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Abstract 

Ihe phase of a frequenq standard t M  uses periodic interrogation and controI of a local oscillofor 
(LO) is degraded by a long-tenn random-- component induced downconvrrsion of LO noise 
into the loop passband. The Dick formula for the noise level of this degradation can be derived f om 
@licit solutions of two LO wnhoGLoop models. A summary of the derivations is given here. 

INTRODUCTION 

In 1987, following a suggestion of L. Cutler, G.J. DickIll described a source of long-term 
instability for a class of passive frequency standards that includes ion traps and atomic fountains. 
In these standards, the frequency of a local oscillator (LO) is controlled by a feedback loop 
whose detection and control operations are periodic with some period T,. For each cycle, the 
output of the detector is a weighted average of the LO frequency error over the cycle. The 
weighting function g(t ) ,  derived from quantum-mechanical calculations, depends on the method 
by which the atoms are interrogated by the RF field generated by upconversion of the LO 
signal to the atomic transition frequency.IW1 In general, g(t) can be zero over a considerable 
portion of the cycle. The LO control signal over each cycle is a function of the detector outputs 
from previous cycles. 

The purpose of a frequency-control loop is to attenuate the frequency fluctuations of the LO 
inside the loop passband, while tolerating them outside the passband. As Dick saw, though, the 
periodic interrogation causes outaf-band LO noise power, near the cycle frequency f, = I/T, 
and its harmonics, to be downconverted into the loop passband, thus injecting random false 
information about the current average LO frequency into the control signal. This random false 
frequency correction causes a component of white FM, or random walk of phase, to persist in 
the output of the locked LO (LLO) over the long term. Dick gave a formula for the white-FM 
noise level contributed by this effect, namely: 
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where s,LLO (f) is the spectral density of the Dick-effect portion of the normalized frequency 
noise of the LLO, Svm(f) is the spectral density of the normalized frequency noise of the 
free-running LO, and gk is the Fourier coefficient 

where g ( t )  is assumed to be symmetric about Tc/2. This level of white FM near Fourier 
frequency zero contributes an asymptotic component of Allan variance given by. 

My purpose here is to supplement previous derivationsl'u4 of the Dick formula (Eq. 1) by 
an approach that uses explicit time-domain solutions of simple LO control loop models with 
a general detection weighting function g( t ) .  Careful interpretation of these solutions yields 
formulas for the U O  spectral density, and conditions for the validity of the Dick formula. 
These models are not represented to be realistic models of actual frequency standards. By 
exhibiting the presence of the Dick effect in models of transparent simplicity, I intend to remove 
any remaining doubt of its existence and to isolate its essential nature, in the hope of aiding 
efforts to reduce it. 

This paper gives only a summary of the solution method; details will be submitted elsewhere. 

CONTROL-LOOP MODELS 

Figure 1 shows two models for an LO control loop. Model 1 is intended to correspond to 
Dick's rnodels.ll21 Model 2 extends the model of Lo Presti, Patan&, Rovera, and De Marchi141 
to a general weighting function. A unified treatment of the two models is presented at the 
expense of a conflict of notation between this paper and [4]: because the model of Lo Presti 
et al. includes the effect of alternate interrogation of the two sides of a Ramsey fringe, the 
cycle period T, used here corresponds to the sample period T, == in [4], and the g ( t )  used 
in Model 2 really consists of two periods of the g  ( t )  used in Model 1. 

In Model 1, the box G, represents a linear time-invariant filter with impulse response g ( t )  / (Ts,) 
for o < t  < T,, and zero elsewhere. It is important to observe that GI has unity gain at DC. Its 
transfer function is 

The output of the box GI at time t  is 



which is fictitious unless t is a multiple of T,. The output of the sampler at time nT, is the 
normalized interrogation report 

for the nth cycle. (Recall the symmetry of g (t) about the midpoint of the cycle.) The detection 
noise term v. can represent photon-count fluctuations in frequency standards with optical 
detection, for example. The cumulative sum of the error signals, multiplied by a gain factor X 
between 0 and 1, is the frequency correction ah, that is applied to the LO during the next cycle. 
Except for initial conditions, Model 1 is specified completely by (Eq. 5) and the equations 

in which it is convenient to suppose that n runs through all integers. 

In Model 2, the hold and integration operations emit a delayed linear interpolation of the 
cumulative sum of the input to the hold, modulo a constant of integration. Let y, be X times 
that cumulative sum. Then yn again satisfies Eq. (6). In place of Eq. (7) we have 

In Model 1, the frequency wrrection during a cycle is constant; here, it is a ramp. 

SUMMARY OF SOLUTION METHOD 

The derivation of the LLO frequency spectrum from these model equations is wr ied  out by 
the following steps. 

First, by isolating the digital aspects of the models, one can solve for y,,. In Model 1, substitution 
of Eq. (7) into Eq. (6) gives a first-order difference equation for u. in terms of the quantity 

The solution of this difference equation has the form y,, = Haw,,, where H a  is a unity-gain 
lowpass digital single-pole filter with transfer function 

The time constant is approximately T,/A for A < 1. The transient component of the solution 
is neglected. Model 2 g ~ e s  a second-order difference equation that is solved by the two-pole 
filter 



whose coefficients depend in a simple way on g(t)  and the gain factor A. Under a reasonable 
assumption on g(t) ,  one can adjust the gain to make the filter overdamped, critically damped, 
or underdamped. 

Sewnd, with p,, known, it is evident from Eq. (7) or Eq. (8) that the LLO frequency is a 
known function of time on each cycle. Because of the piecewise nature of the solution, we 
need to use care in its interpretation to obtain a well-defined Spectrum. Let us agree that the 
low-frequency spectral behavior of the LLO phase is adequately known if we can determine 
the discrete-time spectrum of the phase when sampled with period T.. In turn, we know the 
sampled-phase spectrum if we know the discrete-time spectrum of the sequence of average 
LLO frequencies. Let ~ L L O  (nT,) be the average value of LLO frequency over the cycle ending 
at nT,. Knowing the LLO frequency as a function of time over this cycle, we can generate 
an explicit formula for the average frequency. This formula is shown as a block diagram in 
Fig. 2, which applies to both loop models. The block labeled "average" f the continuous-time 
moving-average filter for period T,; the following sampler gives the sequence of LO frequencies 
averaged over successive cycles. The only component that depends explicitly on the model 
is the block labeled He, a unity-gain lowpass digital filter with transfer function z-lHdl ( z )  for 
Model 1 ,  f (x-I + xZ) H a  ( z )  for Model 2. 

Third, the two-sided LLO frequency spectrum can be deduced from the block diagram of Fig. 2 
by observing that the diagram is equivalent to a certain continuous-time operation followed by 
a single sampler. In terms of the two-sided LO frequency spectrum S,?' ( f )  and detection-noise 
spectrum S, (f), the LLO spectrum can be written as follows: 

s,LLO ( f )  = .q ( f )  + S; ( f )  , If15 f c / 2 ,  

where 

the main spectrum, so to speak, and 

the aliased spectrum. In these formulas, z = e"f%. The sum includes both positive and negative 
k. 

MAIN AND ALIASED SPECTRA 

Consider the main part (Eq. 10) of the LLO frequency spectrum. The LO spectrum is multiplied 
by a factor that is 0 ( f Z )  as f A 0. This is the basic action of the first-order frequency control 
loop, which attenuates the excursions of the LO inside the loop bandwidth. For example, 
flicker FM in the LO is reduced to flicker PM in the LLO, and random walk FM is reduced to 
white FM. In addition, there is a lowpass-filtered white detection noise in the LLO frequency. 
We can regard H.(z)G, ( f )  as the closed-loop transfer function fmm LO frequency noise to 
LO correction signal. 



The Dick effect is supposed to come from a long-term white-FM component in the aliased 
spectrum. There is such a contniution if the aliased spectrum (Eq. 11) is continuous and 
positive at f = O. Under reasonable conditions, this is so, and we may set f = 0 (z = 1)  in Eq. 
(11). Because He ( I )  = 1, we have 

where we have now used the symmetry of the summands about zero frequency. This formula 
holds for one-sided spectral densities also. 

The numbers IGl(kfc)12 are invariant to cyclic translations of the function g( t )  in time. It 
follows that the result (Eq. 12) is invariant to shifts in the time origin, i.e., if the LLO phase is 
sampled on any time grid with spacing T,, then the samples will include a white-FM component 
with spectral density (Eq. 12) at zero frequency. If g(t)  is symmetric about Tc/2 for our time 
origin, then 

gk 
GI (kfc) = -&' 

where gk is given by Eq. (2). Thus, Eq. (12) extends the Dick formula (Eq. 1) to asymmetric 
weighting functions. 

The Dick formula, which gives the limiting value of spectral density at zero Fourier frequency, 
is exact for both models, even though the LLO spectrum at nonzero frequencies is different 
for the two models. A simple approximation for the aliased spectrum (Eq. 11) holds if the 
gain constant X is much less than 1. Then the loop bandwidth is much less than f ,  (time 
constant much greater than T,). Assume also that GI (kf,+ f )  and S8m(kfc+ f )  can be regarded 
as approximately constant for nonzero k and for f within the loop bandwidth. Then, for such 
f, the aliased spectrum has approximately the same shape as the frequency response of the 
digital filter He, with value at 0 given by the Dick formula. For both models, this shape is 
approximately Lorentzian. Thus, the Dick-effect Allan variance component takes the asymptotic 
white-FM form (Eq. 3) only for averaging times T greater than roughly twice the loop time 
constant. In this approximation, the Dick-effect and detection noises appear inside the loop 
bandwidth, the non-aliased LO noise outside. 

REMARKS 

Although I have not considered any other models, the Dick effect appears to be an inherent 
property of periodic local-oscillator control loops. For the two models treated here, this was 
shown by a careful interpretation of explicit solutions for the output frequency as function of 
time. 

I have now come full circle on this topic. My involvement began in 1987 when John Dick 
asked me to derive the spectrum of GlgLo after sampling. I did not understand: in Fig. 1, GI is 
applied to g ~ ~ o ,  not to gt-0. Nevertheless, I did the calculation, thereby contributing the factor 
2 in Dick's formula. Now, from the block diagram in Fig. 2, we see how the sampled GlgLo 
fits into the picture. Could the Dick effect be cancelled by replacing the averaging filter by 
a G1 filter? Alas- this block diagram is merely a graphical representation of a mathematical 
formula; it has no physical existence. 
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Fig. 1. Simplified models of local-oscillator control loops 
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Fig. 2. Solution of both models for LLO frequency averages 




