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Abstract 

The Milstar communications satellite system will provide secure antijam communication capa- 
bilities for DoD operations into the next century. In order to accomplish this task, the Miktar 
system will employ precise timekeeping on its satellites and at its ground control stations. The 
constellation will consist of four satellites in geosynchronous orbit, each carrying a set of four 
rubidium (Rb) atomic clocks. Several times a day, during normal operation, the Mission Conhml 
EJement (MCE) will coUect timing information from the constellation, and after several days use 
this information to update the time and frequency of the satellite clocks. The MCE wiU maintain 
precise time with a cesium (Cs) atomic clock, synchronized to UTC(USN0) via a GPS receiver. We 
have developed a Monte Carlo simulation of Milstar's space segment timekeeping. The simulation 
includes the effects of: uplinkldownlink time transfer noise, satellite crosslink time transfer noise, 
satellite diurnal temperature variations, satellite and ground station atomic clock noise, and also 
quantization limits regarding satellite time and frequency corrections. The Monte Carlo simulation 
capability has proven to be an invaluable tool in assessing the performance characteristics of various 
timekeeping algorithms proposed for Milstar, and also in highlighting the timekeeping capabilities 
of the system. Here, we provide a brief overview of the basic Miktar timekeeping architecture as  if 
is presently envisioned. We then describe the Monte Carlo simulation of space segment timekeeping, 
and provide examples of the simulation's eficacy in resolving timekeeping issues. 

Introduction 

Figure I shows the baseline timekeeping architectcrre for Milstar as presently envisioned. The 
constellation will consist of four satellites in geosynchronous orbit[ll, each carrying a set of four 
robidium (Rb) atomic clocks, though at any one time only one clock will be operational on any 
given satellite. A satellite's active clock is labeled as either master (MSR), monitor (MON) or  
slave. The slave clock ties its time and oscillator frequency to the master via timing comparisons 
performed through the satellite crosslinks using a slaving procedure developed by Lockhecd 
(the Milstar prime contractor)[21. The monitor clocks are free-running, and are present in 
order to assess the health of the MSR again via the satellite crosslinks. Several times a day, 
during normal operation, the Mission Control Element (MCE) collects timing information on 
the Triplet of free-running clocks (i.e.. MSR, MONl and MON2), and after several days uses 



this timing information to update the time and oscillator frequencies of the Triplet. The MCE 
maintains precise time with a cesium (Cs) atomic clock, which is synchronized to UTC. 

In outline, Milstar timekeeping w o ~ ~ l d  appear to be straightforward and robust; however, in 
detail precise Milstar timekeeping is a complex matter. The time comparisons between satellites 
via the satellite crosslinks, and those using the uplinkldownlink between the inview satellite and 
the MCE, are not perfect: on-accounted for equipment delays can introduce non-negligible 
timing errors into the system. Moreover, even if the communications links were perfect, there 
are limits as to the accllracy with which time and oscillator frequency corrections may be applied 
to the satellite clocks. These limits are a consequence of both the satellite hardware and 
Milstar operating procedures. Additionally, the diurnal temperature variations that the satellites 
experience introduce timing errors as a consequence of the Rb atomic clock's (albeit slight) 
temperature sensitivityP1. Though individually these processes are straightforward, with regard 
to system timekeeping they act together in non-nbvious ways as part of a "satelliteto-MCE 
feedback loop": these processes cause time differences between the satellite and MCE, which 
the MCE attempts to correct periodically. Finally, it must be recognized that even though the 
satellite Rb atomic clocks will introduce no more than about 4 fis of timing error into the 
system in a weekr41, this requires the MCE to set them perfectly. As a consequence of these 
considerations, it should be recognized that cursory analyses of timekeeping performance may 
neglect important subtleties, and could lead to incorrect conclusions. 

In order to accurately address system level timekeeping issues, several approaches may be 
taken. First, one might consider developing a hardware prototype of system timekeeping. 
This approach is impractical not only because it requires a large capital outlay for the various 
pieces of equipment, but also because investigations into system timekeeping over periods of 
months would have to be done in real time. Alternatively, one coc~ld attempt to solve the 
satellite-to-MCE feedback loop equations. This too is an impractical approach, becac~se closed 
form solutions could not be obtained without significant approximation. Moreover, altering 
system characteristics slightly (e.g., system algorithms) coi~ld force a re-derivation of the entire 
set of feedback loop equations, requiring significant amounts of additional effort. Our approach 
to answering system level timekeeping questions has none of the above mentioned drawbacks, 
as it is based on Monte Carlo simulationl51. With a Monte Carlo approach, the resl~lts are 
obtained without approximation; years of system timekeeping experience can be built up over 
the course of several hours, and changing system algorithms requires nothing more than the 
change of a subroutine. 

Figure 2 is a functional diagram of the Monte Carlo concept, illustrating some of the important 
components of this simulation capability. The studies to be discussed below have focussed 
on the MCE's management of space timekeeping assets, and the performance of those assets 
under varied operational conditions. Generally, however, Milstar timekeeping also includes 
the process of synchronizing Milstar time, which is maintained at the MCEs, to UTC which is 
maintained by the Naval Observatory for DoD programs. Synchronizing Milstar time to UTC 
should be straightforward, and hence not require detailed Monte Carlo simulations for the 
resolution of timekeeping issues. 

In the analysis of system timekeeping, we start by generating a time series of random frequency 
fluctuations for both a satellite and MCE atomic clockl6Jl. Additionally, whenever timing 



comparisons take place between clocks, we simulate the appropriate communication link time- 
transfer noise (it.., either uplinWdownlink or crosslink), and make allowances for any limitations 
as to timekeeping corrections. Finally, we include in the simulation the diurnal temperature 
variations that a satellite clock might experience, and the resulting diurnal frequency variations. 
All of these stochastic and deterministic process realizations are generated in a 486-PC, and 
frequency variations are integrated and wmbincd with othzr timing  error.^. The output of a 
single simulation is the satellite time error as a function of time, and this can be  obtained for 
any one of the four satellite clocks (LC., MSR, MON o r  Slave). By performing thousands of 
these simulations we generate statistics on Milstar's timekeeping performance. 

Simulation of Atomic Clock Noise 

The success of a Monte Carlo analysis of system timekeeping requires the accurate simulation of 
various timekeeping fluctuations, and in this regard one of the most significant challenges is the 
simulation of an atomic clock's colored ( i t . ,  flicker and random-walk) frequency fluctuations. 
The approach we employ may he referred to as a "rec~trsive filter" approachl61, and i s  
best described by considering the spectral density of an atomic clock's random processes. 
Experimentally, if one had white noise, and one wanted to turn this into colored noise, then 
one woi~ld simply pass the white noise through a filter. The filter fi~nction woi~ld then shape 
the noise process's spectral density into some desired form. This is essentially the method we 
employ for simulating colored noise processes as illustrated in Fig. 3181. 

In order to simulate a noise process with a spectral density that is an even function of Fourier 
frequency f ,  we start with computer generated random numbers. These numbers have a 
uniform probability distribution, but may be transformed into random numbers with a normal 
(i.e., gaussian) probability distribution using the standard Box-Mueller algorithm[9l. At this 
point, we have a simulation of a gac~ssian white noise process. These n~rmhers are  inprrt to a 
namerical filter, described by a transfer function H ( f ) ,  and the spectral density of the filter 
output is I f I ( f ) i 2 .  Thus, to simulate random-walk noise we just need to choose H ( f )  - l l f .  

Simulating a noise process that is an odd function of Fourier frequency is a bit trickier, as H ( f )  
would then have to be a function of Fourier frequency to some fractional power. (If H ( f )  is 
a rational function, then the inverse of H ( f )  can be found by the method of partial fractions.) 
Since the MCE's Cs atomic clock noise has a flicker noise component, this portion of the 
simulation is important for properly modeling the MCE's timekeeping capability. Simulating 
noise processes with [INSERT 31 may be accomplished by cascading filters that are integral 
functions of Fourier frequency.[6] By a judicious choice of filter functions, the cascade can be 
made to approximate an overall filter that is not a rational function of Fourier frequency, which 
in turn yields an [INSERT 41 that is (approximately) an odd function of Fourier frequency 

As a final point, it should be mentioned that in deriving the equations for the recursive filter, it 
is assumed that the filter's operation is in steady-state. This is tantamount to assuming that the 
filter has been processing data since t. = -m. The fact that the recursive filter must be  started 
a t  some finite time in the Monte Carlo siml~lations is called thz "Initialization Problem."~lol 
Though a technical description of this problem and its solution is beyond the scope of the 
present discussion, suffice it to say that if the Initialization Problem is not handled properly, 



the accuracy of system timekeeping simc~lations would have to be called into question. In the 
present simulations we include initialization of both the satellite R b  atomic clocks and the 
MCE's Cs atomic clock. 

An example of our capability to simulate colored atomic frequency standard noise is illustrated 
in Fig. 4. Using the method outlined above, we simulated the frequency fluctuations that 
are expected for a Milstar satellite R b  atomic clock. We then performed an Allan standard 
deviation calculation on these simulated frequency fluctuations, and the results are  shown as 
boxes in Fig. 4. The solid line represents the expected Allan standard deviation for the 
satellite R b  atomic clocks based on clock manufacturer data. Clearly, the agreement between 
our simulated frequency fluctuations and those truly generated by the Milstar satellite atomic 
clock is excellent. 

Figure 4 represents only one validation test for our Monte Carlo s im~~lat ion of Milstar time- 
keeping. However, at every stage in the development of the Monte Carlo simulation, tests were 
performed to establish the simulation's verity. These tests included an accurate simulation of 
the MCE's cesium atomic clock, specifically its flicker noise component, and a demonstration 
that the sirn~llation wol~ld generate expected rcslllts under well defined, though not necessarily 
Milstar accurate, conditions. 

Applications 

The Monte Carlo simulation of Milstar timekeeping outlined above includes the full range of 
timekeeping processes and elcments associated with the MCE's management of Space Segment 
assets, and it has been extensively exercised to address topics in both the single and multi- 
satellite environments. In this section we provide examples of those applications. The  first of 
the examples concerns work that was performed several years ago when the question of how 
the MCE would estimate satellite time and frequency offsets was unanswered. This example 
will illustrate how various system algorithms can be easily changed and examined for their 
effect on overall system timekeeping using a Monte Carlo approach. The second example deals 
with the question of how satellite temperature variations influence precise satellite timekeeping. 
This latter example illustrates the complicated fashion in which various processes combine to 
produce a non-obvious dependence of timekeeping capability on system parameters. 

A. MCE Estimation Algorithms 

As discussed in the general description of Milstar timekeeping, the MCE will determine the 
time offsets of all the satellites in the constellation via the inview satellite and crosslinked 
data. This timing information will then be used by the MCE in an estimation algorithm in 
order to determine the time and frequency corrections that need to be  supplied to the v a r i o ~ ~ s  
free-running (i.e., Triplet) satellite clocks. O n e  of the major timekeeping questions faced by 
Milstar system planners in the mid-righties concerned the form that the estimation algorithm 
would take. 

Figure 5 illustrates an M C E  ranging on an inview satellite, and the timekeeping data that the 



MCE would collect (i.e, satellite time error a \  a function of measurement time). The time 
error collected by the MCE will have the general form: 

1 
Z(T) = T O  + ~ O T  + :DT~ + il [ ~ ( t ,  0) - T O J ~ ~  + /- + y~"~( i )c i t  + L(T) ( I )  

2 - 0 

Here, CX(T) is the time offset bet~gezn the satellite and MCE at  some time 7, z0 is an initial 
time offset, yo is a constant fractional frequency difference between the satellite Rh clock and 
the MCE Cs clock, D is the fractional frequency aging rate of the satellite Rh clock (parts in 
10'' per dayllll, n is the temperature coefficient of the satellite clock, T(1,6') - TO is the diurnal 
temperature offset of the satellite clock from some nominal value, &, yFat and y>ICE represent 
the random fractional frequency fluctuations of the satellitc and MCE clocks, respectively, and 
t(r) is the measurement error associated with the MCE-to-spacecraft communication link. The 
parameter 8 in the satellite temperature term represents the phase relationship between the 
satellite's diurnal temperature cycle and the cycle of MCE corrections. The question addressed 
with our  Monte Carlo simulation, was how the MCE could bzst use the time error data 
presented in Fig. 5 t o  periodically correct the satellite time and frequency. In the following, 
the update interval will be defined as the period of time hetween MCE corrections of the 
satellite clock. 

O n  an examination of Eq. (1) for z(T), several possibilities for employing the time error 
data of Fig. 5 present themselves. First, the MCE could restrict its consideration to data 
collected only at the beginning and end of an update interval. Thc time error a t  the end of 
the update interval woold then be the time correction that the MCE needs to apply (St), while 
the frequency correction (by) would come from the estimated rate of time error build up based 
on the two time error measorements. If T,,,,daLe is the length of the update interval, then the 
time and fractiona<'frequency corrections to be applied by the M C E  are: 

This is called the 2-Point estimation algorithm, and has the advantage o f  being very simple. 
An alternate procedure would be  to take advantage of all the intervening data collected by 
the M C E  during the update interval. The data could then be fit to a straight line in order to 
determine the appropriate time and freqi~ency corrections: 

Here, 6y and to are the slope and intercept determined by the linear least squares. This is 
called the Linear estimation algorithm, and it is to be noted that the frequency correction is 
determined by the slope of the linear least squares fit. Finally, by examining the above equation 



for x(T), one might expect to d o  better a t  correcting the clock by fitting the data to a quadratic, 
which wot~ld essentially be attempting to account for the R b  clock's aging rate: 

Here, y is the linear coefficient of the least squares quadratic fit, which is essentially the initial 
frequency offset of the clock, and i) is the least squares estimate of the aging rate of the clock. 
This is called the Quadratic estimation algorithm. 

Using our Monte Carlo simulation of Milstar timekeeping, we were able to investigate the 
performance of each of these estimation algorithms[l21. The parameters that were employed in 
the calculations are collected in Table I. To determine the efficacy of any estimation algorithm, 
we allowed the MCE to correct the satellite clock several times, essentially letting the system 
get into a steady state, and then examined the satellite time error after either 3 o r  10 days 
of free-running operation. (Note from Table I that a 3 day free-running period corresponds 
to the time error the satellite would have just prior t o  receiving its normal MCE correction.) 
Hundreds of simulations were performed (each with a different satellite clock aging rate) to 
generate the statistics of Milstar timekeeping, and the results of that analysis are  collected in 
Table 11. In the table, the standard deviation of time error at the end of the free-running 
period is tabulated for the various estimation algorithms. Since the Linear estimation algorithm 
minimizes the spread of satellite time error, it is considered to be the best estimation algorithm 
among these three. Similar results comparing the Linear estimation algorithm against a Kalman 
Filter estimation algorithm eventually lead to the adoption of the Linear estimation algorithm 
for the Milstar MCEs due to its simplicity. 

The fact that the Linear estimation algorithm is superior to the Quadratic estimation algorithm 
was initially something of a sorprise. Since the Quadratic estimation algorithm more closely 
models the onderlying performance of the satellite R b  atomic clock, one would typically expect it 
to result in less timing error. After some study of this issue, we found that the poor performance 
of the Quadratic algorithm derives from the influence of the measurement noise, r ( ~ ) ,  and the 
Rb atomic clock frequency noise, Y:"~, o n  the estimated coefficients. Apparently, these noise 
processes strongly influence the estimated drift coefficient in the Quadratic algorithm, and of 
course any error in that estimate has a strong influence on timekeeping since it contributes to 
time error quadratically. 

B. Satellite Temperature Variations and MCE Control of the 
Satellite Clock 

As any Milstar satellite orbits the Earth, its temperature will vary in a diurnal fashion, and in 
the mid-eighties thermal analysis of the satellite indicated that the satellite clock would 
experience peak-to-peak temperature variations of - 20°F. The question arose as to how these 
temperature variations would influence satellite timekeeping, both for the crystal oscillator that 
would be  launched on DFS-I (the first Milstar satellite) and the R b  atomic clocks that would 
be  launched on subseqoent satellites. Specifically, there was interest at the time in knowing 



how large the satellite oscillator's temperature coefficient could get withont impacting system 
timekeeping performance. 

Clearly, the MCE cotrld choose to set up its cycle of satellite corrections anywhere within 
the satellite's diurnal temperature cycle. The quantity expressing this relationship in Eq.  (1) 
is 8. For example, the M C E  could choose to  correct the satellite clock when the satellite 
temperature is near its largest daily value; this would correspond to  a value of B = 0 in Eq. 
(1). Alternatively, the M C E  could choose t o  correct the satellite clock when the satellite 
temperature is near its daily mid-range value; this would correspond to a value of 0 = 7r/2 in 
Eq. (1). (For the reader's general information, analysis has shown that the diurnal temperature 
variations will be roughly sin~isoidal. We note, however, that our calculations employ the 
expected diurnal temperature variations and not a sinusoidal approximation.) Thus, in order 
to study the influence of a satellite oscillator's temperature coefficient on system timekeeping, 
it is necessary to  specify 0. Since the actilal value of Q for any given satellite is an arbitrary 
quantity, we performed two sets of analyses, one  with B = 0 and the other with B = ~ / 2 .  
Parameters for one  illustrative study are collected in Table 111, corresponding to a satellite clock 
with characteristics very near those of a crystal oscillator clock. As discl~ssed in the previous 
example, our  method was to allow the M C E  to update the satellite clock through several update 
intervals, essentially reaching a steady-state of timekeeping, and then to calculate the satellite 
time offset at the end of a free-running period. For the case under discc~ssion, the free-running 
period was chosen to  h e  24 hours (i.e., the update interval). Again, hundreds of simulations 
were performed, which allowed us to generate thc statistics of Milstar system timekeeping, and 
the results are shown in Fig. 6. In the figure, the 2  u time error a t  the end of 24 hours is 
plotted as a function of the satellite clock temperature coefficient. Two curves are shown, one 
with the diurnal phase angle 8 = 0 and the other with 0 = 7 r / 2 .  

It is clear from the figure that there is a dependence of Milstar timekeeping on 0 .  Though 
the strength of this dependence was unexpected, it could be rationalized as a consequence 
of optimally choosing the data points employed by the MCE's estimation algorithm. More 
surprising, however, were the specific results for 0 = 7 r / 2 ,  where the satellite time error 
is actually found t o  he a decreasing function of clock temperature sensitivity (at least for 
temperature coefficients less than about 1 x 1 --I1 /'(:). It would appear that for B = 7 r / 2 ,  
Milstar system performance is enhanced hy having a clock with a slightly larger temperature 
coefficient. This counter-intuitive result indicates that under certain conditions the effects of 
the diurnal temperature variations on the Linear estimation algorithm can (to some extent) 
compensate for the frequency aging of the standard. With regard to the question that motivated 
these studies, the results of Fig. 6 indicate that the satellite clock temperature coefficients can 
take on values up to  .- 1 x 10-"/"c (for arbitrary 0 without significantly changing Milstar system 
timekeeping. This value is large, and indicates that the Milstar constellation can he made 
relatively robust t o  satellite diurnal temperature variations. Moreover, if the MCE judiciously 
chooses the correction cycle for the satellites under its control, then the diurnal temperature 
variations might actually h e  heneficial to  Milstar timekeeping. 

Taking a broader view of the results shown in Fig. 6, these Monte Carlo simulations demonstrate 
the complicated interplay among: satellite temperature variations, communication link time- 
transfer noise, freqc~ency aging rates, and all the other parameters that are  important to satellite 



timekeeping. The relationship between system-time-error, satellite-oscillator-temperature- 
coefficient and [INSERT 171 was not obvioi~s prior to the Monte Carlo computations. Even 
now, knowing that the relationship exists, it is not obvious what the optimum H value is for the 
MCE's estimation algorithm. The important lesson to be learned is that intuitive predictions of 
satellite timekeeping performance must be accepted warily. How all the various timekeeping 
processes combine to yield the system performance is not always obvious, and in this regard ;r 
Monte Carlo sim~llation of system timekeeping has great value. 

Summary 

The above discussion has reviewed a Monte Carlo simulation of Milstar timekeeping. Given 
the complexity of Milstar timekeeping issues, our experience with these simulations has shown 
that many results are non-intuitive, and that without a Monte Carlo simulation capability 
accurate predictions of system performance would be exceedingly difficult (if not impossible) to 
obtain. Though the simulation capability was developed with Milstar in mind, the capability is 
fairly general, and co111d easily be applied to timekeeping issues associated with other satellite 
systems, for example GPS. 
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Figure 1: Operational diagrarn of the baseline Milstar timekeeping architecture. As discussed in 
lhe text, the constellation will consist of four satellites labeled: MSR (master), MON (monitor) or 
slave. The Mission Control Element (MCE) will periodically correct the time and oscillator 
frequency of the MSR and MONs. 
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Figure 2: In the Monte Carlo simulation of Milstar timekeeping, realizations of rtrlidorn 
timekeeping processes as well as derermi~zistic processes (e.g., satellite temperature variations) 
are generated. These fluctuations are combined to generate a single realization of a satellite 
clock's time-error history. By examining thousands of such simulations, the statistics associated 
with any clock's timekeeping performance may be built up for any set of parameters or operating 
scenario. 1 
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Figure 3: Method of simulating colored atomic frequency standard noise as discussed in the texl. 
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Figure 4: Allan standard deviation plot. The squares correspond to the Allan standard deviation 
obtained by analyzing [he frequency tluctuations simulated by our Monte Carlo program for a 
Milsrar sa~ellite Rh atomic clock. The solid line represents the expected Allan standard deviation 
based on Milstar clock manufacturer data. 
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Figure 5: MCE ranging on an inview satellite and collecting time difference information. The 
MCE-to-Satellite time difference info~mation is used to dete~mine the time and frequency 
correction that the MCE should apply to the satellite. 
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Figure 6: Satellite time error after 24 hours of free-running operation. Temperature coefficients 
for the satellite clock are per degree Celsius. The two curves labeled 0 = O and 0 = n/2 
correspond to different phase relationships between the satellite's diurnal temperature cycle and 
the MCE's satellite correction cycle. 



Table I: Parameters used in the Monte Carlo simulation of Milstar timekeeping for the question 
of which estimation algorithm is best for the Milstar system. 

Parameter - Value 

Satellite Rb Clock Allan Standard Deviation 2x10- l l /d~  + 4x10-l5 'It 

Satellite Rb Clock Frequency Aging 0.0 k 5.0x10-~~/day 

Satellite Rb Clock Temperature Coeficient I . O X ~ O - ~ ~ / O F  

Diurnal Temperature Variation Phase Angle, 0 0.0 

Update Interval, Tupdate 3 days 

MCE-to-Satellite Measurement Interval 8 hours 

Table 11: Results from Monte Carlo analysis of MCE estimation algorithms The results show 
the standard deviation in microseconds of satellite time error at the end of a 3 day and 10 day 
free-running period. 

Estimation Algorithm 3-Day SD 10-Day SD 

2-Point 2.5 7.4 

Linear 2.2 6.7 

Quadratic 4.6 14.3 

Table 111: Parameters used in the Monte Carlo simulation of Milstar timekeeping for the 
question of how satellite temperature variations would influence satellite timekeeping. 

Parameter 

Satellite Clock Allan Standard Deviation 

Satellite Clock Frequency Aging 

Satellite Clock Temperature Coefficient 

Diurnal Temperature Variation Phase, 0 

Update Interval. Tupdate 

MCE-to-Satellite Measurement Interval 

MCE Estimation Algorithm 

Value - 
5X10-'~/d't + 5 ~ 1 0 - l ~  & 

2.0 t 0 . 5 x l 0 - ~ ~ / d a ~  

0.0 to 4.0x10-~ I/OF 

0.0 and rr/2 radians 

24 hours 

2 hours 

Linear 




