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Abstract 

The rapid evolution of naval combat system computing plogonnr is inspiring novel approaches 
in the design of shipboard time distribution systems. The Network Time Protocol (NTF') is being 
considered as a component in some of these new modelr. This paper presents studies conducfed to 
evaluate the viability of NTI: in genera!., as a shipboard timekeeping mechanism, and in parkicular, 
as a non-mission critical timekeeping mechanism for the AEGIS Weapon System. 

1 INTRODUCTION 

The AEGIS Weapon System (AWS) is a complex system of systems. It is deployed on U.S. 
I 

Navy cruisers and destroyers, and is capable of engaging enemy ships, planes, and submarines 
simultaneously. Defense Secretary William Perry has described the AEGIS Weapon System 
as providing "...thorough and accurate battlefield awareness by drawing intelligence about the 
battlefield from many sources and speeding it to the commander fighting the battle." 

b 

Traditionally, the computing base of the AWS consisted of military standard computers. These 
I computers were programmed to perform a single function and communicated with other 

computers through direct connections, implemented as military standard low-level serial links. 
I The traditional architecture utilized shadow processors, with primary and alternate computers, 

to provide fault tolerance. A dedicated military standard time distribution network enabled 
coordination among the various computers. 

Today, the combined effect of changing threat scenarios, modification of doctrine to address these 
threats, injection of commercial-off-the-shelf (COTS) technologies, and diminishing defense 
spending is changing naval system computing architectures. 

I 

A migration towards a COTS network of high-powered COTS processing nodes, which hosts a 
suite of fully distributed application programs, is currently taking shape. In this new type of 

I 
environment, by its very definition, the need to achieve system wide time synchronization still 
exists. The U.S. Navy is considering a number of novel solutions, some of which include the 
Network Time Protocol (NTP) as a component. 

This paper presents a series of experiments conducted to evaluate the performance of NTP in a 
shipboard environment, as part of the fifth Engineering Development Model (EDMS) AEGIS 
Weapon System (AWS) communications benchmarking effort. 



2 EDM5 LABORATORY CONFIGURATION 

A laboratory test-bed network was constructed to support AWS EDMS communications testing. 
The netwoik was designed to simulate key processing elements, interconnected via candidate 
local area network /LAN) technoloeies and capable of generating representative levels of AWS 
communications traffic.  h he nehvork providkd the i;frastmct;remand hardware to conduct 
a variety of computer communication benchmarks, including those for NTP. It consisted of 
nine Hewlett Packard (HP) workstations, three of which were Tactical Advanced Computer 3 
(TAC3) HP-750 machines running the HP-UX version 9.05 operating system. The remaining 
six machines were TAC4 HP-J210's running HP-UX 10.01. All nodes supported two interfaces: 
an Ethzrnet interface to a file server and a Fiber Distributed Data Interface (FDDI) to a 
router backbone. The router backbone consisted of four Cisco 7513 routers interconnected in 
a fault-tolerant FDDI configuration. 

3 SHIPBOARD TIME SYNCHRONIZATION REQUIREMENTS 

The requirements for time synchronization in a heterogeneous, diverse, networked collection 
of computers take added dimension when the target operating environment is aboard a battle- 
ready ship. Whereas a land-based commercial application network might concern itself primarily 
with the accuracy, portability, and scalability of a timekeeping mechanism, a sea-based tactical 
application network must also guarantee the settling time, stability, and survivability, as well as 
more stringent synchronization requirements, of its timekeeper. 

Synchronization describes the ability of NTP to make a system of clocks agree in both 
frequency and time. Settling time describes the elapsed time required for NTP to reach 
nominal synchronization. Stability describes the ability of NTP to regulate the clocks, such that 
measured time offsets do not climb or descend too far or too often. Survivability describes the 
ability of NTP to be robust in face of system failures or degraded system states. 

4 EXPERIMENTAL OBJECTIVE 

Performance requirements in each of these categories are derived from the AWS A-level 
Specification, and differ for mission critical versus non-mission critical elements. The goal of 
EDMS NTP testing was to evaluate NTP against these performance criteria in the non-mission 
critical configurations currently planned, and to gain insight into how NTP might perform in a 
mission critical configuration. 

5 NTP EXPERIMENTS 

Because NTP offers a dynamic clock correction mechanism, its behavior is expected to vary 
with time. Because it is significant to understand such behavior over both the short- and the 
long-term, two experiments were designed and conducted. 



5.1 NTP Stability Experiment 

5.1.1 Objective 

The NTP Stability Experiment was designed to measure the long-run synchronization and 
stability of a system of clocks disciplined by NTP. The experiment was also designed to allow a 
measurement of initial settling time. The first part of this experiment configured a timekeeping 
subnetwork from the EDM.5 test-bed equipment, establishing NTP communications over 10 
megabit-per-second (Mbps) Ethernet. The second part of this experiment utilized the same 
configuration, but, instead, established communications over 155 Mbps FDDI. Figure 1 shows 
the NTP synchronization subnet topology exercised for both parts of the experiment. 

5.1.2 Configuration 

As shown, host will3429 was designated as a stratum 10 NTP server, "master." Host will3428 
was designated as a backup NTP server, "backup master," at stratum 12. The master and 
backup master were then designated as peers. All other hosts in the test-bed were designated 
NTP clients to both masters. The master and backup master employ their own local clocks as 
time references. Therefore, this NTP configuration attempts to slave all clocks in the test-bed 
to the local clock of wi113429, and to will3428 in case of failure. 

5.1.3 Implementation 

Automated statistics collection was enabled to capture NTP system state variables for the 
duration of each test; and the NTP synchronization subnet was permitted to free run relatively 
undisturbed. Part I examined clock behavior for 11 days. Part I1 studied behavior for 7. 

5.2 NTP Load Experiment 

5.2.1 Objective 

The NTP Load Experiment was designed primarily to study the survivability aspects of NTP 
performance. It does this by subjecting NTP host computers to a harsh environment, and 
comparing clock synchronization and stability before and after stress conditions are applied. 
The experiment also tests for the impact of host computer crash failures and recoveries, which 
are simulated by abruptly terminating and re-initiating the NTP software on the NTP hosts 
under test. 

The harsh environment mnsists of two components: contention for communication resources 
and processing resources. Communications resource drain was simulated by injecting a bursty 
traffic pattern into the network. Processing resource drain was accomplished by running 
CPU-intensive applications on the NTP hosts under test. 

A series of test scenarios composes the experiment. These scenarios attempt to model conditions 
that might occur during shipboard operations. For example, it is conceivable for a situation to 
arise, in which NTP is able to run for only 15 minutes after start-up, before being terminated 
during a failed system state. It then remains inactive for 10 minutes before being re-instantiated. 
Yet, throughout its activity, NTP must compete for network andlor central processing unit (CPU) 
resources, due to the stress associated with system failure and recovery. How NTP will perform 
under these and similar conditions is of significant interest. Therefore, scenarios were carefully 
constructed to benchmark NTP as part of this experiment, as shown in Figure 3. 

Because of the short duration of each test, the NTP Load Experiment also provided an 
opportunity to study short-run performance against synchronization, stability, and settling time 



requirements. 

5.2.2 Configuration 

This experiment configured a basic timekeeping subnetwork consisting of a single client and 
single scrver from the EDMS test-bed equipment. Communications were established over 
FDDI. Figure 2 illustrates the basic NTP synchronization subnet topology used. A TAC3 and 
a TAC4 versions of this configuration were implemented. In the TAC3 version, will3428 acted 
as an NTP scrver to NTP client wi113427, with the local clock of will3429 providing a time 
reference to both. In the TAC4 version, will3430 acted as an NTP server to NTP client 
wi113435, with the local clock of will3434 providing the time reference. 

5.2.3 Implementation 

The experiment was conducted as follows: First, NTP configuration files were modified to 
implement either the TAC3 or TAC4 synchronization subnet. Second, each scenario was 
executed in series as listed in Figure 3, constituting an iteration of a test suite. Third, the levels 
of network and processor activity were altered and the test suite rerun. Figure 4 outlines the 
NTP configurations and corresponding platform activity levels used for each iteration of a test 
suite. Completion of the experiment was signified by exhausting the list. 

To implement the experiment, several UNIX scripts were developed. A high-level description 
of each is provided. The main script manages the initiation and termination of the NTP client 
and server as needed to match the sequence defined by the test suite. It invokes a separate 
script to calibrate the NTP client and server at the start of each test scenario. It also invokes 
the NTP query utility, "ntpdate," periodically to collect and record time offset statistics. The 
script was designed to execute a single iteration in 9 hours, at  1 hour per scenario, including 
20 minutes for calibration. 

The calibration script simply instantiates the NTP client and server together, lets them run for 
an amount of time, then terminates each just before the test scenario begins. The calibration 
phase attempts to equalize NTP performance in the client and the server hosts. 

The network load scripts generate bursty traffic over the network by invoking an AWS commu- 
nications simulation tool, developed in-house, in a predetermined sequence. In an attempt to 
affect the maximum network-related stress on NTP, this sequence specifies parameters which 
cause the tool to create different levels of network utilization approximately every minute for the 
duration of an iteration. Because the NTP algorithms choose an optimal source of timekeeping 
information partially as a function of past statistics on path delays, creating an environment 
in which path delays vary each time NTP communicates increases the likelihood that NTP 
makes a nonoptimal decision for the current network state. A FDDI Network Advisor was 
used to measure and record traffic traces during each loaded network iteration to verify the 
test conditions. Note that the network load scripts were executed manually on separate hosts 
from the NTP hosts under test. 

Two versions of CPU load scripts were utilized for the experiment. One script, again, exercised 
the AWS communications simulation tool. This time the tool was invoked on each of the 
NTP hosts under test, such that the processors were constantly polling for a control message 
scheduled never to arrive. The other script simply repeatedly invoked a recursive UNIX "find" 
command. Both scripts drained approximately 96% of CPU resources, as measured by the 
UNIX utility, "top." 



6 ASSUMPTIONS 

A series of assumptions limit the scope of the experiments as designed: 

The standard distribution of NTP is tested. This version of NTP is tuned for networks expecting 
to synchronize to clock references over the Internet. Note that the Naval Surface Warfare 
Center, Dahlgren Division (NSWC-DD), is studying which NTP parameters are tunable and how 
to tune them in order to optimize performance in an AEGIS-like network. Such a network is 
isolated from the Internet, is more geographically compact, and utilizes clock references local to 
the ship. An independent validation of the NSWC-DD findings is planned, as well as rerunning 
of the experiments described herein to characterize NTP when it has been appropriately tuned. 

Only TAC3 and TAC4 NTP performance is characterized. Because the quantity and quality 
of synchronization achievable via NTP is ultimately determined by the hardware and operating 
system it attempts to discipline, the scope of any characterization of NTP is limited to 
the platform in question, and cannot necessarily be extrapolated to other host platforms. 
Specifically, mission critical elements are not being hosted in either the TAC3 or  the TACX 
platforms. Therefore, it is not fully accurate to compare NTP performance, as measured by 
the experiments reported herein, against mission critical requirements. 

Only the symmetric active mode of NTP operation is evaluated. This mode enables the 
maximum exchange of time information in the subnet and, therefore, theoretically produces 
the most reliable synchronization. Properties and performance of other NTP modes will not 
be studied in these tests. 

Sufficient aging of the NTP drift files has occurred. The NTP algorithms are implemented 
as a software daemon, "xntpd." Because xntpd attempts to discipline time by regulating the 
oscillator aboard each processor, its performance enhances with increased understanding of the 
idiosyncrasies of the hardware. Thus, xntpd records drift data to a file, which is continually 
updated during runtime. A more veteran drift file provides better information to xntpd. 

NTP accurately reports synchronization performance. The xntpd software distribution delivers 
two query utilities, "xntpdc" and ntpdate, for examining NTP system state variables. These 
variables include time offset between pairs of NTP nodes. NSWC-DD determined that xntpdc 
reports more dated information than ntpdate, but concluded that NTP does accurately measure 
its own performance. Based on these findings, it is most accurate to utilize ntpdate when 
conducting short-duration tests, whereas for long-duration tests, xntpdc still provides an accurate 
depiction of performance. This study makes an assumption that xntpd automated statistics 
collection employs techniques similar to xntpdc. This is a reasonable assumption, based on a 
cursoly examination of the code. 

7 STATUS 

To date, all experiments described in this paper have been completed. The data have been 
collected, and much of them have been reduced, plotted, and analyzed. However, a full analysis, 
to produce measures of synchronization, settling time, stability, and survivability, is pending 
completion and will be published as a separate document. 



8 PRELIMINARY CONCLUSIONS 

As of the date of initial data analysis, AEGIS EDMS system requirements were continuing to 
evolve towards final definition. Therefore, it was not possible to conclude with certainty whether 
NTP, when hosted on the TAC3 and TAC4 platforms, can satisfactorily perform the non-mission 
critical time synchronization function for an EDMS incarnation of AEGIS. However, preliminary 
data suggest that, as expected, in the configurations tested, NTP cannot meet mission critical 
performance requirements. It is believed that adding a highly reliable time reference to these 
configurations might enhance performance enough to reverse this conclusion. 

The suite of tcsts and evaluation did indicate that the movement in time and frequency of 
clocks, disciplined by NTP, occurs in a coordinated fashion. Furthermore, it was determined that 
when xntpd is terminated on a host, its local clock begins to drift immediately until the daemon 
is re-initiated. It is significant to note that NTP performance degraded when introduced onto 
the TAC4 platform. This confirms that operating system upgrades do not necessarily imply 
NTP performance upgrades. Instead, xntpd should be benchmarked for all candidate hardware 
platforms, operating system revisions, and synchronization subnet topologies. 

Perhaps, the most important conclusion drawn from these experiments is that NTP performance 
can be significantly enhanced by tuning xntpd. By customizing user-definable parameters for 
an isolated, geographically localized synchronization subnet, it is expected that synchronization, 
settling time, stability, and survivability numbers will drop. It has been demonstrated that 
reducing the polling interval, from a 64 to 1024 second range to a 16 to 64 second range, 
trims client-to-server offsets by an order of magnitude. Continued testing using actual EDMS 
hardware and introducing mission critical synchronization subnet topologies are recommended. 
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Figure 3. Scenarios Composing a Single Test Suite 

Figurc 4. NTP Configur~tion5 and Platform Conditions During Iteration of a Test Suite 



Questions and Answers 
RICHARD SCHMIDT (USNO): What version of NTP were you doing this test on? 

MELANIE BAUTISTA: 3.4. 

RICHARD SCHMIDT: And did you do any tests - it wasn't quite clear to me what was the 
effect of disabling the servers, letting the clients freewheel on NTP from their last known drift 
rates? 

MELANIE BAUTISTA: Actually there were several iterations that were tried. The main 
iterations were actually disabling NTP on the client machines as well. So it was done in both 
directions. We disabled the daemon on just the client and then re-initiated and we observed 
how synchronization was affected. We also did the reverse. 

RICHARD SCHMIDT But I guess my question was we know if you kill NTP on the client, 
the client's going to run away. There's nothing controlling it. But if you disable access to the 
server, after some period of time it should have learned what its frequency errors were and 
it should freewheel fairly accurately. But that depends on how long NTP had been mnning 
before you kill that access. Have you done any tests showing that dependency, how long it 
needs to be running before the client can run fairly successfully without a server? 

MELANIE BAUTISTA: Actually, we didn't extend the experiment to that extent. However, 
these experiments were designed to study short-run characteristics of NTP. So the tests were 
very short. 

The first experiment examined NTP synchronization over a number of days. The NTP load 
experiment conducted nine trials in series, each trial lasting one hour. So it would be something 
like the client/server was on for 15 minutes together; client/NTP daemon was terminated for 
10 minutes; then both came back on for 15 minutes. And then we recorded the time offsets 
and studied whether in that short time period we could learn anything worthwhile, because this 
is the type of environment we would be expecting in an AEGIS environment. 

JUDAH LEVINE (NIST): I wouldn't want to talk anybody out of using NTP, but it seemed to 
me that most of the machinery that is built into NTP is really not needed in your environment. 
And most of the problems in your environment are things that NTP is not going to help with, 
in that you have a network and it is what it is. So that its delays are going to be whatever 
they're going to be. I mean, right, you have some topology and it is what it is. I guess the 
whole idea of estimating the network every time - I mean, you could just do it, right? It's 
your closed network. You own the whole thing. It's not like you have to go through anybody 
else's router. 

Let me ask why did you choose NTP as opposed to all the other choices that were available? 

MELANIE BAUTISTA: Well, the reason NTP was chosen is because it's automatic, it's 
something that you can turn on in your workstation, you never have to worry about it. It's 
true that you could do your own simple implementation of measuring the network delay and 
doing the simple calculation that NTP does without the additional overhead that NTP builds 
in in order to support an Internet environment. However, it's implemented; you can just turn 
the daemon on in your workstation and not worry about it. 

The initial concept was not chosen for the mission<ritical elements. It's more for all of the 
workstations on the ship performing non-mission-critical functions. 

WILLIAM BOLLWERK (USNO): I have a question for you about the requirements. You say 



that there were requirements, and you broke them down into four areas. Those came out of 
Operations Requirements Document for AEGIS, or where did they come from? The ORD - 
or what are the actual timing requirements and are they for the critical shipboard operations? 
You just mentioned that the system is set up for the nonessential, like the supply functions and 
other things on the ship. Are the requirements broken out into that type of category or what 
do you have there? 

MELANIE BAUTISTA: Because this is really a new feature that's going to be introduced in 
future baselines of AEGIS, requirements for non-mission-critical time synchronization do not 
currently exist. However, the wncepts being developed for future AEGIS have a different 
concept of operations, and many of these requirements are being derived from that. A lot of 
them, however, are based on the AWS top-level specifications such as first start-up times; you 
have a fixed amount of time that you have to be able to get the whole system up and running 
by "x" amount of time; if the system goes down, you have to wme back alive, everything has 
to be running within "x" amount of time. Requirements on that level help to define the fault 
tolerance in fault recovery requirements for NTF! 

In terms of synchronization, to date when we are testing, we are testing against old synchro- 
nization requirements, in other words, requirements made of the time distribution system in 
past AEGIS baseline designs. So what the previous system had to perform, we have to at least 
be able to meet those requirements and perhaps ... I'm not at liberty to say; that's classified 
information. 

KAREN O'DONOGHUE (NAVAL SURFACE WARFARE CENTER): I just wanted to add 
a couple of things to what Melanie has already said. The question about why NTP might be 
useful onboard ship - first of all, I don't believe that we see the shipboard network being quite 
as static as might have been indicated. There are a number of routers onboard ship; there are 
a number of various subsystem networks, and I think we see the need to be able to - especially 
in a fault scenario where you're losing networks and various routers might be going down that 
we might need more flexibility then - we don't have a static network, I guess is what I'm trying 
to say. 

One of the second motivations for looking at NTP is since we are moving towards using COT 
space workstations onboard ship, we are very interested in the capability of the frequency - 
being able to modify the phase and the frequency. Because, on COT space workstations you get 
the capability to figure out what the frequency offset is and to possibly make some correction 
for that is very attractive. 

On the question of requirements, one of the things I'd like to refer to is that there were a 
number of efforts done by the Navy in the Next Generation Computer Resources Program, 
which has recently ended, looking at what the timing requirements were for networks, in 
particular, in the Safenet Program; and some of the earlier requirements documents that came 
out of that that were made public is that they wanted the synchronization between processors 
to be within 1 millisecond; and that you needed - I believe the term you used was "settling 
time," I'm not sure - to be within 5 seconds. So from the time the machine boots, within 5 
seconds we need to be synchronized to within 1 millisewnd and then maintain that level of 
stability. Thank you. 


