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Linear quadratic Gaussian control is a technique that uses f f i h n  filtering to estimate u state 
vector used for input into a contd  calculation. A control correction is calculated by minimizing a 
quaddic cost function thai is dependent on both the state vector and the control amount. Different 
penaJties, chosen by fkc designer, are assessed by the controller as the state vector and control amount 
varg front given optimal values. Wilh this jeoture controllem can be designed to force the phase and 
frrquency differences between two standards to zero e i t b  more or loss aggressively depending on Ute 
application. Data will be used to show how using different parameters in the cost function analysis 
affects the steering and the stabile of the frequency standards. 

INTRODUCTION 

The steering of frequency standards (atomic clocks) is a very important procedure in the timing 
community. Steering is used to synchronize remote clocks using very accurate time transfer 
methods such as two-way time transfer and the Global Positioning System. Also in time scale 
applications a standard is steered to a paper, or calculated, clock in order to give the time 
scale a physically realizable output. This paper will discuss how the linear quadratic Gaussian 
(LQG) technique applies to the designing of wntrol systems to steer frequency standards. 

In any real world application, a control system must deal with some amount of uncertainty, 
whether it comes in the form of sensor noise, process modeling error, or any other noise 
sources. The LQG technique is used for designing optimal control systems for uncertain 
physical processes. An important feature of this technique is that the stability of the control 
system is assured if system parameters have the properties of observability and controllability. 
Kalman filtering is used in order to estimate the actual state variables from measurements 
made of the stochastic system. 

TWO-STATE LQG THEORY FOR FREQUENCY STANDARDS 

In the LQG thwryI'JS1 the state equation is assumed to be gjven as a linear function of a'  
state vector and a control vector: 



where 

x(k)  = state vector = I::[:{ 1 9  

z l ( k )  is the phase difference, and ~ ( k )  is the fractional frequency difference, between 
the reference and the steered standard, 

u(k)  = control vector which is a scalar in this case corresponding to the fractional 
frequency change of the synthesizer controlling the steered standard, 

9 = transition matrix = I T I ,  T is the time interval between measurements, 

w ( k )  = white noise characterized by covariance Qk, 
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(Allan) variance of the comparison between two standardstGI. 

The noisy measurement z (k )  is related to the state vector by 

where 

z (k )  = measurement, in our case a scalar phase difference, 

H = connection matrix = I 1 o I, and 

v ( k )  = white noise characterized by covariance Rk = measurement noise. 

The linear state equation (1) is an approximation to the state modeling equation that includes 
higher order terms. In order to help give the linear approximation validity, the control vector 
u(k) is chosen such that the quadratic cost function 

is minimized. 

WQ and W n  are matrices that are chosen by the designer in order to set the relative penalties 
assessed to the state vector estiqate P(k) and control vector u(k) as they vary from zero. In 
general, if W n  is large compared to WQ, the penalty is large for the system attempting to 
drive the state vector toward zero too rapidly. Conversely, if Wg is large compared to Wn, 
the system faces a smaller penalty for large control effort and the system is driven toward zero 
more quickly. 

Due to the noisy measurement of ~ ( k ) ,  we are faced with a compound problem of optimal 
control and estimation. A very useful theorem from control theory known as the separation 
principle allows us to solve the optimal control and the estimation problem independently. 
Kalman filtering is the technique used to estimate the true state x(k) from the noise. The 
Kalman filter is calculated as usualt31 with the exception that the update estimate must now 
include control terms: 

i((k + 1)  = M ( k )  + Bu(k) + K,[z(k + 1)  - H ( 9 f  (k )  + Bu(k))]  (4) 



where K, is the Kalman filter gain, t(k) is the state estimation, and B = ) T I  for the two-state 
model with a frequency synthesizer as the control mechanism. The optlmal control for the 
given cost equation is 

where 

and i<o is a solution to the steady state Ricatti equation 

This gives us a statistically optimal control u(k) for the given cost function with the designer 
specified parameters WQ and Wn. Now that the control is optimized, we need to be concerned 
with the stability of the control design. Stability is assured if the pair (WQ, @) are observable, 
the pair (a, B) are controllable, the Kalman filter is stable, and the model is reasonably good 
(see 12)). Controllabjlity is the ability to steer the system from an initial state to another state 
in a finite amount of time, and observability is the ability to determine the state at any time 
from a finite number of measurements. 

SIMULATIONS 

Actual data measured from frequency standards at the United States Naval Obsemtory (USNO) 
were used in the simulations. An LQG control was applied to the data as if one of the standards 
frequency was being adjusted by a frequency synthesizer. Thus, the only assumption in the 
simulations is that the synthesizer works ideally. 

The hydrogen maser NAV8 was chosen to be steered to the USNO MeanI'1. The Mean is 
a paper clock that is calculated using an ensemble of hydrogen masers and cesium frequency 
standards. Maser NAV8 has excellent short-term stability, but due to the poor environment 
that it was in during the data collection, its long-term stability suffered. One of the best 
performing standards at USNO is maser NAV4. Figwe 1 shows the performance differences 
between NAV8 and the Mean versus NAVA As can be seen, we face an interesting problem 
of steering maser NAV8 to the Mean in phase and frequency while attempting to preserve the 
short-term stability of the maser and gain the long-term stability of the USNO Mean. The 
phase difference between NAV8 and the Mean is given in Figure 2. In order to minimize 
initial offsets, a frequency offset was removed from the data, and a constant was subtracted out 
giving the initial phase difference point to be near zero. 

In trial I we set WR = loS and WQ = 0°0100~ , which gives I. . I 
after solving equations (5) and (6). Figure 3 shows the phase difference between the Mean 
and NAV8 after steering NAVS using the above solution. The phase difference is kept very 
small with the difference having a standard devjation of 140 picoseconds. 



In trial 2 we set W n  = 1012 and WQ = oOO1OO~ which gives 1. . I 
& = ) 3.3185 x .014976 1 

after solving equations (5) and (6). Figure 4 shows the phase difference between the Mean 
and NAV8 after steering NAV8 using the trial 2 parameters. The phase differences after the 
initial settling have a standard deviation of 691 picoseconds. 

A plot of the two-sample deviation of NAV4 versus the steered NAVB for both trial 1 and trail 
2 parameters is shown in Figure 5. This plot shows that the short-term stability of the maser 
in trial 1 has been perturbed by the fairly aggressive steering. While for trial 2, the stability 
exhibits the short-term stability of the maser and excellent performance in the long term. 

Another application of the LQG technique is the steering of remote clocks to UTC (USNO) 
via GPS. Figure 6 shows data obtained between a keyed GPS receiver and Hewlett-Packard 
HP5071 cesium standard w249. The initial data had 50 nanosecond phase and 4.0 x 10-" 
frequency offsets. Also shown in Figure 6 is the phase difference after a simulation run with 
the LQG control using the parameters of trial 1. We assume that there are two remote clocks 
being compared by a noisy GPS measurement system. The stability plot in Figure 7 shows how 
the cesium performed during the steers compared to a hydrogen maser after the initial settling 
of the controlled system. The solid line on the plot shows the performance specification for 
the 5071 cesium. The slightly worse stability near 10 hours is most likely due to modelling 
errors incurred from assuming whiteness of the GPS data. 

The parameters chosen for the LQG depend on the systems being used, the desired outcome, 
and the individual designer. This can be seen in the differences between the results in trial 
1 and 2. In trial 1 the short-term stability is sacrificed slightly for a tight control in the 
differences between the standards. The stability is still good, but if this does not meet the 
frequency stability needs for a system then the parameters of trial 2 could be used, or any 
other parameter set that gives the desired results as determined through simulation. 

EXPERIMENTAL RESULTS 

One of the great concerns in designing a controller is whether or not it will be stable and 
robust. This was tested by offsetting an external synthesizer, called an Auxiliary Output 
Generator manufactured by Sigma Tau Standards Corporation, driven by maser NAV2. The 
phase offset made was approximately 8 milliseconds compared to maser NAV4. Figure 8 shows 
how the controller with parameters given in trial 1 of the simulations reacted to this phase step 
that was nearly 7 orders of magnitude greater than would be expected in practice. The system 
remained stable and brought the signals within 300 picoseconds in approximately 6 days. 

Figure 9 shows experimental data of maser NAV2 being steered to the USNO Master Clock 
using an Auxiliary Output Generator that received its input from a distribution amplifier driven 
by NAV2. The several hundred picosecond humps in the data are caused by temperature 
changes in the testing lab where the 5 MHz distribution amplifier with a poor temperature 
coefficient resides. Temperature control of the lab was poor during the installation of a back-up 
air conditioning system. 



CONCLUSION 

The M G  design philosophy is a robust, statistically optimal method for steering frequency 
standards. Simulations can be run without undue difficulty in order for the designer to 
characterize how different parameters will affect system responses. This technique muld also 
be used to steer one standard very tightly to another, thus creating an independent back-up that 
is in phase and on frequency with its reference. Testing is now under way for implementing 
the LQG technique to synchronize remote systems using the Global Positioning System and 
two-way satellite time transfer methods. 
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Questions and Answers 

ALBERT KIRK (JPL): I have actually three questions. The first one, what are the 
temperature variations in your laboratory? 

PAUL KOPPANG (USNO): They were approximately five to six degrees C. 

ALBERT KIRK (JPL): I see. The second question is: What is the smallest step you can 
use on your synthesizer to correct the frequency? 

PAUL KOPPANG (USNO): lo-'" 

ALBERT KIRK (JPL): The final q~~estion is: How do you determine, or how does your 
system determine, the loop time constant for each maser in response to - you know, to steer 
the maser to some average that you mentioned here? 

PAUL KOPPANG (USNO): That's done by the Kalman filtering; it would steer to a Kalma~i 
filter value. 

ALBERT KIRK (JPL): Can you select that, then, for each particular maser, depending on 
its characteristics? 

PAUL KOPPANG (USNO): Yes. 




