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Abstract 

For precise time intercomparisons between a master frequency standard and a slave time scale, we 
have found it useful to quantitatively compare diferentfitting strategies by examining the standard 
uncertainty in time or average frequency. I t  is particularly useful when designing procedures which 
use intermittent intercomparisons, with some parameterized fit used to interpolate or extrapolate 
from the calibrating intercomparisons. We use the term "metajitting" for the choices that are made 
before afitting procedure is operationally adopted. We present methods for calculating the standard 
uncertainty for general, weighted least-squares fits and a method for optimizing these weights for a 
general noise model suitable for many PTTZ applications. We present the results of the metafining 
of procedures for the use of a regular schedule of (hypothetical) high-accuracy frequency calibration 
o f a  maser time scale. We have identified a cumulative series ofimprovemenfs that give a sign(Jicant 
reduction of the expected standard uncertainty, compared to the simplest procedure of resetting 
the maser synthesizer after each calibration. The melafitting improvements presented include the 
optimum choice of weights for the calibration runs, optimized over a period of a week or 10 days. 

In preparing to fit prerision time corr~parison data, usually questions concerning "opti~nal" fitting 
strategies have been addressed in a generic rather than in a specific sense. I t  is interesting to 
exarnine whether, for specific cases, significant advantages might acrrue from (..ustomizing the fitting 
strategy to the specific pattern of data points and the noise spectrum. In prar:tice, rnany really 
important choices are made before any fit is finalized, arid yet are not necessairly optimized as part 
of the fit,ting procedure. (a) A fitting nret,ric and method 111ust be chosen (such as least-squares 
fitting). (11) The set of parameterized basis functions rnust l ~ e  chmen: ba3is funct,ion number and 
type (such as a second order polyno~nial). (c) An out,lier renroval method may he adopted (such 
a5 iteratively discarding a li~tut,ed number of points having anomalously high residuals). (d) The 
r e h i v e  weighting to be given to each data point must be deterniined (such as the use of end-point 
only linear fits vs l~nweighted linear least-squares fit,s). (e) A final "consistency of fit with data 
and noise model" paran~eter should he derived (such as thc reduced X 2  for a least-squares fit with 



known noise). Many of these choices depend in subtle ways on the type of noise encountered, and 
here precise time measurements often provide details of the noise spectrum which are not trivial to 
inc.orporate into an optimal treatment of (a)-(e). Since the term "fitting" is generally interpreted 
as referring to the determination of a set of parameters from a particular data set, we use the term 
"metafitting" to enconipass the optimization of the broader processes such as (a)-(e). 

But in what sense is this "~netafitting" to be judged? At first sight, there appear to be too many 
choices. The fitting night be optimized in an average sense, ~ninimizing some metafitting metric. 
function that sums over experimental residuals. If the autocorrelation function of the noise is 
known (or modeled) it is possible to calculate and minimize t,he metric function summing over the 
expected "residuals" at unmeasured times. Thus the fitting might l ~ e  optimized in a local sense, 
minimizing a residual at a specific time (open to choice), or it might be optimized to minimize 
a residual of the average frequency over a specific interval (each end being open to choice). The 
point, points or interval must be chosen, and a procedure must be found to estimate the expected 
residual(s) at tirnes other than those at whic11 Inea~urenlents have been taken. 

Fortunately, international guidelines [I] now strongly suggest a good quantity to optimize: the 
"standard uncertainty", which is the root-mean-square residual of the fit's extrapolation or inter- 
polat,ion t,o a specific. point, one not necessairly included in the fit. It is also a good quantity 
to optimize in that a standard method [2](the Wiener-Kolmogoroff theory) exists for any fitting 
procedure that uses a linear combination of the data. All least-squares fitting procedurm with 
line, coefficients can be handled explicitly in this way [ci]. For the purposes of time and frequency 
metrology, metafitting to minimize the standard uncertainty is a good choice - but it might not 
be as good a choice in other applications (where, for example it might be more appropriate to try 
minimizing the occurrence of outlier events having disasterous consequences). For frequency or 
time interval metrology, the standard uncertainty in the average frequency over an interval makes 
an even Inore attractive discriminant for metafitting. 

The power law noise models appropriate for PTTI phase comparisons can have low frequency 
&vergences that appear to  be worrying t,o some purists who wish to assure strict stationarity of 
any process before developing its formalim~. In the developn~ent of computable forms [3],[5], it is 
straightforward to show that the standard uncertainty in t,he average frequency of a least-squares 
fit is not divergent for most comn~only encountered power law noise spectra, with the exception of 
random walk frequency noise. However, the real question is more stringent than simple stationarity: 
have we enough long-term data on the system being modeled to obtain results which converge? 
We believe that this type of question can he rigorously handled by imposing a low-frequency cutoff 
(and thus ensuring a formal stationarity), and then veribing not merely that any results extracted 
from t.he model converge as the low frequency limit approaches zero - but also that the raqults have 
converged to the desired degree before the low frequency limit is sampling Fourier components of 
the noise which have not been measured. 

Choosing Weights in Weighted Least-Squares Fits 

We present here a general strategy for evaluating and optimizing distributions of weights in a 
weighted least-squares fit to phase data. We will concentrate on optimizing fitting that compares the 



f~equency of a continuously operated oscillator with a frequency standard (perhaps intermittently 
operated), for the purposes of frequency i:alibration. The strategy is based upon the analytic 
expressions for the st,andard uncertainty in frequency, generally extrapolated over a wider interval 
than the calil~ration interval, where a dense set of high-precision phase comparisons would nornrally 
he available. A noise model is assumed which has wide applicability to a broad range of frequency 
st.andards. The degree of frequency control will be evduatal~le for any set of weights in a u~eight,ed 
least-squares fit t,hat is linear in the fitting coefficients (Ijut fully general in the choice of l~asis 

As our metafitting nletric we choose the standard uncertainty in the average frequency, evaluat,ed 
over a general interval which could be considerably displaced from the fit,ting interval. This is 
the most appropriate metric. for frequency metrology applicationsl since the standard uncertainty 
is now the internationally recurnnlerlded [I] nay of specifying calibration uncertainty. With our 
procedures the standard uncertainty in average frequency can he evaluated for a broad class of 
noise models, for any set of fitt,ing points, for any extrapolation or interpolatiorl interval, for any 
linear co~nl~inat,ion of arbitrary basis funct,ions, and for any least,-squares weighting. In particular, 
in any of t,he a1)uve ca3e"s (IUT proredure (:,an evaluate the staridard uncertainty the equal-weight. 
procedure (advocated for ils roljustness) to !.he end-point procedure (advocated for its "optimu~n" 
estimate of frequency for some pure claqses of noise), a.7 well as any intermediate case with higher 
weights near the end-points of the ralibration interval. The procedure per~r i i t ,~  the evaluation of the 
trade-off of unrertainty for other pror..edures which are perrieved as being Inore robust. As is shown 
below, even with large data sets, in sorne cases it appears to be feasible t,o choose the optimum 
set of weights which lnininlize the standard uncertainty in average frequency for the int,erval being 
considered 

Noise Model 

The noise niodel x,(t) is the lriodelcd phase difference between the rriaster frequenry standard 
and the standard being calibrated. The noise model is taken as being the sun1 of a deterministir 
part (which could include a phase offset; frequency offset and frequency drift) and a random noise 
part, xo(t) .  The random noise includes the "full" noise model that is usually used in discussions of 
frequency standard stability [I)]: a sum of five noise processes, each nor~nally distributed about the 
mean ( I~u t  with variances which depend on the time sampled in different ways) that have spectral 
densities of phase noise (S,(f)) that are power laws which range from flat to increasingly divergent 
at  low frequencies. Ex ressing the five terms in terms of the spectral density of the mean-square 

Bsa!t) of the fluctuations in (or yo(t)) at  a frequency f ,  S,(f), each noise term is described by an 
amplitude I & ,  which is taken to be independent of any time trarislations (stat,ionarity and randonl 
phase approximations). The sum includes CI = 2; white phase noise in x; a = 1, flicker (I/  f )  noise 
in x; t v  = 0, white frequency noise and random walk phase noise; cu = -1, flicker frequency noise; 
and t v  = -2, rando~n walk frequency noise. A low-frequency cutoff fl and an upper frequency cutoff 
f~,.  The spectral density of t,he mean-square fluctuations in xo(t.) is S,(f), and for this noise model 



For J. given uoise model of this type, the standard uncertainty of the fit a t  any given t i ~ n e  can he 
calc~llated from the autocorrelation function (za(t)xo(t  f r ) ) .  It is divergent for four of our five 
types of noise unlsss a low-frequency cutoff is applied, and even bhen can challenge the acc.urac.y 
and dynamic range capacities of classical comput,ing. Analytic expressions for this autocorrelation 
function exist for each type of noise [5], and n~odern arbitrary-prel.ision computer languages are 
able to cope directly with the autocorrelation function. 

In our analysis of t,he uncertainty assoriated nit,h any useful least-squares fit, we expect no di- 
vergences to infinity in the standard uncertainty, and so the coml)inations of t,he autonorrelation 
fnnctions lrlust have their divergent parts cancel; with the fitt.ing itself arting as low-frequency cut- 
off. 1x1 considering the standard uncert,ainty or average frequency frorn a least-squares fit, we have 
found it helpful to use analytic expressions [5], [4], [:(I for the less divergent general twwinterval 
covariance of the random noise model, that is the covariance of the time-scale depart,ure over the 
time interval I t , , ,  t2 ]  with the tilnescale departure over the time intcrval [ t 3 ,  t 4 ] :  

where ( g l l , , t . l ~ ~ [ i R , i 4 ~ )  is the general covariance of the average frequency: a generalization of the 
tw(~samp1e variance of the average frequency. The generalization includes the possil~ility of an 
overlap of the intervals (as well as t,he possibility of a "dead time!? I~ctween t,he intervals), and 
incorporates the possi1)ilit.v of considering the frequency average over two time intervals of different 
duration. Just as for the two-sample varianre of y, and for the arltocorrelation function of x( t ) ,  the 
covariance separat,es into the five terms of t,he noise model. 

Analytic f o r r ~ ~ s  for the five terms of the autocorrelation function of x(t) and for the five terrns 
of t,he general cross-correlat,ion of y are given in references [5], [4] and [3], derived with only the 
usual ass~~mptions  ailout high and low frequency lirrlits to the noise bandwidth. The references also 
contain soIne conl~r~ents on practical met.hods for conlputing values using these forms. 

Weighted Least-Squares Fits 

Weighted leaqt,-scluases fitting chooses the n, linear coefficients dL of the n hasis functions gl(t),  
to arrive a t  a function xp(t )  which will be used for interpolation or extrapolation. In frequency 
standards work, we wurlld usually lit a phase offset, a frequency offset., and sorrletirnes a drift rate 
and highcr t,crnls such as daily or scasonal flurtuations. 



- 
Tile coefficient vector d is chosen to rnininlize the sun1 ovcr the :V fittirig points with phme difference 
values of z(t i)  at  tirnes t i  

where the weight. I.Vi is applied to the square of the i f h  residual. Least-squares fitting is done by 
setting t,he n derivatives of 1:; equal to z e n ~ ,  - which gives a sct, of rr linear ecjuations which can 
be solved for the n fitting ccieficients of d: G J =  Z, where G is an 72 x n matrix with elements 

N Gur = x?L1 I-l/,g,(t,)g,(ti), and <is an IL-di~nensional vector with element,s s, = W;,zn(t,)g,(t,). 
For t,he purposes of modelling the standard uncerta.inty. we use zO(li) to 1110del :c(ti), since it can be 
stlown 15) t,hat any general &set in phase, offset in ktujue~ic); or a linear fsecjuenc,y drift is exart,ly 
absorbed by the fit,. 

Metafitting with Time Uncertainty Metric 

One candid at,^ lrretric fur jrrdging weighted least,-squares fits is the st,andard uncertainty in time, 
deterniined a.t a specific time t; relative t,o the set of fitting point,s {t,). FVc can explicitly calculate 
the effect,s of the weighted least-squases fit reacting to ttle noise rriodel for this time b :  we arc not 
~.estrirted t,o studying the variance at  the fitting points. The expected variance in z ( t )  tiom the fit 
2. g(t) can be calculated in terrils ~rf the autocorrelation function tr.ft < zo(ti)xo(ti), 

where Do(t) = I and i);(t) = CViCy,I C:',,(G-1),,g,(l;)4s(t). For the standard noise rrlodel: 
the autocorrelation fur~ction (xo(t)xo(t)) car1 he evalnated analytically (51, although the result- 
ing expressions can challenge the dynamic range of conventional computing. The square root of 
this variance in x(t) would be the fur~nal nretric. 'The niini~nization problem, for optimizing this 
rrretric with respect to t,he weight,s l;Vi, looks intrartal,le. but for I.a.ses of most irrterest it can he 
substantially simplified in the same way as is described i,elow Cur the frequency uni.ertainty rnetric. 

Variants of this Lz rnetafitting irletric are also possible, slr~nniirlg variances over multiple test times. 
Other uletafitting nletrics of the Lp-norni (Ilolder norm) class: could also 11e constructed. The 
min-rnax ( l i n~p  - co) norl~r wrould ~rlinilnize the irlaxirnu~n expected time deviation amongst the 
test times. Me:lcta.fitting with the p = 1 rnetric. would (fr~r this class of metrics) give the must leeway 
in alluwing a srnall nnml~er of l e ~ t  poi~it.s to have large variances. All these nletafittina variants arc 



substantially rnore intricate to use, and do not readily yield the n~ajor  computational sirnplifirations 
which ran be found for the single-point L2 metric. 

The lriethod outlined al~ove does not l~ring any great new insights into optimal ways of combining 
equivalent clocks, nor for the optimal use of continuously operated primary standards, however when 
a secondary time scale is to track a primary time scale where only internlittent interr:omparisons 
are availal,le; an optinial choice could be rnade in terrns of the noise processes known to be present,. 

Metafitting with Frequency Uncertainty Metric 

For precise time interval work, where the average frequency is t,he chief quantit,y of interest, we 
wish to rninin~ize the standard uncertainty in average frequency over an interval [ t :  f + T I ,  caused 
I1y the noise rliodel as filtered l ~ y  the weighted least-squares fitting procedure t,u the points { t i ) .  
Although the noise rnodel is independent. of time translations! clearly t,he standard uncertainty in 
average frequency, y, would be expected to depend on the offset of t frorn { t , ) ,  as well as the 
inlerval breadth T .  It is defined 11y 

Wenote that { Z O ( ~ + T ) - Z O ( ~ ) }  = ~ z ' [ z ~ ( t , , ) - z o ( t l - I ) ] ,  if we define t j = ~  = t and t j = ~ + l  = l + ~ .  
Alt.hough it might be convenient t" envisage the set of { t i ]  as an ordered set with ti > f . , j - l ,  

it is not necessary to do so. Ordering the fitting points does not det,racl from the generality in 
any way, but we do nut wish to restrict the va1ue.s of t or t + T. We would like to re-express the 
2. {g(t + T )  - g( t ) )  as a sum over only differenr.es of the form zo(ti.) - ~ o ( ~ , j ) .  We note t,hat we can 

expand zo(t,) = so( t1)  + Ci=z{zo(( i )  - zo(t j - I ) } ,  so that 2. {$(t + T )  - g(t))  is equal to 

and the last term, niultiplying zo(t l) ,  can be shown to be equal to zero. To show this, it is sufficient 
to show that CpL1 Wi,j(t i)G-' j j ( t)  is independent of t ,  or that Cgl 1.V;C(ti)G-l is equal to the 
vect,or [1,0,0, ... 01. We olxserve that, fro111 our definition of G and since gl = 1 ,  G[1,0,0, ... 01 = 
zEl Wii(t, i) ,  and premultiplying by G-I complete this proof, provided only that g l  is a constant. 
Thus ui(f., T)T' is equal to 



Collecting the expressions with the sarne difference term {xo(t,) - x ~ ( t , - ~ ) )  allows us to write a 
uqeful fornl, namely 

where for 2 5 j 5 N, Dj(t,7) = l-xzj Wi.C:=l ~ ~ ~ I ( G - l ) ~ g r ( t ; . ) ( g q ( t + ~ ) - g q ( t ) J ;  B.j=l(t: 7) = 
1 and f i j = ~ + l ( t , - r )  = 1. Multiplying the term3 explicitly gives a computable form for the standard 
uncertainty in average frequency: 

The utility of this for111 lies in the fact that it is a surrr over functions of the general form of Eq. 2, 
which are easier to compute for our full noise model. 

Metafitting Weights for Large Data Sets 

For a given noise rnodel (defined 11y the 5 parameters {h,} used to define S,,(f) ,  and a given 
distribution of fitting points { t i } ,  and for a given interval [t. t + r ] ;  the standard uncertainty in 
average frequency over the interval can he calculated: uy(t17). Thus a choice of weights can be 
determined which minimizes u,(t.-r), the standard uncertainty due to the effects of the random 
noise. For each fitting point added, another weight must be determined. For srnall sets of fitting 
points, the ~nini~nizatior~ prolllern is tractal~le, but for larger sets the rniniinization appears rnuch 
less straightforward. The weights could be parameterized to reduce the din~ensionality of the 
problem, at  the expense of generality. 

The full generality can be retained by largely linearizing the problem. For IV fitting points, there 
are also N weights to choose. Without loss of generality, the set of weights {Wi} can he norxnalized: 
xE1 I.V, = 1. If the partial derivative of G-' uith respect t,o CVk carr l)e constrained to be zero, then 
rnost of the ,V-din~ensiu~~al search prot~lem can l ~ e  linearized, leaving a nonlinear search over at  worst, 



[(n(n + 1)/2) - 11 dimensions. G-' will be independent of Cl/k if each element of G is constrained 
h' to be a constant, G,, = xi=, Wig,(ti)gT(t,). Since G,, = G,.,, and since normally gl = 1; there 

remain [(n(n + 1)/2) - 11 values. These cunstraint equations are used in the linear solution, and 
the opti~nurl~ values of Go? can subsequently 1)e found 11y nonlinear searching technirlues. 

For polynoinial fitting, with n Insis functions {gk(t,) = tk-'1, the partial derivative of G-' with 
respect to [N - 2n + 21 Wi's there urould he only [Zn - 21 dinlensions for the non-linear search, and 
if the problein can be set up synl~netrically about the time origin, so that the first nloment of the 
weights and all odd niolnents are zero; there would be only [n - 11 nun-linear search parameters. 
The even nlorrients of the weights (sum~ned over the fitting t,inles {ti}) would then be the [n - 11 
non-linear search parameters. If the proble~n is i~ltrinsically asymmetric, then there would l,e 
['Ln - 21 moments to use as nonlinear search parameters. For extrapolation, it seems clear that 
there will be little likelihood of driving any IVi, negative, but it remains a concern for the general 
case and must he guarded against. 

(:onsider for example the case of choosing a weight,ed least-squares fit of a general quadratic to N 
phase cvrriparisori data points a t  a specific set of tilrlcs {ti}. For a specific riuise rllodel described 
Ily the coefficients {h,}, we want to choose the weights t.o minimize the standard uncertainty in 
the average frequency over the tinre interval [f, t + T]. By cnnstraining weights to sun1 to 1, and 
Ily constraining the first through fourt,h triolnents of t,he weights to  be independent of the first 
[N - 4) weights, we can ensure that G-' is independent of [N - 41 weights. By equating to zero the 
[IV - 41 partial derivatives of u t ( t , r )  wit.h respect to CV, we can minimize the standard uncertainty 
in average frequency with respect to these [N - 41 weights. The easiest form to differentiate for 
this purpose is one like that of Equation 8, which ha.? collected all the terms multiplied by any 
weight W;. Including the constraint equations, we then have N linear equations in the N unknown 
weights {W,}, parameterized in the 4 moments remaining to be searched. The uptin~ized standard 
uncertainty for this set of four Inornents is e\raluated, and a four-parameter search (each set of 
moments being optimized hy r*solving the N linear equations) this search is tractable by the 
simplex method (for example). If the pro\,lern is syn~metric about soirre tirne (symmetry for both 
{ti) and [t, t + r]) ,  it can be set up so that the first and third nlonlents are zero, and t,here would 
Ile only two parameters to search. 

( h o s i n g  weights is simpler for a l inear  least-squares fit to N phase conlparison data points, 
taken at  a specific set of times {ti,). To metafit the best weights that minimize the standard 
uncert,aint,y in the average frequency over the interval [t,,t + T] for the noise niodel of interest, 
desr:ril~ed by the coefficients {IL,}, we can again linearize the problem - 11ut with only two search 
parameters (the first, and second monlents of t,he weights). We define three romtraint equations 
c";, r = l  = 1, x:L1 W"ti = MI and EL, bVi,t: = M2.  The N partial derivatives, with respect to 
the weights, of the standard uncertainty in average frequency over the interval [t, t + T] give a set 
of N equations F .  bq = F, where K i  = (t, - :MI)T/(:% - M:) < [xo(t;) - ~ ~ ( t ~ ) ] [ x ~ ( t , ~ )  -xo(tl)] > 
and 7.j =< [ ~ ( t  + T) - xo(t ) ] [x~(t ,~)  - ~ ~ ( t l ) ]  >. The first column of F is a colunin of zeros. Three 
of these equations are to  he replaced by the three constraint equations: one replacement is for the 
~liost ill-conditioned equation j which has ti closest to the centroid of the weights (MI)  for this 
iteration, the other two replacements are more arbitrary. If the problem is syinnletric about sonie 
time (symmetry for 110th {ti) arid [ t ,  t + T I ) ,  it can be set up so that the first n~olnent is zero, and 
there would be only one paranieter to search. 



An even simpler rase of metafi~.ting is the choice of weights ill a si~nplc weighted average, for nlultiple 
calibration runs to minimize the standard unrert,ainty in the average frequency for a specific period, 
asl~it,rasily p1a1,ed wit,l~ respect to the caliljration runs. We consider calibration intervals long enough 
to lje in the regime where the t.wu end point niethod is chosen for each calibration run, with !2/1 
such calil>rat,ion int,ervals [ti., ti. + T,].  Fur the weight,ed averagc of the iLI calibrations, the standard 
uncertaint,~ in the average frequency over an int.erval [ t ,  t  + r ] , u t ( t . r )  is 

Assigning a weight of -1 t,u t,he int,erval [ t ,  t + T I ,  defining as being equal to T ,  Equation 11 can 
Ijc rewritten as 

A solution for the optinnun weighting pror,edure is relatively easy to find since the niinimuln value 
for ,u i ( t .  t + 7 )  is to be found for values of tu; satisfying & [ i t ( t . ,  t + T ) ]  = 0: so that aft,er taking 
the derivative and s e p a r a t i ~ ~ ~  out the i = 0 teriil 

We use M - 1 of these equations, and for the M i h  eqr~ation we use the nornialization equation 
of the weights: EM1 tu, = 1. This gives :2/1 sirr~ultaneous linear equations in the /\.I unknown 
weights. 'The general interval covarianc.e has analytic for~ns f u r  our noise model, in t.erms of the 

1 Z-function [.I]. If we define the A1 x ~rlatrix F: PI,,, = 1 for j = 1 . . M ,  F,,,j==[Z(t;. + T, - t i )  
+ z(t, + 7, - t i)  - Z( t l  +Ti  - tj - 7j )  - Z(t;  - t j ) ]  for i = 2..:ll arid j = l..:ZI> and define 1:: 1.1 = 1 
and 7.j = j vac l r r j [ l ( t  + T - t j )  + Z(i.j + ~j - t.) - Z(t + T - f j  - ri) - Z(t - t i ) ]  for j = 2..M. The 
iM dimensional weights vector tZ is F-I . K 

Applications 

For any given pot,ential application of metafitting weights, we rrrust ronsider whether ~rietafitting 
is niore than an interesting academic: exercise: (:an rnetafitting find a reduct,ion in the standard 
uncertaint,~ whirh is a signifirant inipruvernent'? Since uncertainties are rarely established to l~et,ter 



than lo%, an improvement should be larger than this to be deemed significant. Therefore we have 
examined the simplest case, of linear extrapolation, discussed above, and for the five different power- 
law noise types we have considered distributions of weight,s with different moments 161. We have 
examined the expected standard uncertainty for both symmetric extrapolation suited to time-scale 
calibration (where post,-processing can be used to apyly ca1il)rations from the "future") and to t ime 
assymetric extrapolation suited to real-time applications. For synlmetric extrapolation intervals 
that are large conxpared to the cali\xation run's duration, different cor~~mon weight distril~utions 
gave similar uncertainties (differing by less than 10%) except for white phare noise. For one-way 
extrapolation for times much longer than the calibration run's duration, the uncertainties are even 
more similar (less than 2% advantage for end-point fitting over equal weights, except for white 
phase and flicker phase noise). Thus for many PTTI applications, end-point fitting and equal- 
weight fitting give similar standard uncertainties, and the r.hoice should be between the greater 
simplicity of the end-point fit and the greater robustness of the equal-weights fitting procedure. 

In real-life PTTI work, robustness would often prevail over simplicity. For trying to optimize 
results from multiple calibration runs, simplicity i~ valuable to us while robustness is not needed 
in the model. The optimum processing of a number of calibration runs is expected to be largely 
independent of the processing within the run. 

The main application which has at.tracted our attention is the optimal use of hydrogen masers, 
calibrated periodically in frequency with intermittently operated cesium fountain frequency stan- 
dards [$I. [6]. We consider two types of maser operation: freerunning and autotuned. We use two 
power law models for the maser noise, representing a free-running hydrogen maser (type 1) with 
hz = 2 . 7 ~  lo-'*, hl = 2 . 9 ~  lo-", ho = 2 . 9 ~  h-, = 2 . 6 ~  low3' and h-z = 7 . 2 ~  and an 
auto-tuned maser (type 2) with hz = 6 . 7 ~ 1 0 - ~ ~ ,  hl = 2 . 9 ~ 1 0 - ~ ~ ,  ho = 2 . 9 ~ 1 0 - ~ ~ ,  h-1 = 7 . 2 ~ 1 0 - ~ '  
and hL2 = 4.9 x NRC has two low-flux masers which would benefit from a metdtting 
optimization of the weights within a calibration run of an hour, since there is still some white pha5e 
noise contribution for this calilxation interval. Preliminary analysis suggests that the end-point 
procedure is within 10% of the optimum. For phase data taken every 30 s for an hour, extrapolated 
to an interval of a day, the end point method is 1.2% better than the equal-weight linear least 
squares fit for our free-running maser model, and a9 good for the type 2 maser   nod el. Thus we 
can use the simple two end points procedure to establish the best frequency transfer accuracy for 
niultiple calibration runs. For this procedure the standard uncertainty for multiple calibration runs 
can be calculated more easily than in the general case. 

Within the context of end-point fitting from each calibration run there are still metafitting choices 
to be made allout the way in which the runs are to be used. One possible strategy is a loose lock in 
frequency: after a calibration run (an hour in duration, in our example) is con~plete, the frequency 
of the maser is reset (through the synthesizer control, for example), either immediately - or after 
sorne delay. Clearly the least delay is best, and we chose this procedure with zero delay as the 
reference procedure as we examine a series of possible improvements. 

A slightly better possibility might l ~ e  to have an output tightly locked in pha3e to the 'esium 
fountain during the calibration run, followed by a frequency lock to the fitted frequency of the 
calibration run. The pha~e-lock type of frequency control removes the noise of the maser during 
the calibration run, giving it an advantage that remains noticeable for extrapolation intervals many 
times longer than the calibration interval. However, for extrapolations of an hour-long calibration 



out to a period of a day or more, there is not a large advantage: 2.3% for the free-running maser 
and 2.4% for the autotuned maser model. 

A niore significant advantage comes from allowing postprocessing, as can often be tolerated in time- 
scale construction and for frequency intercomparisons. We consider a single calibration interval 
t ,  and calculate the ratio of the standard uncertainty of the average frequency uver an interval r 
for the best real-time frequency control to the syyrnmetrically extrapolated time interval r. The 
quantitative postprocessing advantage will depend upon the specific processing scheme or schemes 
envisaged - the duration and frequency of calibration intervals. The postprocessing advantage is 
up to a factor of two [6]. 

A postprocessing advantage of two is really quite significant. To achieve the same improvement 
in the maser ensemble could be done - hy increa~ing the maser ensemble size IT four times. The 
postprocessing advantage of greatest interest to us is for T representing extrapolation to the time 
interval between calibrations - which ure expect would be between 1 day and I week. Initial interlab 
urat,ury frequency interco~rlparisons between cesiu~~r fountains, before regular calibration schedules 
ran be set up, may require extrapolation times longer than 1 week for minimum uncertainty. 

Envisaging multiple frequency calibration runs per week, of either hydrogen maser type with a 
cesium fountain having a standard uncertainty of ~ O - ' ~ T - * / ~  optimistically 5 per week, at  the same 
time each working day, what is the best weighting procedure for using these calibrations in an 
algorithm to  determine the frequency over a given interval? For the week's pattern, postprocessing 
extrapolation of each day's results independently, using the fiequency from the nearest calibration 
interval gives a 77% improvemet~t in accuracy for the free-running maser, and an improvement of 
29% for the auto-tuned masel 

We have solved for the opti~nuni weights of the maser ralibrations to give the lowest standard 
uncertainty in average frequenry over one week [6]. The week is best spanned by weighting Monday 
and Friday runs niore heavily, to account for the weekend gap in calibrations. For the type 1 maser, 
the optimum weights follow the spanning times rather closely, and the optimum weights offer only 
a 1.1% improvement in average Gequenry. For a type 2 maser, there is a 4.7% improvement 

If adjacent weeks' calibration runs are also available, and the average frequency over a particular 
week is required, the optinium metafitting includes a small admixture from the preceding and the 
following weeks. For a type 1 maser, most of the weight comes from t,he preceeding Friday and the 
following Monday. For an autotuned (type 2) hydrogen maser noise model, the optimum weights 
have a slower variation through the weeks, and the t,hree-week optimum has several % of the weight 
on points that are a full week from the calibration runs of the central week. There is a 19% 
improvement to the type 1 maser, and an 18% improvement for the type 2 maser. The improvements 
are summarized in Table I ,  given with standard uncertainties and cumulative advantages a3 each 
improvement is applied. For eit,her maser model, the optimization of weights t,o apply t,o each run 
over multiple weeks gives about a 20% improvement in accuracy from the equal-weight case. It is 
not a large improvement, but it is almost, free - although it does give additional cross-correlation 
betureen each week's frequency processed in this wav. Cascaded with the other advantagex discussed 
earlier, it  result,^ in a fartor of 2.2 inrprovement in the accuracy transferrable with a freerunning 
(type 1) hydrogen maser; and an iniprovet~ier~t of 64% for the auto-tuned (type 2) maser. For the 
free-running maser model, the tnetafitted o p t i ~ n u ~ r ~  standard uncertainty is 6.8 times sznaller than 



method 

'Table 1: Heductiorl of standard uncertainty in average frequency a t  7 days, for a free-running (type 
1) maser, and an autotuned tr~aser (type 2); when controlled by different methods from five 1-hour 
calibrations per week. The % advantage fur each method is the accuracy in~provement over the 
previous method. The last culr~~nn gives e a d ~  method's cumulative advantage over method I, a 
synthesizer reset t,o the least-squares calibration fit. The Allan deviation u y ( ~  = 7d) is also given. 

I f reset t,u unweighted fit 
I1 f reset to end points 
111 phase lock + I1 
IV daily postprocessed - v n~etafit 1 week 
VI tnetafit R weeks 
VII n~etafit 5 weeks 

4 7 4  

the Allan deviation at  1 week, and for the type 2 inascr it is 2.5 times slndler than the Allan 
deviation a t  1 week. 

Type I Cum. 
uy(7d) Adv. adv. 

Other interesting strategies are beyond the scope of this work. Longer runs on Monday and Friday 
and/or early-Monday and late-Friday calihration runs r:ould be invoked to further improve the 
performance. Our methods allow for weight optimization for any set of calih~ation rum,  and For 
calculating the resulting standard uncertainty in average frequency. 

Type 2 Cum. 
u,(7d) Adv. adv. 

1.79 x lo-15 1.00 
1.77 x lo-'" 1.2% 1.01 
1.73 x 10-lS 2.3% 1.04 
0.97 x 10-'"7% 1.8: - 0.97 1.85 
0.81 x 10-'"9% 2.21 
0.81 x lo-'"% 2.21 

5.48 x lo-',5 

For soirle applications, st,atistical independence of each week, or eac.h 10-day period, may be highly 
valued - for example, the clock reports to BlPM each 10 days that are used for determining TAI 
(and IJTC) should be independent of each other. Weights for data from the weekly calil~ration 
cyrle could be re-optimized for the seven different 10-day cycles that would exist. The tnetafitted 
optirr~um weights for the t,wo nlaser ~nodels are shown in Figure 1. E'or the f re running  maser 
model, the 70-day standard uncertainty in average frequency is 3.31 x 10-I' for the combination of 
the seven independent optitiiized 10-day periods, as con~pared to 3.07 x 10-'' for the combination 
of 10 independent 7-day periods. For the autotuning maser model, the 70 day standard uncertainty 
in average frequency is 2.72 x 10-'' for the coml,ination of the seven independent optimized 10-day 
periods, as compared to 2.62 x 10-l6 fur the cornl~ination of 10 independent 7-day periods. 

1.15 r 10-'" 1 .OO 
1.15 x 10-'"0% 1.00 
1.12 x ID-'" 2.4% 1.02 

. 
0.87 x 10-'"9% 1.32 
0.83 x lo-'" 4.7% 1.39 
0.70 x 10-'"8% 1.64 
0.70 x 10-'"1% 1.64 

1.72 x lo-'" 

Conclusion 

Our method for calculating the standard uncertainty for realistic noise models has allowed us to 
compare a wide variety of algorithms for treating one particular calil~ration schedule. We have 
Inetafitted the algorithn~ in several ways, and have identified ways to i~nprove the ar.curacy of the 
Illaser frequency control l ~ y  2.2 and 1.64 times. We find that using the 10-day RIPM schedule, with 
independent processirig of the calibrations for the 10-day periods, the expected asynlptote for a 



single auto-t,uned (type 2) maser could reach 1 . 2 ~  10-I' at 1 year. For a freerunning (type 1) maser, 
t,he standard unrerta.inty at  1 year u.ould he 1.5 x 10-lG . Thus a flicker floor and accuracy of 10-IG 
for the cesiunr fountain is arcessil~le for periods ol' a year with rurrent masers carrying the time 
s<,ale. Operating hhe Itlasers a t  the stal~ility level of the masers presents a challenge. Transferring 
1 0 - ' ~ r e q u e n ~ ~ y  accuracy to a second laboratory also presents a challenge. The reliabilit,y of a 
resiunr fount,ain whirh niight do this secnis to be a major challenge, perhaps romparal)le to the 
rliallenge of making a cesiunl fountain with a flicker flour and accuracy of lo-'? Pe rhap  the 
greatest value of this metafitting procedure is to show the very best performance which might he 
extracted fro111 niasers represented by these models. If greater accuracy is desired, then different 
approaches must l ~ e  used. 
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Optimum Weights for Weekday Calibration 
of 10-day Average Frequency 
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Figure 1. Optimum weights for combining weekday calibrations that give the minimum standard 
uncertainty in the average frequency over a 10-day interval. The calibrating reference standard is taken to be an 
ideal one, used for one hour, at the same time everyworking day. The optimum weights are shown for two flywheel 
oscillators: a free-running hydrogen maser model and an auto-tuned maser model. The optimum weights are shown 
for a the 10-day period starting on each day of the week. 


