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Abstract 

An approximating algorithm for computing equivalettl dcgncs c?ffmdom of the modifrod A h n  
variance and its sauare root. the modilied Allon deviation ( W A R  and MDEV). and the time variance 
and time deviation ( T V A R ' ~ ~ ~  T D ~ V )  is presenhi, &ng with an alg&& for apprasimating 
the inveme chi-squared distribution. These two algorithms a h w  rehfivelj simple cornputdam of 
confidence intervals on MDEV and TDE): the lafter cur red^ used as a standard in the tekom- 
muniecltions industry. These algorithms enable users to present variance results with confidence 
intervals corresponding to any useful probabilitg for mast data h g t h s  and noise types. 

1 INTRODUCTION 

We present here a simplified algorithm for calculating approximate confidence intervals on the 
modified Allan deviation, MDEV, and therefore also on the related time deviation TDEV. The 
algorithm has two parts: the first gives approximate equivalent degrees of freedom, edf, for 
the fully overlapped estimate of MVAR; the second gives approximate values of the inverse 
chi-squared distribution. An algorithm for estimating edf for the other measure commonly used 
in time and frequency metrology, the original Allan deviation, was published previously.ll1 

Confidence intervals are defined in terns of edf and the chi-squared distribution as follows. 
If s2 denotes the usual sample variance of n independent and identically distributed Gaussian 
measurements (white noise) with actual variance aa, then 
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has a chi-squared distribution with v = n - 1 degrees of freedom.B] In the classical situation, 
the number of degrees of freedom associated with o2 is an integer value depending only on the 
number of measurements, and exact confidence limits on the measurement variance are easily 
calculated using percentiles of the appropriate chi-squared distribution. For example, Figure 1 
shows the chi-squared distribution with 10 degrees of freedom, and also depicts the percentiles 
a and b that are needed to calculate upcertainty bounds on o2 at the 0.95 confidence level from 
a particular 2 based on 11 Gaussian measurements. 

A 95% confidence interval is obtained as follows. First, we find values a and b such that the 
probability is 0.95 that U of Eq. (1) lies between a and b. This condition is equivalent to each 
of the following inequalities: 

-2 

The lower and upper bounds in the final inequality are confidence limits on the unknown 
variance 2. Note that the confidence factors vlb and vla needed in the calculations are 
independent of the actual data. They give the magnitude of the confidence interval as a 
function of the number of points used to compute the variance. Hence, we can compute these 
confidence factors for various data lengths. The factors 1 - vlb and v l a -  1 give the multipliers 
for the magnitude of the lower and upper confidence intervals on the variances, respectively. 
For deviations such as TDEV, the corresponding multipliers are 1 - fl and - 1. 

Since the common time and frequency stability measures (AVAR, MVAR, TVAR) are calculated 
6om data arising from non-white noise processes, the confidence limit procedure outlined above 
is an approximate methodm1 that is based on approximating the distribution of U in Eq. (1) 
with the chi-squared distribution with degrees of freedom 

2 (2)" y=- 
Var (a2) ' 

where u2 represents the appropriate stability measure, WAR, for example, 2 represents its 
corresponding estimator, and V w  (2) is the variance of the 2 estimator. The quantity v, which 
now depends on the noise type, is called the equivalent degrqes of freedom, edf, since it need 
not be integer-valued. 

In this contribution we have combined a previously published edf approximation algorithml4l 
with an algorithm for approximating the inverse of the chi-squared distribution function. The 
latter algorithm is based on work of Barnes used in deriving tables in 161, but not published, 
and formulas from Abramowitz and Stegun (A&S).Iq Previously, tables for confidence of 
TDEV and MDEV were published in [q. These are exact computations for edf and the 
associated confidence intervals for various cases in computing TDEV and MDEV. We compare 



values approximating the exact edf and confidence factors in tables in [?'I, finding a worst 
case disagreement of -9.7% for the edf and +10.8% for the confidence intervals. Most cases 
are much better than that. The confidence intervals are pessimistic if they are too large and 
optimistic if they are too small. In many cases here, pessimism is better than optimism, since 
the true value of the variance is more certain to lie in a larger range than a smaller. For the 
comparison with the published tables the confidence intervals are no smaller than -3.3%. 

2 APPROXIMATION FOR EQUIVALENT DEGRESS OF 
FREEDOM 

This version of the formula is restricted to the case of the usual fully overlapped estimator of 
MVAR or TVAR ([a], Eq. (12); [4], Eq. (6), m, = 1). 

Let 

N = number of time residuals, 
m = averaging time / sample period, 
M = N - 3m + 1, the number of terms summed in the estimate, 
q = M/m.  

Restrictions: 

The approximate edf is given by 
ao'? 

@= I-al/pl 

where aa and a, are given in Table I as functions of m and the noise type. 

Table I. CoefBeients for Approximate edf Calculation 

. ... - ..- - - 
Noise 'ISpe aa a1 ao a1 00 01 

White PM 
Flicker PM : ::% ::',:; 
White FM 0.667 0 1.010 0 0.968 0.571 
Flicker FM 0.811 0 1.027 0 0.947 0.416 

Random-Walk FM 1.000 0 0.866 0 0.768 0.411 

Under the assumptions given above, a maximum error of 11.1% in this approximation has been 
observed. Usually, it B much less. 



3 APPROXIMATION FOR INVERSE OF CHI-SQUARED 
DISTRIBUTION 

Let U be a chi-squared random variable with v degrees of freedom (v can be nonintegral). 
Let o < p < 1. Define z = z@, v) as the loop percentile of the distribution of U; thus p is the 
probability that U < z. The algorithm given below computes an approximation to z. 

Restrictions: 

Maximum observed error with these restrictions: 3% 

i f p s  f and v<lo then  

! Method: truncate power series in A&S [6] 26.4.6, invert by iteration 
a = v/2 

! Calculation of G = r (1 +a) (A&S 6.1.35) 
constants: c, = -0.5748646, 9 = 0.9512363, e~ = -0.6998588, q = 0.4245549, e, = 

-0.1010678 
n = integer part of a 
y = a - n  
G = l + c ~ v + s d + e s v ~ + ~ y ~ + ~ s ~  
f o r k =  1 t o n  ! Do nothing if n=O 

G=G(y+k) 
next k 

A=pG 

next i 
z=2u 

else 

! Method: A&S 26.4.17 
~1 =min@,l -p) 
! Calculation of x = inverse of normal distribution at 1 -PI (A&S 26.2.22) 

constants: = 2.30753, a, = 0.27601, = 0.99229, b = 0.04481 
t = m  



4 A NUMEFUCAL EXAMPLE 

Before giving tabular results, we show by example how they are used and how they are calculated 
by the algorithms given above. Assume the situation of the last line of Table I1 below: white 
PM noise, 1,025 time residuals, and averaging time = 128 sample periods. Suppose that an 
MDEV value a is computed by a fully overlapped estimate. The tabulated 95% lower and upper 
factors are 33.89% and 104.1%. Therefore, a 95% confidence interval for the true MDEV is 
0.661 a to 2.041 s. 

The tabulated edf and confidence factors are obtained as follows: N =1,025, m = 128, M = 
1025-3x128+1 = 642 (the number of summands in the estimate), q = M/m =5.0156, a~ = 
1.225, a, = 0.589 from lhble I, edf = 6.9617 from Eq. (4). For 95% confidence we need to 
compute the 2.5% and 97.5% chi-squared levels. The inverse chi-squared algorithm, with v = 
6.9617 and p = 0.025, gives z = 1.6720 as the 25% level, denoted by a in Eq. (2). Similarly, 
the 97.5% level is 15.928, denoted by b. The computed confidence factors are 1 - = 

0.3389, m- 1 = 1.0405. (Note that the values in Table I1 were computed from values of uo 
and a1 having more significant digits than the ones given in Table I.) 

5 RESULTS 

The data in the tables are the results for white PM with fully overlapped estimates. Table I1 
gives the approximate edf and confidence factors. lhble I11 gives the percentage errors from 
the exact values as found in [7j. The errors for white PM are the largest of the various noise 
types. 
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Table II. Approximate edf and Confidence Factors 

Noise w e :  White PM 

N m edf lower 68% upper 68% lower 95% 
17 1 7.714 17.74 39.14 32.79 
17 2 5.610 19.67 50.41 36.24 
33 1 15.94 13.65 23.38 25.52 
33 2 13.09 14.71 26.67 27.40 
33 4 7.543 17.87 39.82 33.03 
65 1 32.40 10.29 14.96 19.46 
65 2 28.05 10.91 16.33 20.60 
65 4 17.29 13.23 22.17 24.78 
65 8 7.241 18.12 41.10 33.47 

129 1 65.31 7.622 9.916 14.58 
129 2 57.97 8.030 10.62 15.33 
129 4 36.86 9.746 13.84 18.48 
129 8 16.98 13.33 22.43 24.94 
129 16 7.091 18.24 41.78 33.69 
257 1 131.1 5.579 6.715 10.76 
257 2 117.8 5.857 7.123 11.28 
257 4 76.04 7.128 9.095 13.66 
257 8 36.55 9.780 13.91 18.54 
257 16 16.83 13.37 22.56 25.02 
257 32 7.016 18.31 42.13 33.80 
513 1 262.8 4.045 4.610 7.856 
513 2 237.5 4.241 4.867 8.229 
513 4 154.4 5.177 6.141 10.00 
513 8 75.73 7.141 9.116 13.68 
513 16 36.40 9.798 13.95 18.57 
513 32 16.75 13.40 22.63 25.07 
513 64 6.978 18.34 42.30 33.86 

1025 1 5 2 6 . 1  2.913 3.195 5.685 
1025 2 476.9 3.052 3.363 5.954 
1025 4 311.1 3.737 4.214 7.267 
1025 8 154.1 5.182 6.148 10.01 
1025 16 75.58 7.148 9.126 13.69 
1025 32 36.32 9.806 13.97 18.59 
1025 64 16.71 13.41 22.67 25.09 
1025 128 6.959 18.36 42.39 33.89 

upper 95% 
94.61 



Thbh 111. Percentage Error: 100 (Approairnote - Cowed) / C h r e d  

Noise m e :  White PM 
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Figure 1 Finding the 95% confidence limits under the chi- 
squared distribution with 10 degrees of freedom 



Questions and Answers 
JOHN DICK (JPL): Where does the number 68 percent come from? And what do you 
recommend as confidence limits in our use of error bars on Allan deviation plots? 

MARC WEISS: Sixty-eight percent is a typical one sigma kind of number. When you take a 
standard deviation, it's typically a one sigma kind of number. Sixty-eight percent probability is 
one sigma on a normal distribution; that's where that came from. Ninety-five percent is two 
sigma. Three sigma is the 99 percent, I believe. 

So that's where I chose those. Now which one to use depends on the application and how 
much you're willing to be wrong. If two times out of three is good enough, then one sigma's 
good enough. But if you want it to never fail, three sigma is not good enough. 

I think that's a very important question. In our systems, we really need to think about what 
happens if they fail; and how much do we want to avoid that; and how much are we willing to 
pay for it. And when you write a spec, another big question is, "Should the confidence bars be 
included in the spec?" Should you write a spec that says, "The Allan variance shall not exceed 
this number with a 95 percent probability?" There are problems with that because if you do 
that, that's going to change how long you test the system in order to show it meets the spec. 

ROBERT DOUGLAS (NRC, CANADA): In calculating the exact values, we presumably are 
using a Gaussian normal distribution so you can calculate the second moments. Is that right? 

MARC WEISS: Do you want to answer that, Chuck? 

CHARLES GREENHALL (JPL): yes, we're assuming the second differences of phase are 
normal. 

ROBERT DOUGLAS: Then my question is do you have any recommended procedures for 
checking that this is in fact true in our datasets? 

CHARLES GREENHALL: No. There are tests for normal distribution. 


