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Abstract 

It has been shown that a three-point second difference estimakor is nearly optimal for estimating 
frequency drifi in many common atomic oscitlutors. We derive a formula for the uncertainly of this 
e s W e  as a function of the integration time and of the AUan variance associakd wi&h this inkegration 
time. 

Theory 

The three-point drift estimator is a useful tool for estimating the frequency drift in many atomic 
oscillators [I]. In this paper we derive a formula for the uncertainty of the three-point drift estimate; 
as we shall demonstrate, there is a simple relationship between the uncertainty of the drift estimate 
and the Allan variance of the residuals which remain after the estimated drift is removed. We explain 
how to apply the uncertainty formula and then we use it to assess the uncertainty of the drift estimate 
in several examples. 

Let us begin by discussing the three-point drift estimator. To define it, let x(t) be a time series of 
time difference measurements between two oscillators drifting in frequency relative to each other. An 
optimal estimator, D, of drift uses the first, middle, and last timdifference points. We estimate the 
average frequency over the first and second halves of the data, subtract the first frequency from the 
second, and then diyide by 7, the time elapsed between the fist and middle or middle and last data 
points. This yields: 

1 x ( 2 ~ )  - x(r) 
D = - (  - 

r T T 

(1) 

That is, we estimate drift as 1/r2 times the second difference of the time series x, where we take the 
second difference over as large an interval as possible. 
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Let us separate the time offset x(t) into the part due to the frequency drift D and the part due to 
everything else (initial offsets, stochastic noise, systematics): 

We now will show that the uncertainty of the drift estimate, D, is functionally related to the Allan 
variance of the xl(t) time series. 

If we substitute (2) into (1) we obtain 

Rearrangement yields: 

1 
D - D = - (~ ' (27)  - 2X1(7) f ~ ' ( 0 ) )  . 
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The expected variance of our drift estimate, D, m u n d  the true drift D will thus be 

where ( ) is the expectation operator. The square root of this quantity is the expected deviation of D 
around the true value. 

If we compute an Allan variance of x' for the integration time T we obtain [2,3] 

Substitution of (6) into ( 5 )  yields our result, the relationship between the expected deviation in the 
drift estimator, D, and the Allan variance of x', the drift-removed data: 

where O~,(T)  is the Allan variance of the x' data, and y' refers to the frequency data derived from 
x'. Thus we see that the uncertainty in our drift estimate is a function of the Allan variance of the 
drift-removed data. 

Application of Equation 7 

The application of (7) requires a bit of finesse. First of all, the alert reader has probably noticed 
that, since we don't know the value of D, the true drift, we cannot obtain the time series xi(t). To 
circumvent this problem, we obtain an approximation of x'(t) by removing the estimated drift from 
the x(t) series. We then compute the Allan variances for the approximate xl(t) series. However, it is at 



this point that we encounter another problem: It is generally true that if you 1) use a second-difference 
estimator (such as the three-point estimator) to estimate drift, 2) remove this estimated drift from the 
time series, and then 3) compute the Allan variances for the residual time series, the Allan variances 
obtained for large integration times (such as r = 112 the data length) will be biased low, i.e. the 
Allan variance will not be an accurate measure of the frequency variability at large integration times. 
In fact, if we' were to take a data set with constant drift, compute  using (I) ,  remove ~ t ' / 2  from 
each data point, and then compute uy,(r) for this same r, we would obtain exactly zero. 

We need to have uyr(r) for = 1/2 the data length in order to use (7). Yet we know that after 
removing D from z(t), we are going to get the incorrect value of 0 for uyt2(r) for r = 112 the data 
length. However, while u$(r) is incorrectly low for large r, it does accurately represent the frequency 
variability for smaller 7. Furthermore, the noise processes of atomic oscillators are such that, for a 
given range of integration times T, it is usually the case that ui,(r) = kr", where k is a constant and 
n is an integer ranging from 1 to -2. The rmult of this power-law behavior of uY,(r) is that log-log 
plots of uyr(r) versus T exhibit linear behavior. This can be seen in Figure 1. Therefore, in order to 
obtain U;,(T) for r = 112 the data length, we look at the log-log plot of oSl(r)) versus r and discard 
the incorrectly-low values of u,,(r) which occur at large T (For example, in Figure 1, we would discard 
the point for which log r (seconds) x 7. In'Figure 3 we would discard the point for which log 7 
(seconds) x 6.75). Then, we use the od)r) points which correspond to the largest remaining r values 
to determine k and n (i.e., we determine the equation of the line on the log-log plot formed by the 
remaining valid data points). Then, knowing k and n, we use the equation U;,(T) = krn to determine 
the value of o$(r) at r = 112 the data length. This value is what we need to apply (7). 

For cesium beam and rubidium gas-ell oscillators, the dominant noise types at large integration 
times are flicker frequency modulation and random walk frequehcy modulation (FLFM and RWFM, 
respectively). FLFM corresponds to an n value of 0 and RWFM corresponds to an n value of +I. 
For very large 7, RWFM generally dominates. Therefore, if the last (i.e. largest r) valid linear trend 
that we see on the log-log plot is consistent with a model of RWFM, we may use this slope with a 
measure of confidence to estimate the value of u;(r) at  r = 112 the data length. If, however, the last 
linear trend corresponds to FLFM, we need to ask ourselves whether the FLFM noise type continues 
out to r = 112 the data length, or whether RWFM is the correct noise type for r = 112 the data 
length. The assumption of RWFM as the noise type always leads to a larger computed value of u$(T) 
than the assumption of FLFM. Thus, simply assuming that RWFM dominates at  r = 112 the data 
length yields a conservative estimate. The uncertainty in the M a n  variance estimate will limit the 
accuracy of our uncertainty estimate. Nevertheless, we can make conservative estimates of uncertainty 
and obtain meaningful results. 

In summary, to use (7) to estimate the uncertainty of we take the following steps: 

1. Compute using the second difference estimator (3), where in that equation, r = r-, the time 
interval for one-half the data length. Remove i)t2/2 from each of the timedifference data points 
4 t ) .  

2. Compute the Allan deviations U~,(T), for T = nro, where n is an integer multiple of the sampling 
interval 7,. Make a log-log plot of u,,(T) versus T. 

3. Look for abnormally low values of ud(r) at large values of T. Discard them. 

4. Determine the parameters k and n in the equation ot,(.r) = krn for the last valid linear trend 



on the log-log plot. Then use this equation to compute u2 r for T-. Remember to consider d (  ) 
the possibility that the noise type might change past the last valid uY,(-r) value on the log-log 
plot (i.e., the noise type might change from FLFM to RWFM). 

5. Substitute this value of u;,(r) into (7). Solve (7) for the variance of D. The square root is the 
expected deviation. 

Examples 

As examples we use atomic standards aboard GPS satellites studied from July 1,  1991, to September 
15, 1992, a period of 443 d. Satellites are referred to by their pseudo-random code number (PRN), 
the number by which users identify satellites , or by their satellite vehicle number (SVN), the number 
used by the GPS control segment. Clocks on the GPS satellites are measured at NIST against the 
AT1 time scale. For clocks which ran for this entire period, drift could be estimated using a second 
difference with 7=221.5 d. Not all clocks analyzed were on line for this entire period, in which case 
shorter T values were found. We found an assortment of dominant noise types at various integration 
times, with FLFM and RWFM dominating at times equal to one-half the data length. Table I gives 
our example results and indicates associated figure numbers. 

PRN#2 and figure 1 illustrate the difficulty in determining noise type. Looking at figure 1,  we see 
that, while FLFM, rO,  is the probable slope for the last valid UJT) values, the uncertainty allows for 
the possibility of a r1I2 slope, indicating RWFM. Furthermore, RWFM is usually the dominant noise 
process for cesium frequency standards at integration times such as 221.5 d [6]. We compute a more 
conservative value in the second line of the table. Similarly for PRN#25 we have assumed FLFM in 
its first line. If we assume RWFM we see we find only a small change. 

Another consideration is that equation (7) applies to the Allan variance, not the modified Allan 
variance. In figures 1 and 5 we used the modified Allan variance. We can account for this as follows. 
Asymptotically, if we define 

then R, = 0.91 for RWFM and R, = 0.82 for FLFM [5]. These corrections have been included in 
the table. 

Conclusions 

We have derived a relationship that allows us to estimate the uncertainty of the threepoint estimator 
of frequency drift. It does not give a lot of precision but it is adequate for determining a confidence 
level. With the procedure outlined, we can determine an upper bound on the uncertainty of the 
estimate of frequency drift. 
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Table 1 

PRNU Dates 7,. Dominant 4 7 )  @ ~ ( s )  Estimated Drift * o Figure 
(Type) days Noise Type parts in 10"ld Nos. 

--- 

2 (Cs) llu191 - 15Sep92 221.5 FLFM 0.4. -2.7 k0.3 

2 (Cs) 1Jul91 - 15Sep92 221.5 RWFM 0.2. l o r3@ lo6 -2.7 k0.6 

3 (Rb) 1Jul91 - 15Sep92 221.5 RWFM 2.0. lo-'' @ lo6 -98 +6 

12 (Rb) 8Apr - 15Sep92 80.5 RWFM 2.5. @ lo6 -130 *I0 

19 (Cs) 1Jul - 18Dec91 85.5 RWFM 1.2. lo-'' @ lo6 35 k 5  

25 (Rb) 30Jun - 15Sep92 39 FLFM 0.7- 10 -183 k 3  

25 (Rb) 30Jun - 15Sep92 39 RWFM 0.6- 10-l3 @ lo6 -183 k 4  

PRN 2 (SVN 13) - N I S T ( A T 1 )  
1 J u l y  ' 3 1  - 15 5ep '32 

LOG TAU ( S e c o n d s )  

Figure 1: The modified Allan variance of the Cs clock on P R N / / ~  as measured at 
NIST against the AT1 time scale from July 1, 1991 to September 15, 1992.  
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Figure 2: The Allan variance of the Cs clock on PRN#3 as measured at NIST 
against the AT1 time scale from July 1, 1991 to September 15, 1992. 
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Figure 3: The Allan variance of the Rb clock on PRN#12 as measured at NIST 
against the AT1 time scale from April 8, I991 to September 15, 1992. 
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Figure 4: The Allan variance of the Cs,clock on PRN#19 as measured at NIST 
against the AT1 time scale from April 8, 1991 to September 15, 1992. 
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Figure 5: The Allan variance of the Rb clock on PRN#25 as measured at NIST 
against the AT1 time scale from April 8, 1991 to September 15, 1992. 



QUESTIONS AND ANSWERS 
J. Barnes, Austron, Incorporated: I want to ask a quick question so I am sure I understand 
what you are doing with the data. You take a data link and take the first point, minus the 
last point, plus the last point, minus two times the midpoint. 

M. Weiss, NIS'If Yes. 

J. Barnes: That gives you your estimate of drift. 

M. W e k  Divide by Tau square, but yes. 

J. Barnes: Then you take that and calculate a number to take from all of the data to get the 
residuals. 

M. W e k  Subtract a quadratic based on that number; Yes. 

G. Winkler, USNO: I find that discussion very interestjng. In fact it is a continuation of a 
discussion of drifts which started about six or seven years ago, when you gave your paper 
about how not to measure drift, by not making a parabolic fit, for the phase data; remember 
that? I think you did that and ever since that time, we have discussed how do you best 
measure drift. Before there was a question and it was questioned whether you can determine 
it at all, I believe you should remember that whenever we measure something, we measure it 
against a hypothesis, about a assumption. You have in your various estimates made various 
different assumptions. Each of these define --(Tape ran out)-for it's instability. We have 
to remember that these numbers always are connected with a assumption, which has been 
made in the first place. You are starting out with three point estimates. Why is it the best 
estimate, or the optimun estimate, you can obtain, because it makes the minimun number of 
assumptions. 

M. Weiss: I think you are right about the underlying assumptions. In particular, I think 
what is most important is to realize there is physics involved and the reason we estimate drift 
because we believe that what is physically causing the drift is different than what is physically 
causing the random walk. That they are two separate processes and they should therefore be 
estimated independately. And sometimes random walk looks an awful like drift and there may 
not be any drift and it may be random walk. 

J. Barnes: I see people like the idea of being explicit in their models. I think that is great. 1 
think I like the comments very much. 




