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Abstract 

Generally, it is possible to obtain equally spaced timing data from oscillators. The measure- 
ment of the drifts and noises a$ecting oscillators, is then performed by using a variance (Allan 
variance, modijied AUan variance, Time variance) or a system of several variances (multi-variance 
method 1 1 9  21). 

However, in some cases, several samples, or even several set of samples, are missing. In the 
case of millisecond pulsar timing data, for instance, observations are quite irregularly spaced in 
time. Nevertheless, since some observations are very close together (I minute) and since the timing 
data sequence is very long (more than 10 years), information on both short-term and long-term 
stability is available. Unfortunately, a direct variance analysis is not possible without interpolating 
missing data. 

We used di,erent interpolation algorithms (linear interpolation, cubic spline) to calculate vari- 
ances in order to verify that they do neither lose information nor add erroneous information. A 
comparison of the resubs of the difierent algorithms will be given in the paper. 

Finally, we adapted the multi-variance method to the measurement sequence of the millisecond 
pulsar timing data: we calculated the responses of each variance of the system for each type of 
noise and drijf, with the same missing samples as in the pulsar timing sequence. An estimation of 
precision, dynamics and separability [I] of this method will be given in the paper. 

INTRODUCTION 

The time stability measurement of oscillators is well known in the case of signals composed of 
equally time-spaced data[5 29 39 41. However, in some cases, e.  g. the millisecond pulsar timing 
data, the sequence of time error measurement is not regularly spaced. It is then necessary to 
reconstruct a sequence of equally time-spaced data from the original sequence. The aim of 
this paper is the study of different ways of sequence reconstruction. 



1. DIFFERENT METHODS OF SEQUENCE RECONSTRUC- 
TION 

The goal of the reconstruction is to get N equally time-spaced data from M irregularly spaced 
data without losing information or adding information. 

From M data we measure TO, the smallest interval between 2 consecutive timing data. This 
smallest interval TO is the basic interval between all consecutive data of the reconstructed 
sequence. N, the new number of data, is then equal to the duration of the sequence divided 
by 70. Actually, in order to easily perform Fast Fourier Transform over the reconstructed data, 
we choose as N the first power of two greater than the duration of the sequence divided by 
TO. Let us define TO the date of the first sample of the sequence and TM-1 the date of the last 
sample of the sequence, N is given by the relationship : 

Generally, the available data are time error x(t) measurements between the oscillators and 
a reference oscillator. However, the time stability is mainly studied from the instantaneous 
normalised frequency deviation samples yk, obtained from the x(t) data by the relationship: 

Reconstructing equally spaced data from the x ( t )  data or from the yk samples yields different 
ways of reconstruction. 

1.1. Reconstruction by linear interpolation of the x ( t )  data 

This first method (see Fig. 1, left) keeps the same y~k samples as in the original irregularly 
spaced sequence. The only difference this method yields, is the division of each initial gk 

sample into several TO-long samples with the same value. Thus, the added information is the 
constancy of the frequency deviation during the initial samples. 

1.2. Reconstruction of the x ( t )  data by cubic spline functions 

Obviously, the real frequency deviation y(t) is not constant over the time interval of each initial 
gk samples. In order to avoid this hypothesis of constant samples within each initial sample, it 
is possible to fit the x(t) data with cubic spline functions (see Fig. 2, right). The new 7-0-long 
samples vary smoothly while preserving the same average over the initial samples. The added 
information is then an hypothesis of continuity (and derivability) of the gk samples, due to the 
continuous variation (derivability of second order) of x(t). 

Although the x ( t )  samples are strongly correlated for the low frequency noises, the hypothesis of 
continuous variation of the x(t) samples is completely wrong in the case of a white noise! Since 
the types of frequency' noises can vary from f P 3  (only in the case of millisecond pulsarsIst 61) 



to f t2 ,  i. e. from f U 5  to f0 phase noises, this method may be justified only for correlated z(t)  
data, but not in the case of a white phase noise (ff2 frequency noise). 

1.3. Reconstruction by linear interpolation of the qk samples 

On the other hand, it is possible to reconstruct directly the gk samples by linear interpolation. 
The new yk sequence is then continuous but not derivable. The x ( t )  sequence is obtained by 
the relationship : 

In this case, the x ( t )  function is only derivable once. However, the hypothesis of continuity 
of the & samples is wrong in the case of a white frequency noise ( f -2  phase noise) or higher 
frequency noise. This method may only be applied to low frequency noises. 

1.4. Reconstruction of the qk samples by cubic spline functions. 

Theoretically, this method could only be justified for very low frequency noises (f-3 frequency 
noise) ; nevertheless we decided to observe the behaviour of such a method for all the types 
of noises in order to confirm our theoretical considerations. 

2. Analysis method 
2.1. Use of the multivariance method 

The multivariance method uses a system of several variances, calculated for several integration 
values T ,  over the same signal [1*21. The results are the most probable (in the sense of the 
least squares) set of h, noise coefficients and drift coefficients. Moreover, this method yields 
an estimation of the confidence interval of each coefficient. 

In order to study the influence of the reconstruction way by the multivariance method, we 
generated several sequences of 8192 simulated x ( t )  data. Each of these sequences was composed 
of one only pure noise (one sequence of f -3 frequency noise, . . . , one sequence of f + 2  frequency 
noise). Then, we removed a lot of data according to a real pulsar timing sequence : we kept 
only 167 irregularly spaced x( t )  data from the 8192 ones (see Fig. 2). 

2.2. Responses of variances for the different reconstruction method 

Figure 3 shows the responses of the modified Allan for the different types of noises 
and for a linear frequency drift. On each graph, the response of this variance for one type of 
noises with equally time-spaced data (continuous line) is compared with the responses obtained 
with the different reconstruction methods. Actually, each curve is the average of the results 
for 100 different realizations of these noises. 

For f -3 frequency noise and h e a r  frequency drift, the reconstruction from the y,, yields curves 
closer to the reference curve (corresponding to equally spaced data) than the curves due to the 



reconstruction from the x(t) data. In these cases, the gk samples are strongly correlated with 
their neighbours and the smoothest reconstruction methods provide the best results. Moreover, 
for T values greater than 5 k 0 ,  which is about the ratio of 8192 over 167, the different curves 
converge to the reference one. 

However, for the higher frequency noises, the curves corresponding to the reconstruction by 
linear interpolation of the x(t) data, remains the closest to the reference curves. The only 
important difference is visible in the case of f + 2  frequency noise : although the slope is the 
same as the one of the reference curve, the variance measurement are about 100 times greater 
than the reference variance measurements. We may also notice that the curves corresponding 
to the reconstruction by cubic spline functions of the z(t) data are not very far from the curves 
corresponding to the reconstruction by linear interpolation of the x(t) data. 

On the other hand, the results given by the reconstruction of the gk samples for, fO, f f  l and f'2 
frequency noises always yield the same behaviour. Therefore, these 2 reconstruction methods 
should not be able to separate these 3 types of noises. Of course, interpolating high frequency 
noises by linear interpolation or, a fortiori, by cubic spline functions completely modifies the 
information about the initial data. 

2.3. Generating a model of variance responses 

In order to increase the sensitivity of the multivariance method, we used the results shown in 
Figure 3 as the theoretical responses of the different variances for the different types of.noises 
and for the different reconstruction method. Thus, the determination of the noise and drift 
coefficients of a signal, will be obtained by minimizing the differences between the variance 
results for this signal and the new theoretical responses of variances. 

Therefore, if we choose for instance the reconstruction by linear interpolation of the x ( t )  for 
analysing a signal mapped as in Figure 2 (with 167 data obtained for the same date as in 
Figure 2), we will compare the variance results with the new model corresponding to this 
type of interpolation and not with the classical theoretical variance responses. Consequently, 
this method requires the calculation of the corresponding model for eath irregularly spaced 
sequence. 

3, Results and discussion 
3.1. Results for pure noises 

Figure 4 shows histograms of values obtained for 100 realizations of the same pure noises (only 
f -3  noise, ... , only f f 2  noise) and for the different reconstruction methods. For the low 
frequency noises (f -3 and f -2  frequency noises), the different methods yield histograms similar 
to the reference one (in front), i. e. the histogram obtained with 8192 equally spaced data. 
The histogram corresponding to the reconstruction of the x(t) data by cubic spline functions 
(3rd in order of depth) seems to be slightly better than the ones of the other methods. 

For a f-I frequency noise, the histogram corresponding to the reconstruction of the gk by 
cubic spline functions (last in order of depth) is already larger as the other ones. These other 



histograms remains similar to the reference one. 

Finally, for a f + 2  frequency noise, the dispersion is very important for the different methods. 
Only the histogram of the reconstruction of the x ( t )  by linear interpolation (2nd in order of 
depth) seems to be interesting. 

3.2. Results for a signal composed of all types of noises 

Figure 5 shows histograms obtained for 100 realizations of a signal composed of 6 types of 
noises: 

with 

With these values, each type of noise prevails over the other within an interval of the studied 
range of frequencies. 

Although the f - 3  noise is detected by all different methods, the measurement of the h 4  
coefficient is difficult, even in the case of 8192 equally spaced data. The best method seems 
to be the interpolation of x ( t )  by cubic spline functions (3rd in order of depth), because the 
number of non-null measurement is about GO%, and the maximum of the histogram is about 
the entered value. However, for f  and, a fortior< for f  t2 frequency noises, the measurement 
is almost impossible (from 70 to 90% of null measurement). 

Conclusion 

The results obtained for pure noises shows that the 4 methods are able to measure a signal 
over which a low frequency (from f  -3 to f-' frequency noises) prevails. For higher frequency 
noises ( f O  to f S 2  frequency noises), only the methods of reconstruction of the x( t )  seem to be 
reliable, 

On the other hand, in the case of a signal composed of 6 different noises with noise coefficients 
of equivalent levels, only the f P 3  frequency noise can be determined by the 4 methods and 
sometimes the f P 2  frequency noise by the spline reconstruction of the x ( t ) .  It may appear that 
these results are poor for a classical oscillator measurement. 

However, in the case of the millisecond pulsars, we are only interested in the very low frequency 
noises ( f m 3  and f T 2  frequency noises). The interest of the millisecond pulsars is their great 
long term stability. Especially, the question is: does the stability curve of the millisecond 
pulsars will continue to go down versus time, under the estimated threshold of the International 
Atomic Time stability, or will it change of slope and go up because of f - 2  or f P 3  frequency 
noises? Perhaps is it already possible to answer! 
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Figure 1 : Reconstruction by linear interpolation of the time error data (left) and by cubic spline functions 

of the time error data (right). 
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Figure 2 : Sequence of irregularly time-spaced data (167 data). 



R e g u l a r y  spaced d a t a  (8192 s a m p l e s )  

I l n e a r  i n t e r p o l a t i o n  r e c o n s t r u c t i o n  of t h e  
t i m e  error  d a t a  (8192 samples from 167 )  
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Figure 3 : Responses ofthe Modified Allan Variance for the diflerent types ofnoises 

and for the different ways of reconstruction. 
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Figure 4 : Histograms oftneasurements of 100 realizations ofpure noises. The first ones (in front) correspond to 

equally spaced data ; the second ones : reconstruction by linear interpolation of the x(t) ; 

the third ones : reconstruction of rhe x(5) by spline ; the fourth : reconstruction by linear interpolation ofthe yk ; 

the last (in the back) : reconstruction of the ';;;; by spline. 
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Figure 5 : Histograms ofmeasurements of 100 realizations of a signal composed of 6 types of noises. The first ones 

(in fronf) correspond to equally spaced data ; the second ones : reconstruction by linear interpolation of the x(t) ; 

the third ones : reconstruction ofthe x(t) by spline ; the fourth : reconstruction by linear interpolation of the yk ; 

the last (in the back) : reconstruction of the yk by spline. 


