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Abstract 

This paper describes algorithms to discipline a computer clock lo a source of standard time, such 
as  a GPS receiver or aMIher computer synchronized to such a source. The algorithms are designed 
for use in the Network Time Protocol (NTP), which is used to synchronize computer clocks in the 
global Internet. They have been incorporated in the NTP soware  for Unix and Windows and, for 
the highest accuracy, in the operating system kernels for Sun, DEC, and H P  workstations. Rms 
errors on LANs are usually less than I0  p and on global internet paths usuaUy less than 5 ms. 
However, rare disruptions of one kind or another can cause error spikes up to 100 p on LAh's and 
100 ms on Internet paths. 

I 1 INTRODUCTION 

General purpose workstation computers are bewming faster each year, with processor clocks 
now operating at 300 MHz and above. Computer networks are bewming faster as well, with 
speeds of 622 Mbps available now and 2.4 Gbps being installed. Using available technology 
and existing workstations and Internet paths, it has been demonstrated that computers can 
be reliably synchronized to better than a millisecond in LANs and better than a few tens of 
milliseconds in most places in the global Internet.[ll This technology includes the Network 
Time Protocol (NTP), now used in an estimated total of over 100,000 servers and clients in the 
global Internet. Over 220 primaq time servers are available in this network, each connected 
to an external source of time, such as a GPS radio clock or ACTS telephone modem. 

Reliable network synchronization requires crafted algorithms which minimize jitter on diverse 
network paths between clients and servers, determine the best subset of redundant servers, 
and discipline the computer clock in both time and frequency. The Network Time Protocol 
(NTP) is designed to do this in Unix and Windows operating systems. The NTP architecture, 
protocol, and algorithms have evolved over almost two decades, with the latest NTP Version 3 
designated an Internet (draft) standardIZ1. Among the goals of this design are: 
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1. Optimize the computer clock accuracy and stability, subject to constraints of network 
overheads and/or telephone toll charges, relative to local and/or remote sources of time. 

2. Enhance the reliability by detecting and discarding misbehaving local andlor remote sources 
and reconfigurc network paths as necessary. 

3. Automatically adjust algorithm parameters in response to prevailing network delayljitter 
conditions and the measured stability of the computer clock. 

At the heart of the NTP design are the algorithms that discipline the computer clock to an 
external source, either an NTP server elsewhere in the Internet or  a local radio or  modem. 
A key feature in this design is improved accuracy to the order of a few microseconds at the 
application program interface (API). The need for this becomes clear upon observing that the 
time to read the computer clock via a system call routine has been reduced from 40 ps a few 
years ago on a Sun Microsystems SPARC IPC to less than 1 ps today on an UltraSPARC. 

The wmputer clock discipline algorithm, which is at the heart of the design, is described in 
this paper. It is implemented as an adaptive-parameter, type-11, hybrid phaselfrequency-lock 
loop. Portions of the algorithm are implemented in the NTP software that runs the protocol 
and provides the computer clock corrections. The remaining portions have been implemented 
in this software and in the operating system kernel. For greater accuracy, a stable oscillator 
and counter delivering a pulse-per-second (pps) signal can be used to steer the computer clock 
frequency, while an external NTP server or  local radio provides the UTC time. For the highest 
accuracy, a pps signal synchronized to UTC can be used directly to discipline the frequency 
and time within the second, while an external source, such as an NTP server or radio, provides 
the UTC seconds numbering. 

2 NETWORK TIME PROTOCOL 

While not in itself the subject of this paper, an o v e ~ e w  of the NTP design will be helpful in 
understanding the algorithms involved. As described in 131, a synch~onization subnet is a 
hierarchical set of time servers and clients organized by stratum, in much the same way as 
in digital telephone networks. The servers at the lowest stratum are synchronized to national 
standards by radio or modem. In order to provide the most accurate, reliable service, clients 
typically operate with several redundant servers over diverse network paths. 

The NTP software operates in each sewer and client as an independent process or  daemon At 
designated intervals, a client sends a request to each configured server and expects a response 
at some later time. The exchange results in four clock readings, or timestamps, one at the 
sending time (relative to the sender) and another at the receiving time (relative to the receiver), 
for the request and the reply. The client uses these four timestamps to calculate the clock offset 
and roundtrip delay relative to each server separately. The clock filter algorithm discards 
offset outliers associated with large delays, which can result in large errors. As a by-product, a 
statistical accuracy estimate called dispersion is produced which, combined with the stratum, 
is used as a mctric, called synchronization distance, to organize the NTP subnet itself as a 
shortest-path spanning tree. 

Thc clock offsets produced by the clock filter algorithm for each server separately are then 
processed by the intcrscction algorithm in order to detect and discard misbehaving servers 
called falsetickcrs. The t ruechime~s remaining are then processed by the clustering 
algorithm to discard outliers on  the basis of dispersions for each server as compared to the 



ensemble dispersion. The survivors remaining are then weighted by dispersion and combined 
to produce a correction used to discipline the computer clock. 

A clock correction is produced for each round of messages between a client and a survivor. 
Corrections less than 128 ms are amortized using the NTP clock discipline algorithm, which is 
the main topic of this paper. Those greater than 128 ms cause a step change in the computer 
clock, but only after a sanity period of 15 minutes while these large values persist. Corrections 
of this magnitude are exceedingly rare, usually as the result of reboot, broken hardware, or 
missed leap second event. 

Primary servers sometimes operate with more than one synchronization source, including 
multiple radios and other primary servers, in order to provide reliable senrice under all credible 
failure scenarios. The same NTP algorithms are used for all sources, so that malfunctions 
can be automatically detected and the NTP subnet reconfigures according to the prevailing 
synchronization distances. 

3 COMPUTER CLOCK OSCILLATOR CHARACTERIZATION 

The time-of-day P O D )  function in modern workstations is commonly implemented using 
an uncompensated quartz crystal oscillator and counter, which delivers a pulse train with 
period ranging from 10 ms to less than 1 ms. Each pulse causes a a timer interrupt, which 
increments a software logical clock variable by a fixed value tick scaled in microseconds or 

I nanoseconds. Conventional Unix systems represent the TOD as two 32-bit words in seconds 
and microseconds/nanoseconds from UTC midnight, 1 January 1970, with no provision for leap 
seconds. Thus, the clock reading precision is limited to the tick interval; however, many systems 
provide an auxiliary counter with reading precision of a microsecond or less, which can be used 
to interpolate between timer intenupts. 

That typical computer clocks behave in ways quite counterproductive to good timekeeping should 
come as no surprise. There are no explicit means to control crystal ambient temperature, power 
level, voltage regulation, or mechanical stability. For instance, in a survey of about 20,000 
Internet hosts synchronized by NTP, the median intrinsic frequency error was 78 ppm, with 
some hosts as much as 500 ppm. Since the clock oscillator is not temperature stabilized, its 
frequency may vary over a few ppm in the normal course of operation. 

In order to correct for an intrinsic frequency error, adjustments must be made at intervals 
depending on the accuracy and jitter requirements. At a typical clock period of 10 ms and a 
frequency tolerance of 500 ppm, for example, the TOD function must add or subtract 5 ps at 
each timer interrupt and complete the entire 500-irs adjustment within a 1-s adjustment interval. 
The residual error, thus, has a sawtooth characteristic with maximum amplitude 500 ps, which 
can be reduced only by reducing the intrinsic frequency error or by reducing the adjustment 
interval as described later in this paper. 

Assuming the clock discipline can learn the nominal frequency error of each clock oscillator 
separately and correct for it, the primary characteristic affecting the clock accuracy is the 
oscillator stability. The traditional characterization of oscillator stability is a plot of Allan 
variance[4], which is defined as follows. Consider a series of time offsets measured between 

i a computer clock and some external standard. Let xk be the kth measurement and T~ be the 
interval since the last measurement. Define the fractional frequency 



which is a dimensionless quantity. Now, consider a sequence of N independent fractional 
frequency samples yk(k = 0, I ,  ..., N - 1). If the interval between measurements t is the same as 
the averaging interval, the two-sample Allan variance is defined 

and the Allan deviation as the square root of this quantity. Figure 1 shows the results 
of an experiment designed to determine the Allan deviation of a typical workstation (Sun 
SPARC IPC) under normal room-temperature conditions over about five days. The data used 
to generate this plot were obtained using the PPS signal of a GPS receiver captured by a special 
interface described in 151. 
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Figure 1. Allan Deviation Plot 

It is important to note that both the x and y scales of Figure 1 are logarithmic, but the axes 
are labelled in actual values. Starting from the left at 7 = 2 s, the plot tends to a straight line 
with slope near -1, which is characteristic of white phase noise.161 In this region, increasing T 
increases the frequency stability in direct proportion. At about T = 1000 s the plot flattens 
out, indicating that the white phase noise becomes dominated first by white frequency noise 
(slope -0.5), then by flicker frequency noise (flat slope). In other words, as T is increased, 
there is less and less correlation between one averaging intelval and the next. The inflection 
point between these two regions is important in the design of the clock discipline algorithm, as 
described later. 



4 THE NTP CLOCK DISCIPLINE 

The clock discipline algorithm adjusts the computer clock time as determined by NTP, com- 
pensates for the intrinsic frequency error, and adjusts the server update interval and loop 
time constant dynamically in response to measured network jitter and oscillator stability. A 
comprehensive description of the algorithm is given below (an outline of the algorithm appeared 
previously in [I]). The algorithm is implemented as the feedback loop shown in Figure 2. The 
variable 8, represents the reference phase provided by NTP and 8, the control phase produced 
by the variable frequency oscillator (VFO), which controls the computer clock. The phase 
detector produces a signal Vd representing the instantaneous phase difference between 8, and 
8,. The clock filter functions as a tapped delay line, with the output V,  taken at the sample 
selected by the algorithm. The loop filter, with impulse response F(t) ,  produces a correction Vc, 
which controls the VFO frequency w, and, thus, its phase. The characteristic behavior of this 
model, which is determined by F( t )  and the various gain factors, is studied in many textbooks 
and summarized in 17). 

c 1 Loop Filter f 

Frequency 
Discipline 

Figure 2. NTP Clock Discipline 

The new clock discipline differs from the one described in the NTP specification and previous 
reports. It is based on an adaptive-parameter, hybrid phase-lock/frequency-lock loop (PLUFLL) 
design which gives good performance with update intervals T from a few seconds to tens of 
kiloseconds, depending on accuracy requirements and acceptable network overheads. In the 
most general formulation, an algorithm that corrects for clock time and frequency errors 
computes a prediction ?k = xk-I + yk-l~k and then a correction x = xk -ik. As each correction is 
determined, the clock is adjusted by -x, so that it displays the correct time, and the frequency 
yb is adjusted to minimize the corrections in future. Between updates, which can range from 



seconds to hours, the algorithm amortizes x in small increments at adjustment intervals ta At 
each adjustment interval the value 

is added to the clock time and x is multiplied by 1 -a, where a is a wnstant between zero and 
one. In the NTP daemon for Unix and Windows, t~ is one second; while, in the modified kernel 
described later, tA is one clock tick. This model provides rapid adjustment (fast convergence) 
whcn z is relatively large, together with fine adjustment (low jitter) when z is relatively small. 
In PLL mode, the first term in cq. (3) is necessary for stability; in both PLL and FLL modes, it 
is also necessary in order to prevent monotonicity violations when the magnitude of adjustment 
is large. 

The PLL mode is used in configurations with remote NTP servers or local radios, where the 
averaging intcrval is usually below the knee of the Allan deviation plot. In this mode the 
frequency at the kth update is determined directly from the summation 

where b is a wnstant between zero and one. In order to understand the PLL dynamics, it 
is useful to consider the limit as 7, approaches zero. From eqs. (3) and (4), the oscillator 
frequency is adjusted by 

Since phase is the integral of frequency, the integral of the right hand side represents the 
overall open-loop impulse response of the feedback loop. Taking the Laplace transform, 

where the extra pole 5 at the origin is due to the integration which converts the frequency y(3) 
to phase O ( J ) .  After some rearrangement, the transfer function G(s) can be written 

where a: = b is the loop gain and w, = is the corner frequency. From elementary theory, 
this is the transfer function of a type-I1 PLL which can control both time and frequency. The 
averaging interval is determined by the loop time constant, which depends on the choice of a 
and b; howcvcr, these constants must be chosen so that the damping factor < = + = 3 = 2, 

-z e v v  

in  order to prcscrve good transient rcsponse. For good stability, the time constant should be 
at 1c;ist eight times the total loop delay which, because of the clock filter delay, is eight times 
the uptl:~te interval. For v:~lucs of a = 2-lo, b = Z P 4  and T = 64 s for instance, the PLL has a 
risctimc in response to a phasc step of about 53 minutes and a 63% response to a frequency 



step of about 4.25 hours, which is a useful compromise between stability and network overhead 
on a LAN. Values of r as low as 64 s are necessary to achieve the required capture range 
of 500 ppm; however, much larger values are appropriate on long paths in the Internet. For 

1 other values of 7, a varies as i, while b varies as 7. 

The FLL mode is used in configurations with modem services, such as those operated by NIST, 
USNO, PTB, and NPL, where the averaging interval ( r  in this case) is usually above the knee. 
The FLL, adapted from (81, operates is the same way as the PLL, except that the frequency yk 
is determined indirectly from the exponential average 

with w = 025 determined by experiment. The goal of the clock discipline is to adjust the clock 
time and frequency so that x k  = 0 for all k. To the extent this has been successful in the past, 
we can assume corrections prior to x k  are all zero and, in particular, Therefore, from 
eqs. (1) and (8) we have 

In PLL mode, eq. (4) is used for yk in eq. (3); while, in FLL mode, eq. (9) is used instead. 

A key feature of the NTP design is the automatic selection of r in response to measured network 
jitter and oscillator stability. The ensemble dispersion is used as a measure of oscillator stability 
in both the PLL and FLL modes. If the correction exceeds this value, the oscillator frequency 
is deviating too fast for the clock discipline to follow, so r is reduced in stages to the minimum. 
If the opposite case holds for some number of updates, T is slowly increased in steps to 
the maximum. Under typical operating conditions, r hovers close to the maximum; but, on 
occasions when the oscillator frequency wanders more than about 1 ppm, it quickly drops to 
lower values until the wander subsides. 

5 OPERATING SYSTEM KERNEL MODIFICATIONS 

Previous experience has justified the claim that an ordinary workstation running the algorithms 
described above can reliably maintain time accurate to a millisecond or  two relative to a server 
on the same LAN. However, with a 1-s adjustment interval, 500-ppm frequency tolerance, and 
T at the knee of the Allan deviation plot, it is not possible to improve the accuracy much 
better than this, primarily due to the instability of the clock oscillator and also due to the 
sawtooth error. Both of these problems can be addressed in the form of operating system kernel 
modifications, which in effect move the clock discipline algorithm to the kernel, as described 
in [s]. This provides a smaller adjustment interval, which reduces the sawtooth error and also 
provides more precise phase and frequency control. Without the kernel modifications, the 
adjustment interval is limited by practical considerations to 1 s; with the kernel modifications, 
the adjustments occur at every timer interrupt. 

The modifications have been implemented and tested on Sun, DEC, and HP workstations. 
They are distributed in Digital Unix 4 for the DEC Alpha and planned for early release in 
Solaris 2 for the Sun SPARC. They include two system functions, one to read the system clock 
and related status indicators and error bounds, and another to adjust the clock phase and 
frequency. The clock discipline algorithm operates as shown in Figure 2, with phase corrections 



provided at each NTP update. The oscillator frequency is preset when the NTP daemon is 
first started, in order to reduce the start-up transient, after which the frequency is controlled 
by the algorithm. 

The pps signal is connected using a pulse generator and level converter. Each on-time 
transition causes an interrupt to the serial port driver, which latches the current seconds offset 
and disciplines the clock oscillator, as shown in Figure 2. The signal can be used in two ways, 
to discipline the oscillator frequency and to discipline the phase. Frequency discipline is used 
when a stable pps signal is available, but not synchronized to UTC time. In this case, the floor 
of the Allan deviation plot moves downward and the knee moves to the right. Thus, T can be 
made much larger, increasing the averaging time and improving the accuracy. Frequency and 
phase discipline is used when a pps signal synchronized to UTC time is available. 

Since noise problems on the pps signal could lead to serious errors, the kernel routines carefully 
grade and groom the data. Three-stage median filters are used to discard outliers and provide 
quality metrics for jitter and wander. The nominal frequency offset is computed from the time 
difference between the beginning and end of a calibration interval and added directly to the 
frequency variable, as shown in Figure 2. These operations are complicated by the requirement 
that all valucs must depend only on the clock hardware. When relatively small tick values are 
involved, less than a millisecond with DEC Alpha, and large frequency errors, as much as 500 
ppm, this requires the initial calibration interval to be not more than 4 s. If the stability metric 
exceeds a threshold, the length of the calibration interval is reduced by half. If this is not the 
case for several consecutive intervals, the interval is doubled up to a maximum of 256 s, which 
corresponds to a frequency resolution of a few parts in lo9. 

The NTP daemon performs a number of sanity checks to insure the integrity of the radio or 
modem ASCII timecode and the pps signal itself. The sanity checks are implemented by a 
suite of mitigation algorithms which identify improperly operating hardware or software, cast 
out the truants, and continue operating with the remaining sources, even if this means casting 
out a radio or  modem and demoting the stratum. For instance, before the pps signal can 
be considered valid. the computer clock must be within 128 ms of the offset associated with 
the source of the signal. In addition, the sourw must remain among the survivors of the 
intersection and clustering algorithms. In practice, failures of this kind are not uncommon with 
WWVB radio clocks in our part of the country, since a cornbination of poor signal strength 
and local interference sometimes cause relatively large receiver errors. 

Considerable effort was made in the implementation of the NTP software and kernel modifica- 
tions to reduce hardware and operating system delay variations; however, not all machines make 
good timekeepers. Unpredictable delay variations occur in the hardware, interrupt routines, 
buffering operations, and system scheduling policies. In the case of a network interface, the 
network driver captures a receive timestamp in the interrupt routine. In the case of a radio 
or modem, this is done using a line discipline, which is invoked by the serial port driver. It 
inspects for one of a designated set of intercept characters, usually the one designated on-time 
in the ASCII timecode string sent by the radio. Upon finding an intercept character, it captures 
a receive timestamp and stuffs the bits in the input buffer following the intercept character. The 
NTP daemon captures a transmit timestamp before computing the cryptographic message digest 
used to verify the scrver authenticity. Fortunately, the MD5 algorithm used for this purpose has 
an almost constant running time independent of the message contents. The daemon measures 
this time and thcn advances the transmit timestamp by a like amount in the following message. 



6 PERFORMANCE ANALYSIS 

In order to assess the performance of the NTP algorithms in the global Internet, recordings of 
raw timestamp data were made over an 11-day period involving three paths selected to represent 
extreme cases with presumed large delays and delay variations. The three paths are between 
the University of Delaware (pogo.udel.edu) and (WUSTL) Washington University in St. Louis 
(navobsl.wustl.edu, 15 router hops), (IEN) IEN Galileo Ferraris in Torino, Italy (time.ien.it, 19 
hops), and (OZ) University of Melbourne in Australia (ntp.cs.mu.oz, 22 hops). Each server is 
synchronized to GPS, although only pogo has the modified kernel and pps support. 

A common assumption is that network delays are reciprocal; that is, the statistics exploited 
by the various NTP algorithms on each direction of transmission are the same. In order to 
test this assumption, the raw data collected on all three paths were processed by a simulator 
program which faithfully models the NTP algorithms and includes provisions to adjust the 
various parameters and graph the results. The propagation delay can be estimated as the 
mean of the ten lowest delays on each direction. The IEN outbound path delay was 93.0 ms 
and the return 97.9 ms, while the figures for the OZ path were 124.6 and 138.4 ms, and for 
the WUSTL path are 19.6 and 19.5 ms. The offset errors due these nonreciprocal delays are 
half the differences, 2.45, 6.9, and 0.05 ms, respectively. These errors are surprisingly small, 
considering the number of router hops and the great distances involved. 

In addition to the fixed propagation delays, there are variable delays due to queueing in routers 
along the path. For instance, the mean roundtrip delays on the IEN, OZ, and WUSTL paths 

b are 345.4, 359.9, and 65.4 ms, respectively, leaving 154.5, 96.9, and 26.3 ms as the mean 
queueing delays. Thus, between a quarter and a half of the mean roundtrip delays are due 
to queueing delays. However, after processing by the NTP algorithms, the degree to which 
the NTP algorithms clean up the raw data can be seen in representing the before and after 
for the WUSTL path. The mean offset errors for the raw data are 15.2, 9.8, and 4.8 ms for 
the IEN, 0 2 ,  and WUSTL paths, respectively, while the RMS errors are 64.0, 470.0, and 19.5 
ms. However, after processing by the NTP algorithms, the mean offset errors are reduced to 
,045, .004, and ,003 ms, respectively, while the RMS errors are reduced to 2.9, 3.0, and 0.15 
ms. These values should be added to the nonreciprocal path errors in the total error budget. 
Figure 3 shows the results for the WUSTL path; the other paths behave in similar ways. 

The graph has a spiky characteristic shared by the other paths and suggests further processing 
might eliminate most or all of the spikes, especially if the pps signal were used to stabilize the 
clock oscillator and the length of the clock filter increased a substantial amount. While the 
emphasis in this paper is on heroic paths in the Internet, a similar experiment involving pogo 
and another machine on the same Ethernet LAN shows negligible mean error, rms error ,007 
ms, and maximum error .078 ms, the latter due to a single spike of unknown origin during a 
run of 15 days. 
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Figure 3. Processed Data Offsets 

7 SUMMARY AND CONCLUSIONS 

The significance of this work is confirmation that general purpose workstations with appropriate 
software support can deliver timekeeping accuracies in the low millisecond range over global 
distances using the Internet shared with many other users and applications. This may be 
especially useful for astronomy, oceanography, manufacturing, and process control applications. 

The key to achieving accuracies of this order is through carefully crafted algorithms and the 
use of a stable external oscillator and counter to produce a PPS signal. The signal is processed 
by algorithms embedded in the operating system kernel and used to discipline the frequency 
of the computer clock at every timer interrupt. 

The package of NTP software and kernel modifications has been implemented for several 
families of Unix and Windows workstations and is available for public distribution. The kernel 
modifications have been incorporated in the standard Digital Unix operating system and are 
planned for early release in the Solaris operating system. 
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