
THE NETWORK COMPUTER AS PRECISION
TIMEKEEPER*

David L. Mills
Electrical Engineering Department

University of Delaware
Newark, Delaware 19716, USA

mills@udel.edu; URL:www.eecis.udel.edu/-mills

Abstract

This paper describes algorithms to discipline a computer clock lo a source of standard time, such
as a GPS receiver or aMIher computer synchronized to such a source. The algorithms are designed
for use in the Network Time Protocol (NTP), which is used to synchronize computer clocks in the
global Internet. They have been incorporated in the NTP soware for Unix and Windows and, for
the highest accuracy, in the operating system kernels for Sun, DEC, and H P workstations. Rms
errors on LANs are usually less than I0 p and on global internet paths usuaUy less than 5 ms.
However, rare disruptions of one kind or another can cause error spikes up to 100 p on LAh's and
100 ms on Internet paths.

I 1 INTRODUCTION

General purpose workstation computers are bewming faster each year, with processor clocks
now operating at 300 MHz and above. Computer networks are bewming faster as well, with
speeds of 622 Mbps available now and 2.4 Gbps being installed. Using available technology
and existing workstations and Internet paths, it has been demonstrated that computers can
be reliably synchronized to better than a millisecond in LANs and better than a few tens of
milliseconds in most places in the global Internet.[ll This technology includes the Network
Time Protocol (NTP), now used in an estimated total of over 100,000 servers and clients in the
global Internet. Over 220 primaq time servers are available in this network, each connected
to an external source of time, such as a GPS radio clock or ACTS telephone modem.

Reliable network synchronization requires crafted algorithms which minimize jitter on diverse
network paths between clients and servers, determine the best subset of redundant servers,
and discipline the computer clock in both time and frequency. The Network Time Protocol
(NTP) is designed to do this in Unix and Windows operating systems. The NTP architecture,
protocol, and algorithms have evolved over almost two decades, with the latest NTP Version 3
designated an Internet (draft) standardIZ1. Among the goals of this design are:

'Sponsored by: DARPA Informtion Technology Office Contract DABT 63- lMC0046, NSF Division of Network and Communi-
cations Research and Infrastructure Grant NCR 93-01002, Northeast- Center fm Electrical Engineering Education Contract A303
27693, Amy Research Laboratories Cooperative Agreement DAA LOI-96UX)2, and Digital Equipment Corporation R~sesrch A g r e
ment 1417.

1. Optimize the computer clock accuracy and stability, subject to constraints of network
overheads and/or telephone toll charges, relative to local and/or remote sources of time.

2. Enhance the reliability by detecting and discarding misbehaving local andlor remote sources
and reconfigurc network paths as necessary.

3. Automatically adjust algorithm parameters in response to prevailing network delayljitter
conditions and the measured stability of the computer clock.

At the heart of the NTP design are the algorithms that discipline the computer clock to an
external source, either an NTP server elsewhere in the Internet or a local radio or modem.
A key feature in this design is improved accuracy to the order of a few microseconds at the
application program interface (API). The need for this becomes clear upon observing that the
time to read the computer clock via a system call routine has been reduced from 40 ps a few
years ago on a Sun Microsystems SPARC IPC to less than 1 ps today on an UltraSPARC.

The wmputer clock discipline algorithm, which is at the heart of the design, is described in
this paper. It is implemented as an adaptive-parameter, type-11, hybrid phaselfrequency-lock
loop. Portions of the algorithm are implemented in the NTP software that runs the protocol
and provides the computer clock corrections. The remaining portions have been implemented
in this software and in the operating system kernel. For greater accuracy, a stable oscillator
and counter delivering a pulse-per-second (pps) signal can be used to steer the computer clock
frequency, while an external NTP server or local radio provides the UTC time. For the highest
accuracy, a pps signal synchronized to UTC can be used directly to discipline the frequency
and time within the second, while an external source, such as an NTP server or radio, provides
the UTC seconds numbering.

2 NETWORK TIME PROTOCOL

While not in itself the subject of this paper, an o v e ~ e w of the NTP design will be helpful in
understanding the algorithms involved. As described in 131, a synch~onization subnet is a
hierarchical set of time servers and clients organized by stratum, in much the same way as
in digital telephone networks. The servers at the lowest stratum are synchronized to national
standards by radio or modem. In order to provide the most accurate, reliable service, clients
typically operate with several redundant servers over diverse network paths.

The NTP software operates in each sewer and client as an independent process or daemon At
designated intervals, a client sends a request to each configured server and expects a response
at some later time. The exchange results in four clock readings, or timestamps, one at the
sending time (relative to the sender) and another at the receiving time (relative to the receiver),
for the request and the reply. The client uses these four timestamps to calculate the clock offset
and roundtrip delay relative to each server separately. The clock filter algorithm discards
offset outliers associated with large delays, which can result in large errors. As a by-product, a
statistical accuracy estimate called dispersion is produced which, combined with the stratum,
is used as a mctric, called synchronization distance, to organize the NTP subnet itself as a
shortest-path spanning tree.

Thc clock offsets produced by the clock filter algorithm for each server separately are then
processed by the intcrscction algorithm in order to detect and discard misbehaving servers
called falsetickcrs. The t ruechime~s remaining are then processed by the clustering
algorithm to discard outliers on the basis of dispersions for each server as compared to the

ensemble dispersion. The survivors remaining are then weighted by dispersion and combined
to produce a correction used to discipline the computer clock.

A clock correction is produced for each round of messages between a client and a survivor.
Corrections less than 128 ms are amortized using the NTP clock discipline algorithm, which is
the main topic of this paper. Those greater than 128 ms cause a step change in the computer
clock, but only after a sanity period of 15 minutes while these large values persist. Corrections
of this magnitude are exceedingly rare, usually as the result of reboot, broken hardware, or
missed leap second event.

Primary servers sometimes operate with more than one synchronization source, including
multiple radios and other primary servers, in order to provide reliable senrice under all credible
failure scenarios. The same NTP algorithms are used for all sources, so that malfunctions
can be automatically detected and the NTP subnet reconfigures according to the prevailing
synchronization distances.

3 COMPUTER CLOCK OSCILLATOR CHARACTERIZATION

The time-of-day P O D) function in modern workstations is commonly implemented using
an uncompensated quartz crystal oscillator and counter, which delivers a pulse train with
period ranging from 10 ms to less than 1 ms. Each pulse causes a a timer interrupt, which
increments a software logical clock variable by a fixed value tick scaled in microseconds or

I nanoseconds. Conventional Unix systems represent the TOD as two 32-bit words in seconds
and microseconds/nanoseconds from UTC midnight, 1 January 1970, with no provision for leap
seconds. Thus, the clock reading precision is limited to the tick interval; however, many systems
provide an auxiliary counter with reading precision of a microsecond or less, which can be used
to interpolate between timer intenupts.

That typical computer clocks behave in ways quite counterproductive to good timekeeping should
come as no surprise. There are no explicit means to control crystal ambient temperature, power
level, voltage regulation, or mechanical stability. For instance, in a survey of about 20,000
Internet hosts synchronized by NTP, the median intrinsic frequency error was 78 ppm, with
some hosts as much as 500 ppm. Since the clock oscillator is not temperature stabilized, its
frequency may vary over a few ppm in the normal course of operation.

In order to correct for an intrinsic frequency error, adjustments must be made at intervals
depending on the accuracy and jitter requirements. At a typical clock period of 10 ms and a
frequency tolerance of 500 ppm, for example, the TOD function must add or subtract 5 ps at
each timer interrupt and complete the entire 500-irs adjustment within a 1-s adjustment interval.
The residual error, thus, has a sawtooth characteristic with maximum amplitude 500 ps, which
can be reduced only by reducing the intrinsic frequency error or by reducing the adjustment
interval as described later in this paper.

Assuming the clock discipline can learn the nominal frequency error of each clock oscillator
separately and correct for it, the primary characteristic affecting the clock accuracy is the
oscillator stability. The traditional characterization of oscillator stability is a plot of Allan
variance[4], which is defined as follows. Consider a series of time offsets measured between

i a computer clock and some external standard. Let xk be the kth measurement and T~ be the
interval since the last measurement. Define the fractional frequency

which is a dimensionless quantity. Now, consider a sequence of N independent fractional
frequency samples yk(k = 0, I , ..., N - 1). If the interval between measurements t is the same as
the averaging interval, the two-sample Allan variance is defined

and the Allan deviation as the square root of this quantity. Figure 1 shows the results
of an experiment designed to determine the Allan deviation of a typical workstation (Sun
SPARC IPC) under normal room-temperature conditions over about five days. The data used
to generate this plot were obtained using the PPS signal of a GPS receiver captured by a special
interface described in 151.

l o - ' i - d - 8 d
1 oY 10' 1 o2 I o3 1 o4 1 o5

Time Interval (5)

Figure 1. Allan Deviation Plot

It is important to note that both the x and y scales of Figure 1 are logarithmic, but the axes
are labelled in actual values. Starting from the left at 7 = 2 s, the plot tends to a straight line
with slope near -1, which is characteristic of white phase noise.161 In this region, increasing T
increases the frequency stability in direct proportion. At about T = 1000 s the plot flattens
out, indicating that the white phase noise becomes dominated first by white frequency noise
(slope -0.5), then by flicker frequency noise (flat slope). In other words, as T is increased,
there is less and less correlation between one averaging intelval and the next. The inflection
point between these two regions is important in the design of the clock discipline algorithm, as
described later.

4 THE NTP CLOCK DISCIPLINE

The clock discipline algorithm adjusts the computer clock time as determined by NTP, com-
pensates for the intrinsic frequency error, and adjusts the server update interval and loop
time constant dynamically in response to measured network jitter and oscillator stability. A
comprehensive description of the algorithm is given below (an outline of the algorithm appeared
previously in [I]). The algorithm is implemented as the feedback loop shown in Figure 2. The
variable 8, represents the reference phase provided by NTP and 8, the control phase produced
by the variable frequency oscillator (VFO), which controls the computer clock. The phase
detector produces a signal Vd representing the instantaneous phase difference between 8, and
8,. The clock filter functions as a tapped delay line, with the output V, taken at the sample
selected by the algorithm. The loop filter, with impulse response F(t) , produces a correction Vc,
which controls the VFO frequency w, and, thus, its phase. The characteristic behavior of this
model, which is determined by F(t) and the various gain factors, is studied in many textbooks
and summarized in 17).

c 1 Loop Filter f

Frequency
Discipline

Figure 2. NTP Clock Discipline

The new clock discipline differs from the one described in the NTP specification and previous
reports. It is based on an adaptive-parameter, hybrid phase-lock/frequency-lock loop (PLUFLL)
design which gives good performance with update intervals T from a few seconds to tens of
kiloseconds, depending on accuracy requirements and acceptable network overheads. In the
most general formulation, an algorithm that corrects for clock time and frequency errors
computes a prediction ?k = xk-I + yk-l~k and then a correction x = xk -ik. As each correction is
determined, the clock is adjusted by -x, so that it displays the correct time, and the frequency
yb is adjusted to minimize the corrections in future. Between updates, which can range from

seconds to hours, the algorithm amortizes x in small increments at adjustment intervals ta At
each adjustment interval the value

is added to the clock time and x is multiplied by 1 -a, where a is a wnstant between zero and
one. In the NTP daemon for Unix and Windows, t~ is one second; while, in the modified kernel
described later, tA is one clock tick. This model provides rapid adjustment (fast convergence)
whcn z is relatively large, together with fine adjustment (low jitter) when z is relatively small.
In PLL mode, the first term in cq. (3) is necessary for stability; in both PLL and FLL modes, it
is also necessary in order to prevent monotonicity violations when the magnitude of adjustment
is large.

The PLL mode is used in configurations with remote NTP servers or local radios, where the
averaging intcrval is usually below the knee of the Allan deviation plot. In this mode the
frequency at the kth update is determined directly from the summation

where b is a wnstant between zero and one. In order to understand the PLL dynamics, it
is useful to consider the limit as 7, approaches zero. From eqs. (3) and (4), the oscillator
frequency is adjusted by

Since phase is the integral of frequency, the integral of the right hand side represents the
overall open-loop impulse response of the feedback loop. Taking the Laplace transform,

where the extra pole 5 at the origin is due to the integration which converts the frequency y(3)
to phase O (J) . After some rearrangement, the transfer function G(s) can be written

where a: = b is the loop gain and w, = is the corner frequency. From elementary theory,
this is the transfer function of a type-I1 PLL which can control both time and frequency. The
averaging interval is determined by the loop time constant, which depends on the choice of a
and b; howcvcr, these constants must be chosen so that the damping factor < = + = 3 = 2,

-z e v v

in order to prcscrve good transient rcsponse. For good stability, the time constant should be
at 1c;ist eight times the total loop delay which, because of the clock filter delay, is eight times
the uptl:~te interval. For v:~lucs of a = 2-lo, b = Z P 4 and T = 64 s for instance, the PLL has a
risctimc in response to a phasc step of about 53 minutes and a 63% response to a frequency

step of about 4.25 hours, which is a useful compromise between stability and network overhead
on a LAN. Values of r as low as 64 s are necessary to achieve the required capture range
of 500 ppm; however, much larger values are appropriate on long paths in the Internet. For

1 other values of 7, a varies as i, while b varies as 7.

The FLL mode is used in configurations with modem services, such as those operated by NIST,
USNO, PTB, and NPL, where the averaging interval (r in this case) is usually above the knee.
The FLL, adapted from (81, operates is the same way as the PLL, except that the frequency yk
is determined indirectly from the exponential average

with w = 025 determined by experiment. The goal of the clock discipline is to adjust the clock
time and frequency so that x k = 0 for all k. To the extent this has been successful in the past,
we can assume corrections prior to x k are all zero and, in particular, Therefore, from
eqs. (1) and (8) we have

In PLL mode, eq. (4) is used for yk in eq. (3); while, in FLL mode, eq. (9) is used instead.

A key feature of the NTP design is the automatic selection of r in response to measured network
jitter and oscillator stability. The ensemble dispersion is used as a measure of oscillator stability
in both the PLL and FLL modes. If the correction exceeds this value, the oscillator frequency
is deviating too fast for the clock discipline to follow, so r is reduced in stages to the minimum.
If the opposite case holds for some number of updates, T is slowly increased in steps to
the maximum. Under typical operating conditions, r hovers close to the maximum; but, on
occasions when the oscillator frequency wanders more than about 1 ppm, it quickly drops to
lower values until the wander subsides.

5 OPERATING SYSTEM KERNEL MODIFICATIONS

Previous experience has justified the claim that an ordinary workstation running the algorithms
described above can reliably maintain time accurate to a millisecond or two relative to a server
on the same LAN. However, with a 1-s adjustment interval, 500-ppm frequency tolerance, and
T at the knee of the Allan deviation plot, it is not possible to improve the accuracy much
better than this, primarily due to the instability of the clock oscillator and also due to the
sawtooth error. Both of these problems can be addressed in the form of operating system kernel
modifications, which in effect move the clock discipline algorithm to the kernel, as described
in [s]. This provides a smaller adjustment interval, which reduces the sawtooth error and also
provides more precise phase and frequency control. Without the kernel modifications, the
adjustment interval is limited by practical considerations to 1 s; with the kernel modifications,
the adjustments occur at every timer interrupt.

The modifications have been implemented and tested on Sun, DEC, and HP workstations.
They are distributed in Digital Unix 4 for the DEC Alpha and planned for early release in
Solaris 2 for the Sun SPARC. They include two system functions, one to read the system clock
and related status indicators and error bounds, and another to adjust the clock phase and
frequency. The clock discipline algorithm operates as shown in Figure 2, with phase corrections

provided at each NTP update. The oscillator frequency is preset when the NTP daemon is
first started, in order to reduce the start-up transient, after which the frequency is controlled
by the algorithm.

The pps signal is connected using a pulse generator and level converter. Each on-time
transition causes an interrupt to the serial port driver, which latches the current seconds offset
and disciplines the clock oscillator, as shown in Figure 2. The signal can be used in two ways,
to discipline the oscillator frequency and to discipline the phase. Frequency discipline is used
when a stable pps signal is available, but not synchronized to UTC time. In this case, the floor
of the Allan deviation plot moves downward and the knee moves to the right. Thus, T can be
made much larger, increasing the averaging time and improving the accuracy. Frequency and
phase discipline is used when a pps signal synchronized to UTC time is available.

Since noise problems on the pps signal could lead to serious errors, the kernel routines carefully
grade and groom the data. Three-stage median filters are used to discard outliers and provide
quality metrics for jitter and wander. The nominal frequency offset is computed from the time
difference between the beginning and end of a calibration interval and added directly to the
frequency variable, as shown in Figure 2. These operations are complicated by the requirement
that all valucs must depend only on the clock hardware. When relatively small tick values are
involved, less than a millisecond with DEC Alpha, and large frequency errors, as much as 500
ppm, this requires the initial calibration interval to be not more than 4 s. If the stability metric
exceeds a threshold, the length of the calibration interval is reduced by half. If this is not the
case for several consecutive intervals, the interval is doubled up to a maximum of 256 s, which
corresponds to a frequency resolution of a few parts in lo9.

The NTP daemon performs a number of sanity checks to insure the integrity of the radio or
modem ASCII timecode and the pps signal itself. The sanity checks are implemented by a
suite of mitigation algorithms which identify improperly operating hardware or software, cast
out the truants, and continue operating with the remaining sources, even if this means casting
out a radio or modem and demoting the stratum. For instance, before the pps signal can
be considered valid. the computer clock must be within 128 ms of the offset associated with
the source of the signal. In addition, the sourw must remain among the survivors of the
intersection and clustering algorithms. In practice, failures of this kind are not uncommon with
WWVB radio clocks in our part of the country, since a cornbination of poor signal strength
and local interference sometimes cause relatively large receiver errors.

Considerable effort was made in the implementation of the NTP software and kernel modifica-
tions to reduce hardware and operating system delay variations; however, not all machines make
good timekeepers. Unpredictable delay variations occur in the hardware, interrupt routines,
buffering operations, and system scheduling policies. In the case of a network interface, the
network driver captures a receive timestamp in the interrupt routine. In the case of a radio
or modem, this is done using a line discipline, which is invoked by the serial port driver. It
inspects for one of a designated set of intercept characters, usually the one designated on-time
in the ASCII timecode string sent by the radio. Upon finding an intercept character, it captures
a receive timestamp and stuffs the bits in the input buffer following the intercept character. The
NTP daemon captures a transmit timestamp before computing the cryptographic message digest
used to verify the scrver authenticity. Fortunately, the MD5 algorithm used for this purpose has
an almost constant running time independent of the message contents. The daemon measures
this time and thcn advances the transmit timestamp by a like amount in the following message.

6 PERFORMANCE ANALYSIS

In order to assess the performance of the NTP algorithms in the global Internet, recordings of
raw timestamp data were made over an 11-day period involving three paths selected to represent
extreme cases with presumed large delays and delay variations. The three paths are between
the University of Delaware (pogo.udel.edu) and (WUSTL) Washington University in St. Louis
(navobsl.wustl.edu, 15 router hops), (IEN) IEN Galileo Ferraris in Torino, Italy (time.ien.it, 19
hops), and (OZ) University of Melbourne in Australia (ntp.cs.mu.oz, 22 hops). Each server is
synchronized to GPS, although only pogo has the modified kernel and pps support.

A common assumption is that network delays are reciprocal; that is, the statistics exploited
by the various NTP algorithms on each direction of transmission are the same. In order to
test this assumption, the raw data collected on all three paths were processed by a simulator
program which faithfully models the NTP algorithms and includes provisions to adjust the
various parameters and graph the results. The propagation delay can be estimated as the
mean of the ten lowest delays on each direction. The IEN outbound path delay was 93.0 ms
and the return 97.9 ms, while the figures for the OZ path were 124.6 and 138.4 ms, and for
the WUSTL path are 19.6 and 19.5 ms. The offset errors due these nonreciprocal delays are
half the differences, 2.45, 6.9, and 0.05 ms, respectively. These errors are surprisingly small,
considering the number of router hops and the great distances involved.

In addition to the fixed propagation delays, there are variable delays due to queueing in routers
along the path. For instance, the mean roundtrip delays on the IEN, OZ, and WUSTL paths

b are 345.4, 359.9, and 65.4 ms, respectively, leaving 154.5, 96.9, and 26.3 ms as the mean
queueing delays. Thus, between a quarter and a half of the mean roundtrip delays are due
to queueing delays. However, after processing by the NTP algorithms, the degree to which
the NTP algorithms clean up the raw data can be seen in representing the before and after
for the WUSTL path. The mean offset errors for the raw data are 15.2, 9.8, and 4.8 ms for
the IEN, 0 2 , and WUSTL paths, respectively, while the RMS errors are 64.0, 470.0, and 19.5
ms. However, after processing by the NTP algorithms, the mean offset errors are reduced to
,045, .004, and ,003 ms, respectively, while the RMS errors are reduced to 2.9, 3.0, and 0.15
ms. These values should be added to the nonreciprocal path errors in the total error budget.
Figure 3 shows the results for the WUSTL path; the other paths behave in similar ways.

The graph has a spiky characteristic shared by the other paths and suggests further processing
might eliminate most or all of the spikes, especially if the pps signal were used to stabilize the
clock oscillator and the length of the clock filter increased a substantial amount. While the
emphasis in this paper is on heroic paths in the Internet, a similar experiment involving pogo
and another machine on the same Ethernet LAN shows negligible mean error, rms error ,007
ms, and maximum error .078 ms, the latter due to a single spike of unknown origin during a
run of 15 days.

d 6 6 5.0368
L I

5.037 5.0372 5.0374 5.0376 5.0378
MJD x 10'

Figure 3. Processed Data Offsets

7 SUMMARY AND CONCLUSIONS

The significance of this work is confirmation that general purpose workstations with appropriate
software support can deliver timekeeping accuracies in the low millisecond range over global
distances using the Internet shared with many other users and applications. This may be
especially useful for astronomy, oceanography, manufacturing, and process control applications.

The key to achieving accuracies of this order is through carefully crafted algorithms and the
use of a stable external oscillator and counter to produce a PPS signal. The signal is processed
by algorithms embedded in the operating system kernel and used to discipline the frequency
of the computer clock at every timer interrupt.

The package of NTP software and kernel modifications has been implemented for several
families of Unix and Windows workstations and is available for public distribution. The kernel
modifications have been incorporated in the standard Digital Unix operating system and are
planned for early release in the Solaris operating system.

8 REFERENCES

References (1, 2, S, 5, 7) are available from Internet archives in PostScript format. Contact the
author for location and availability.

(11 D.L. Mills 1995, "Improved algorithms for synchronizing computer network clocks, "
IEEE/ACM Transactions on Networks, 245-254.

121 D.L. Mills 1992, "Network Time Protocol (Version 5') specification, implementa-
tion and analysis, " Network Working Group Report RFC-1305, University of Delaware,
March 1992, 113 pp.

[s] D.L. Mills 1991, "Internet time synchronization: the Network Time Protocol,"
IEEE Transactions on Communications, COM-39, 1482-1493. Also in: Global
States and Time in Distributed Systems, ed. 2. Yang and T.A. Marsland (IEEE
F'ress, Los Alamitos, California, USA), pp. 91-102.

[4] D.W. Allan 1987, "Time and frequency (time-domain) estimation and predic-
tion of precision clocks and oscillators,' IEEE Transactions on Ultrasound,
Ferroelectrics, and Frequency Control, UFFC-34, 647-654. Also in: Charac-
terization of clocks and oscillators, ed. D.B. Sullivan, D.W. Allan, D.A. Howe, and
F.L. Walls 1990, NIST Note 1337, National Institute of Standards and Techno1ogyKJ.S.
Department of Commerce (U.S. Govemment Printing Office, Washington, D.C., USA),
pp. TN121-TN128.

[5] D.L. Mills 1994, "Unix kernel modifications for precision time synchronization, "
Electrical Engineering Department Report 94-10-1, University of Delaware, October 1994,
24 PP.

(61 S.R. Stein 1985, "Fkequency and time-their measurement and characterization"
(Chapter 12). In: Precision Frequency Control, Vol. 2, ed. E.A. Gerber and A.
Ballato (Academic Press, New York, New York, USA), pp. 191-232 and 399-416. Also in:
Characterization of Clocks and Oscillators, ed. D.B. Sullivan, D.W. Allan, D.A.
Howe, and EL. Walls 1990, NIST Technical Note 1337, National Institute of Standards and
Technology/U.S. Department of Commerce (U.S. Government Printing Office, Washington,
D.C., USA), pp. TN61-TN119.

[7] D.L. Mills 1992, "Modelling and analysis of computer network clocks," Electrical
Engineering Department Report 92-5-2, University of Delaware, May 1992, 29 pp.

[a] J. Levine 1995, "An algorithm to synchronize the time of a computer to universal
time, " IEEE Transactions on Networks, 3, 42-50.

