 

In the tradition of time and frequency statistics, it is customary to derive confidence intervals for 
frequency stability on the basis of the assumption that the probability distribution of a frequency 
stability estimator V, when scaled appropriately, follows the chi-squared distribution with the same 
edf as V; see 191. The chi-squared assumption has been investigated in a limited way for conventional 
estimators of Allan variance [lo, 111; in view of the greater complexity of Total variance, some 
investigation of its distribution is appropriate. 

Let V denote the T o t w  estimator of Allan variance u2, for some r ,  and let T = E (V)  /a2, 
v = edf (V), which are presumed known from the previous results. Then the random variable 
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has the same mean and edf as does a x:, namely, v. If X had the x: distribution, then one could 
derive confidence inkrva,ls for a2 based on one observation of V. 

We carried out a brief investigation of the chi-squared assumption for the most important 
case of r = T/2, One thousand independent trials of Totvar (50,101) were simulated for the three 
FM noise types, and the empirical distribution functions of X were plotted along with the theoretical 
chi-squared distribution functions. The chi-squared distributions were good fits to the empirical 
distributions except at the lower tails, expanded views of which axe shown in Figwe 2. The empirical 
tail always lies below the chi-squared tail. Thus, for a probability p 5 0.2, if xy ( p )  is the chi-squared 
level for p ,  and x: ( p )  the level of the scaled Totvar X ,  we have xv ( p )  < s: ( p ) .  Because the upper 
end of a true confidence interval for a2 is proportional to l /xE ( p )  for an appropriate value of p ,  
using x (p) for this purpose gives a Conservative confidence intervd. For example, suppose we want 
a 90% confidence interval for a2 at T = T/2 based on V = Totvvar (T/2, T) and a white-FM noise 
assumption. Then T = 1, v = 3; the 5% and 95% xl levels are 0.352 and 7.81; and a 90% confidence 
interval for u2 based on chi-squared is [31//7.81,3V/.352] = [0.384V, &.52V]. (Take square roots for 
cr.) The more realistic value of 0.60 for the 5% Totvar level from Figure 2(a) reduces the upper end 
of the confidence interval to 5V. 

4 

Extending by reflection an original {xn} vector at both ends and then applying a second difference 
can be equivalently represented as four different types of differencing on {xn : n = l,.,.,Nz} 
directly. The summand of Totvar (m, N,, TO) in the following equation takes on four forms that 
depend on the relationship of n to a given m and N,: 

Sampling Functions and Frequency Responses 

1 

where 

We can derive from these expressions the frequency sampling functions associated with 
Totvvar(~,T), that is, how its tern act on gn = (zn - xn--l) /TO, and contrast them with the 
simpler Sampling function associated with Avar (T )  (see Figure 3), which gives the change in average 
frequency from one T interval to the next [7]. The augmentation incorporated in Totvar(T,T) 
combines the sequential sampling function with others,which makes its sampling technique bizarre, 
but nevertheless shown in Fiwre 4. 

Although the timedomain presentation of the action of Totvar on frequency residuals seems 
to give little insight, we can use the Fourier transform of these sampling functions to derive frequency 
responses that perhaps convey more meaning. The continuous analog version of Totvar(~, 2') can 
be written in the form 
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where h, (u; t ; r )  is the sampling function for ex* ( t )  (for the extended z* (.) record) in terms of 
a, (u) = &(u)/du, 0 < u < T. Let H, (1; t , ~ )  = J:h, (u; t ,  T )  e-ihfuduu. We can show that the 
expected value is given in tern of Sy (f), the onesided spectral density of a, (t), by 

W .  (f; T,  T) can therefore be regarded as the mean frequency response of Totvar as an action on 
a, (t). Figure 5 shows this frequency response plotted against f~ for r/T = 0.1,0.2,. . . ,0.5. The 
frequency response of Allan variance (dotted curve) is the limit of Totvar response as T/T + 0. 
Also shown (dashed curve) is the frequency response of 2 - Totvarc (T, T), regarded as an eatimator 
of Avar(T/2) (see Section 5 below). 

Totvarc (7, T) has an approximate Allan-like response; more importantly, Totvar does not 
have the deep nulls encountered with Avar(r) near T = T/2; consequently it has less variability 
and hence better confidence as indicated by an increased edf. We showed that the estimate (zris-d- 
wis E [Totvarc (7, T)]) is an unbiased estimate of Avar(.r) for WHFM noise and slightly biased for 
FLFM and RWFM noise. This may be somewhat evidenced by noting the sllght reduction in the 
amplitudes of the main l o b  of the frequency responses in Figure 5. 

5 Properties of Totvarc (T, T )  
Although we have defined Totvar for T d l  the way up to (N= - 1)m, we can realistically expect to 
obtain meaningful frequency stability results only r 5 T/2. Nevertheless, we computed the mean 
and edf of Totvvarc (T, 2') for T/2 < T 5 2'. For white and random walk FM, twice Totvm (T, T) 
is unbiased for Avar(T/2) and is alrnmt unbiased (within a factor of 2/ (31n(2)) = 0.9618) for 
flicker FM. This result was motivated by comparing the frequency responses of 2 * Totvarc (T,T) 
and Avar (T/2), as seen in Figure 5. Unfortunately, Totvarc (T, T) has a smaller edf (1.5,1.126, and 
1.029 for WHFM, FLFM, and RWFM) than Totvarc(T/2,T) does, and hence the mean-squared 
error (bias2 + variance) of 2 Totvarc (T, 2') as an estimator of Avar (T/2) is @eater than that of 
Totvarc (T/Z,T), so we might still prefer Totvarc(T/2,T), or perhaps some linear combination of 
the two. This possibdity has yet to be investigated, but other work indicates that Total variance 
coefficients beyond T = T/2 could justifiably be incorporated in the last T/2 value usually reported. 
Summing aJ1 the familiar "power-of-2'' .r-values in a Total variance plot leads to exactly twice the 
standard sample variance,much in the same way that integrating an estimate of a spectrum also 
yields the sample variance [HI. 
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Figure 1: (a) Extension of a phase record by reflection at both ends; (b) circular representation of 
extended phase record 
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Figure 2: Expanded views of the lower tails of empirical Totw distribution functions (lower curves), 
and the corresponding chi-squared distribution functions (upper curve)  
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Figure 3: Usual sampling given by Avar for values of rn and n when Nz=lO, m 5 (N,  - 1)/2 

rn-(N,-l)/a 

Figure 4: Sampling given by Totvar for values of m and n when N,=lO; note that rn is not restricted 
to rn 5 ( N -  - 1)/2 &S with AVW 
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Figure 5:  Mean frequency responses of A w  and Totvar as operations on y ( t )  

47 



Questions and Answers 

CLAUDINE THOMAS (BIPM): If we want to use the total variance, we must frrst be sure that there is no 
frequency drift in the data. 

. D A m  HOWE (NIST): Oh, that is not true. We no longer have to remove the drift or some coeficient, at 
any rate. We never know the drift in real data; in simulation we, of course, can - 

CLAUDINE THOMAS: But, when you circle the data, if you have a frequency drift, of course, you will 
have an offset. 

DAVE H O W :  Well, no. As a matter of fact - let me put that slide back on here, that is a very good 
question. I will put this up. This is the original data, this is 20 simulations of random walk FM. So the data 
duration extends with Index 1 to 1025. The procedure calls for extending that at both ends. So, the vector 
that you actually work on is going to look like that. 

Now, in the presence of drift, because it is a mirrored reflection, if there is a trend in the data at the adjoin, 
when you are adding or extending the data set, then there will not be any discontinuity by taking the second 
difference. Yes, you have to think about it a little bit, but what we do is we actually reverse the data set and 
we also mitror it. So, even if there is a racing trend through that last point, or the first point, then there’s no 
discontinuity in looking at the variance, which would be the second difference in that. 

CLAUDME THOMAS: Thank you for your answer. I also have another question. Does the use of the 
total variance suppose that your system is more or less stationary; that at the beginning and the end of the 
Tau, of the big T lines, the statistical properties of the system should be the same? Because, when you 
circle, the statistical properties are completely different. I am thinking about the total time scale of course. 

DAVE HOWE: Yes. First of all, by construction, we have a situation where the variance for the original 
data has to be the same as the variance for the extended data, and that again is by construction. We have not 
added any additional data; we are using the original data; and constructed it in a way that added more terms, 
what we call “surrogate terms,” which will contribute to the answer that you get in the long term. 
Nevertheless, getting back to your remark about circularizing the data - 

CLAUDINE THOMAS: My question was you have a span of data - 

DAVE HOWE: The treatment that we apply does not have any restriction regarding stationarity. 
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