
ON THE SHIPBOARD APPLICATION OF
, NETWORK TIME PROTOCOL (NTP, RFC 1305)

Melanie E. Bautista
Lockheed Martin Advanced Technology Labs

1 Federal Street, M.S. A&E3W, Camden, New Jersey 08102, USA
Phone: (609)338-3987, fax: (609)338-4144, email: mbautistQatl.lmco.com

Abstract

The rapid evolution of naval combat system computing plogonnr is inspiring novel approaches
in the design of shipboard time distribution systems. The Network Time Protocol (NTF') is being
considered as a component in some of these new modelr. This paper presents studies conducfed to
evaluate the viability of NTI: in genera!., as a shipboard timekeeping mechanism, and in parkicular,
as a non-mission critical timekeeping mechanism for the AEGIS Weapon System.

1 INTRODUCTION

The AEGIS Weapon System (AWS) is a complex system of systems. It is deployed on U.S.
I

Navy cruisers and destroyers, and is capable of engaging enemy ships, planes, and submarines
simultaneously. Defense Secretary William Perry has described the AEGIS Weapon System
as providing "...thorough and accurate battlefield awareness by drawing intelligence about the
battlefield from many sources and speeding it to the commander fighting the battle."

b

Traditionally, the computing base of the AWS consisted of military standard computers. These
I computers were programmed to perform a single function and communicated with other

computers through direct connections, implemented as military standard low-level serial links.
I The traditional architecture utilized shadow processors, with primary and alternate computers,

to provide fault tolerance. A dedicated military standard time distribution network enabled
coordination among the various computers.

Today, the combined effect of changing threat scenarios, modification of doctrine to address these
threats, injection of commercial-off-the-shelf (COTS) technologies, and diminishing defense
spending is changing naval system computing architectures.

I

A migration towards a COTS network of high-powered COTS processing nodes, which hosts a
suite of fully distributed application programs, is currently taking shape. In this new type of

I
environment, by its very definition, the need to achieve system wide time synchronization still
exists. The U.S. Navy is considering a number of novel solutions, some of which include the
Network Time Protocol (NTP) as a component.

This paper presents a series of experiments conducted to evaluate the performance of NTP in a
shipboard environment, as part of the fifth Engineering Development Model (EDMS) AEGIS
Weapon System (AWS) communications benchmarking effort.

2 EDM5 LABORATORY CONFIGURATION

A laboratory test-bed network was constructed to support AWS EDMS communications testing.
The netwoik was designed to simulate key processing elements, interconnected via candidate
local area network /LAN) technoloeies and capable of generating representative levels of AWS
communications traffic. h he nehvork providkd the i;frastmct;remand hardware to conduct
a variety of computer communication benchmarks, including those for NTP. It consisted of
nine Hewlett Packard (HP) workstations, three of which were Tactical Advanced Computer 3
(TAC3) HP-750 machines running the HP-UX version 9.05 operating system. The remaining
six machines were TAC4 HP-J210's running HP-UX 10.01. All nodes supported two interfaces:
an Ethzrnet interface to a file server and a Fiber Distributed Data Interface (FDDI) to a
router backbone. The router backbone consisted of four Cisco 7513 routers interconnected in
a fault-tolerant FDDI configuration.

3 SHIPBOARD TIME SYNCHRONIZATION REQUIREMENTS

The requirements for time synchronization in a heterogeneous, diverse, networked collection
of computers take added dimension when the target operating environment is aboard a battle-
ready ship. Whereas a land-based commercial application network might concern itself primarily
with the accuracy, portability, and scalability of a timekeeping mechanism, a sea-based tactical
application network must also guarantee the settling time, stability, and survivability, as well as
more stringent synchronization requirements, of its timekeeper.

Synchronization describes the ability of NTP to make a system of clocks agree in both
frequency and time. Settling time describes the elapsed time required for NTP to reach
nominal synchronization. Stability describes the ability of NTP to regulate the clocks, such that
measured time offsets do not climb or descend too far or too often. Survivability describes the
ability of NTP to be robust in face of system failures or degraded system states.

4 EXPERIMENTAL OBJECTIVE

Performance requirements in each of these categories are derived from the AWS A-level
Specification, and differ for mission critical versus non-mission critical elements. The goal of
EDMS NTP testing was to evaluate NTP against these performance criteria in the non-mission
critical configurations currently planned, and to gain insight into how NTP might perform in a
mission critical configuration.

5 NTP EXPERIMENTS

Because NTP offers a dynamic clock correction mechanism, its behavior is expected to vary
with time. Because it is significant to understand such behavior over both the short- and the
long-term, two experiments were designed and conducted.

5.1 NTP Stability Experiment

5.1.1 Objective

The NTP Stability Experiment was designed to measure the long-run synchronization and
stability of a system of clocks disciplined by NTP. The experiment was also designed to allow a
measurement of initial settling time. The first part of this experiment configured a timekeeping
subnetwork from the EDM.5 test-bed equipment, establishing NTP communications over 10
megabit-per-second (Mbps) Ethernet. The second part of this experiment utilized the same
configuration, but, instead, established communications over 155 Mbps FDDI. Figure 1 shows
the NTP synchronization subnet topology exercised for both parts of the experiment.

5.1.2 Configuration

As shown, host will3429 was designated as a stratum 10 NTP server, "master." Host will3428
was designated as a backup NTP server, "backup master," at stratum 12. The master and
backup master were then designated as peers. All other hosts in the test-bed were designated
NTP clients to both masters. The master and backup master employ their own local clocks as
time references. Therefore, this NTP configuration attempts to slave all clocks in the test-bed
to the local clock of wi113429, and to will3428 in case of failure.

5.1.3 Implementation

Automated statistics collection was enabled to capture NTP system state variables for the
duration of each test; and the NTP synchronization subnet was permitted to free run relatively
undisturbed. Part I examined clock behavior for 11 days. Part I1 studied behavior for 7.

5.2 NTP Load Experiment

5.2.1 Objective

The NTP Load Experiment was designed primarily to study the survivability aspects of NTP
performance. It does this by subjecting NTP host computers to a harsh environment, and
comparing clock synchronization and stability before and after stress conditions are applied.
The experiment also tests for the impact of host computer crash failures and recoveries, which
are simulated by abruptly terminating and re-initiating the NTP software on the NTP hosts
under test.

The harsh environment mnsists of two components: contention for communication resources
and processing resources. Communications resource drain was simulated by injecting a bursty
traffic pattern into the network. Processing resource drain was accomplished by running
CPU-intensive applications on the NTP hosts under test.

A series of test scenarios composes the experiment. These scenarios attempt to model conditions
that might occur during shipboard operations. For example, it is conceivable for a situation to
arise, in which NTP is able to run for only 15 minutes after start-up, before being terminated
during a failed system state. It then remains inactive for 10 minutes before being re-instantiated.
Yet, throughout its activity, NTP must compete for network andlor central processing unit (CPU)
resources, due to the stress associated with system failure and recovery. How NTP will perform
under these and similar conditions is of significant interest. Therefore, scenarios were carefully
constructed to benchmark NTP as part of this experiment, as shown in Figure 3.

Because of the short duration of each test, the NTP Load Experiment also provided an
opportunity to study short-run performance against synchronization, stability, and settling time

requirements.

5.2.2 Configuration

This experiment configured a basic timekeeping subnetwork consisting of a single client and
single scrver from the EDMS test-bed equipment. Communications were established over
FDDI. Figure 2 illustrates the basic NTP synchronization subnet topology used. A TAC3 and
a TAC4 versions of this configuration were implemented. In the TAC3 version, will3428 acted
as an NTP scrver to NTP client wi113427, with the local clock of will3429 providing a time
reference to both. In the TAC4 version, will3430 acted as an NTP server to NTP client
wi113435, with the local clock of will3434 providing the time reference.

5.2.3 Implementation

The experiment was conducted as follows: First, NTP configuration files were modified to
implement either the TAC3 or TAC4 synchronization subnet. Second, each scenario was
executed in series as listed in Figure 3, constituting an iteration of a test suite. Third, the levels
of network and processor activity were altered and the test suite rerun. Figure 4 outlines the
NTP configurations and corresponding platform activity levels used for each iteration of a test
suite. Completion of the experiment was signified by exhausting the list.

To implement the experiment, several UNIX scripts were developed. A high-level description
of each is provided. The main script manages the initiation and termination of the NTP client
and server as needed to match the sequence defined by the test suite. It invokes a separate
script to calibrate the NTP client and server at the start of each test scenario. It also invokes
the NTP query utility, "ntpdate," periodically to collect and record time offset statistics. The
script was designed to execute a single iteration in 9 hours, at 1 hour per scenario, including
20 minutes for calibration.

The calibration script simply instantiates the NTP client and server together, lets them run for
an amount of time, then terminates each just before the test scenario begins. The calibration
phase attempts to equalize NTP performance in the client and the server hosts.

The network load scripts generate bursty traffic over the network by invoking an AWS commu-
nications simulation tool, developed in-house, in a predetermined sequence. In an attempt to
affect the maximum network-related stress on NTP, this sequence specifies parameters which
cause the tool to create different levels of network utilization approximately every minute for the
duration of an iteration. Because the NTP algorithms choose an optimal source of timekeeping
information partially as a function of past statistics on path delays, creating an environment
in which path delays vary each time NTP communicates increases the likelihood that NTP
makes a nonoptimal decision for the current network state. A FDDI Network Advisor was
used to measure and record traffic traces during each loaded network iteration to verify the
test conditions. Note that the network load scripts were executed manually on separate hosts
from the NTP hosts under test.

Two versions of CPU load scripts were utilized for the experiment. One script, again, exercised
the AWS communications simulation tool. This time the tool was invoked on each of the
NTP hosts under test, such that the processors were constantly polling for a control message
scheduled never to arrive. The other script simply repeatedly invoked a recursive UNIX "find"
command. Both scripts drained approximately 96% of CPU resources, as measured by the
UNIX utility, "top."

6 ASSUMPTIONS

A series of assumptions limit the scope of the experiments as designed:

The standard distribution of NTP is tested. This version of NTP is tuned for networks expecting
to synchronize to clock references over the Internet. Note that the Naval Surface Warfare
Center, Dahlgren Division (NSWC-DD), is studying which NTP parameters are tunable and how
to tune them in order to optimize performance in an AEGIS-like network. Such a network is
isolated from the Internet, is more geographically compact, and utilizes clock references local to
the ship. An independent validation of the NSWC-DD findings is planned, as well as rerunning
of the experiments described herein to characterize NTP when it has been appropriately tuned.

Only TAC3 and TAC4 NTP performance is characterized. Because the quantity and quality
of synchronization achievable via NTP is ultimately determined by the hardware and operating
system it attempts to discipline, the scope of any characterization of NTP is limited to
the platform in question, and cannot necessarily be extrapolated to other host platforms.
Specifically, mission critical elements are not being hosted in either the TAC3 or the TACX
platforms. Therefore, it is not fully accurate to compare NTP performance, as measured by
the experiments reported herein, against mission critical requirements.

Only the symmetric active mode of NTP operation is evaluated. This mode enables the
maximum exchange of time information in the subnet and, therefore, theoretically produces
the most reliable synchronization. Properties and performance of other NTP modes will not
be studied in these tests.

Sufficient aging of the NTP drift files has occurred. The NTP algorithms are implemented
as a software daemon, "xntpd." Because xntpd attempts to discipline time by regulating the
oscillator aboard each processor, its performance enhances with increased understanding of the
idiosyncrasies of the hardware. Thus, xntpd records drift data to a file, which is continually
updated during runtime. A more veteran drift file provides better information to xntpd.

NTP accurately reports synchronization performance. The xntpd software distribution delivers
two query utilities, "xntpdc" and ntpdate, for examining NTP system state variables. These
variables include time offset between pairs of NTP nodes. NSWC-DD determined that xntpdc
reports more dated information than ntpdate, but concluded that NTP does accurately measure
its own performance. Based on these findings, it is most accurate to utilize ntpdate when
conducting short-duration tests, whereas for long-duration tests, xntpdc still provides an accurate
depiction of performance. This study makes an assumption that xntpd automated statistics
collection employs techniques similar to xntpdc. This is a reasonable assumption, based on a
cursoly examination of the code.

7 STATUS

To date, all experiments described in this paper have been completed. The data have been
collected, and much of them have been reduced, plotted, and analyzed. However, a full analysis,
to produce measures of synchronization, settling time, stability, and survivability, is pending
completion and will be published as a separate document.

8 PRELIMINARY CONCLUSIONS

As of the date of initial data analysis, AEGIS EDMS system requirements were continuing to
evolve towards final definition. Therefore, it was not possible to conclude with certainty whether
NTP, when hosted on the TAC3 and TAC4 platforms, can satisfactorily perform the non-mission
critical time synchronization function for an EDMS incarnation of AEGIS. However, preliminary
data suggest that, as expected, in the configurations tested, NTP cannot meet mission critical
performance requirements. It is believed that adding a highly reliable time reference to these
configurations might enhance performance enough to reverse this conclusion.

The suite of tcsts and evaluation did indicate that the movement in time and frequency of
clocks, disciplined by NTP, occurs in a coordinated fashion. Furthermore, it was determined that
when xntpd is terminated on a host, its local clock begins to drift immediately until the daemon
is re-initiated. It is significant to note that NTP performance degraded when introduced onto
the TAC4 platform. This confirms that operating system upgrades do not necessarily imply
NTP performance upgrades. Instead, xntpd should be benchmarked for all candidate hardware
platforms, operating system revisions, and synchronization subnet topologies.

Perhaps, the most important conclusion drawn from these experiments is that NTP performance
can be significantly enhanced by tuning xntpd. By customizing user-definable parameters for
an isolated, geographically localized synchronization subnet, it is expected that synchronization,
settling time, stability, and survivability numbers will drop. It has been demonstrated that
reducing the polling interval, from a 64 to 1024 second range to a 16 to 64 second range,
trims client-to-server offsets by an order of magnitude. Continued testing using actual EDMS
hardware and introducing mission critical synchronization subnet topologies are recommended.

9 REFERENCES

M.E. Bautista, S. Dempsey, W.J. Reilly, M. Teter, and L. Weinberg, '%DM5 network
communications testing s ta tus report, February 1996," NS-C-ADV-T-2001, April
199.6.

"High performance distributed computing program: engineering testbed one w-
port, " Naval Surface Warfare Centermahlgren Division, and Johns Hopkins University
Applied Physics Laboratory, November 1995.

D.L. Mills, "Network Time Protocol (version 3) specification, implementat ion
a n d analysis," RFC 1305, March 1992.

K.F. O'Donoghue, and T.R. Plunkett 1996, "Development a n d validation of network
clock measurement techniques," Proceedings of the 4th International Workshop on
Parallel and Distributed Real-Time Systems (IEEE Computer Society Press).

LEGEND

Figure 1. NTP Stability Experiment Synchronization Subnet Topology

_ - - _
* - SERVER - .

~1113434

SERVER

w TIMEKEEPER

Figure 2. NTP Load Experiment Synchronization Subnet Configuration

Figure 3. Scenarios Composing a Single Test Suite

Figurc 4. NTP Configur~tion5 and Platform Conditions During Iteration of a Test Suite

Questions and Answers
RICHARD SCHMIDT (USNO): What version of NTP were you doing this test on?

MELANIE BAUTISTA: 3.4.

RICHARD SCHMIDT: And did you do any tests - it wasn't quite clear to me what was the
effect of disabling the servers, letting the clients freewheel on NTP from their last known drift
rates?

MELANIE BAUTISTA: Actually there were several iterations that were tried. The main
iterations were actually disabling NTP on the client machines as well. So it was done in both
directions. We disabled the daemon on just the client and then re-initiated and we observed
how synchronization was affected. We also did the reverse.

RICHARD SCHMIDT But I guess my question was we know if you kill NTP on the client,
the client's going to run away. There's nothing controlling it. But if you disable access to the
server, after some period of time it should have learned what its frequency errors were and
it should freewheel fairly accurately. But that depends on how long NTP had been mnning
before you kill that access. Have you done any tests showing that dependency, how long it
needs to be running before the client can run fairly successfully without a server?

MELANIE BAUTISTA: Actually, we didn't extend the experiment to that extent. However,
these experiments were designed to study short-run characteristics of NTP. So the tests were
very short.

The first experiment examined NTP synchronization over a number of days. The NTP load
experiment conducted nine trials in series, each trial lasting one hour. So it would be something
like the client/server was on for 15 minutes together; client/NTP daemon was terminated for
10 minutes; then both came back on for 15 minutes. And then we recorded the time offsets
and studied whether in that short time period we could learn anything worthwhile, because this
is the type of environment we would be expecting in an AEGIS environment.

JUDAH LEVINE (NIST): I wouldn't want to talk anybody out of using NTP, but it seemed to
me that most of the machinery that is built into NTP is really not needed in your environment.
And most of the problems in your environment are things that NTP is not going to help with,
in that you have a network and it is what it is. So that its delays are going to be whatever
they're going to be. I mean, right, you have some topology and it is what it is. I guess the
whole idea of estimating the network every time - I mean, you could just do it, right? It's
your closed network. You own the whole thing. It's not like you have to go through anybody
else's router.

Let me ask why did you choose NTP as opposed to all the other choices that were available?

MELANIE BAUTISTA: Well, the reason NTP was chosen is because it's automatic, it's
something that you can turn on in your workstation, you never have to worry about it. It's
true that you could do your own simple implementation of measuring the network delay and
doing the simple calculation that NTP does without the additional overhead that NTP builds
in in order to support an Internet environment. However, it's implemented; you can just turn
the daemon on in your workstation and not worry about it.

The initial concept was not chosen for the mission<ritical elements. It's more for all of the
workstations on the ship performing non-mission-critical functions.

WILLIAM BOLLWERK (USNO): I have a question for you about the requirements. You say

that there were requirements, and you broke them down into four areas. Those came out of
Operations Requirements Document for AEGIS, or where did they come from? The ORD -
or what are the actual timing requirements and are they for the critical shipboard operations?
You just mentioned that the system is set up for the nonessential, like the supply functions and
other things on the ship. Are the requirements broken out into that type of category or what
do you have there?

MELANIE BAUTISTA: Because this is really a new feature that's going to be introduced in
future baselines of AEGIS, requirements for non-mission-critical time synchronization do not
currently exist. However, the wncepts being developed for future AEGIS have a different
concept of operations, and many of these requirements are being derived from that. A lot of
them, however, are based on the AWS top-level specifications such as first start-up times; you
have a fixed amount of time that you have to be able to get the whole system up and running
by "x" amount of time; if the system goes down, you have to wme back alive, everything has
to be running within "x" amount of time. Requirements on that level help to define the fault
tolerance in fault recovery requirements for NTF!

In terms of synchronization, to date when we are testing, we are testing against old synchro-
nization requirements, in other words, requirements made of the time distribution system in
past AEGIS baseline designs. So what the previous system had to perform, we have to at least
be able to meet those requirements and perhaps ... I'm not at liberty to say; that's classified
information.

KAREN O'DONOGHUE (NAVAL SURFACE WARFARE CENTER): I just wanted to add
a couple of things to what Melanie has already said. The question about why NTP might be
useful onboard ship - first of all, I don't believe that we see the shipboard network being quite
as static as might have been indicated. There are a number of routers onboard ship; there are
a number of various subsystem networks, and I think we see the need to be able to - especially
in a fault scenario where you're losing networks and various routers might be going down that
we might need more flexibility then - we don't have a static network, I guess is what I'm trying
to say.

One of the second motivations for looking at NTP is since we are moving towards using COT
space workstations onboard ship, we are very interested in the capability of the frequency -
being able to modify the phase and the frequency. Because, on COT space workstations you get
the capability to figure out what the frequency offset is and to possibly make some correction
for that is very attractive.

On the question of requirements, one of the things I'd like to refer to is that there were a
number of efforts done by the Navy in the Next Generation Computer Resources Program,
which has recently ended, looking at what the timing requirements were for networks, in
particular, in the Safenet Program; and some of the earlier requirements documents that came
out of that that were made public is that they wanted the synchronization between processors
to be within 1 millisecond; and that you needed - I believe the term you used was "settling
time," I'm not sure - to be within 5 seconds. So from the time the machine boots, within 5
seconds we need to be synchronized to within 1 millisewnd and then maintain that level of
stability. Thank you.

