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Abstract 

Through the past 17 years, the time scale requirements at NRC have been met by the unsteered 
output of its primary laboratory cesium clocks,supplemented by hydrogen masers when short-term 
stability better than 2 x 1 0 - ' ~ r - ' I ~  has been required. NRC now operates three primary laboratory 
cesium clocks, three hydrogen masers and two commercial cesium clocks. 

NRC has been using ensemble averages for internal purposes for the past several years, and 
has a real-time algorithm operating on the outputs of its high-resolution (2 x 10-l3 s @ 1 s) 
phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in 
incorporating their short-term stability into the ensemble average, while retaining the long-term 
stability of the laboratory cesium frequency standards. 

We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on 
our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from 
the next generation of Zacharias fountain cesium frequency standards having frequency accuracies 
that might surpass lO-I5, or from single-trapped-ion frequency standards (Ba', Srt,.  . .) with even 
higher potential accuracies. 

We present and discuss the requirements for redundancy in all the elements (including the alg* 
rithrns) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms. 

Introduction 

Time scale algorithms are of wide interest because an ensemble average should behave better than 
the best dock of the ensemble, in terms of accuracy, stability and reliability: t o  some extent the 
misbehavior of any clock of the ensemble can be filtered out without disturbing appreciably the 
ensemble average. The stability of a new clock can be added t o  the ensemble average without major 
disturbance. 

Historically, a t  NRC, the implementation of a time scale algorithm at NRC has been delayed by the 
excellent behavior of the laboratory cesium clocks of the Cs V and Cs VI designs. Used alone, they 
met most of the needs of TA(NRC) and UTC(NRC), with the other needs being met by NRC's masers. 
The advantages of developing a good time scale algorithm were not as evident as the advantages of 
maintaining a "good clock". 

Nonetheless, a time scale algorithm was developed for the NRC ensemble, and used t o  assist in primary 
clock evaluations. It was particularly beneficial for evaluations when the NRC ensemble was operating 



in a degraded mode caused by problems either with our building's environment or with the clocks 
themselves. 

This algorithm was developed to exploit the short-term characteristics of the NRC clock ensemble 
for the purposes of clock diagnostics, initially to rhn with the NRC three-channel phase comparators 
at  10-l2 s resolution, taking phase data every 10 s. With the new NRC masers, a higher resolution 
phase comparator was desirable, and the old design [I] was improved to give a unit which gives phase 
differences each second (averaged over one second) with 0.1 ps resolution, and a short-term noise 
level of less than 0.2 ps. We have built, and are commissioning two phase comparator systems for 
full redundancy. Each phase comparator system can record 32 phase differences taken from up to 16 
5 MHz sources, and has standard serial output at 9600 bps. The main data acquisition software rnns 
on MS-DOS compu'ters under Deskview. We wrote a driver to accept and check the phase comparator 
data, and write the files to disk. The data acquisition computer system also rnns the ensemble average 
software in real-time (with less than 1.5 s delay from any phase step to  the ensemble average: up to 1 s 
delay in the phase compakator, up to 0.3 s in serial transmission, and up to 0.2 s for the recalculation 
of the ensemble average). T h e  same computer system flexibly displays the phase difference results in 
a wide variety of formats. 

Other operational advantages of real-time time scale algorithms also became evident a t  NRC as au- 
tomated inter-laboratory time transfer with resolutions of better than 200 ps came on line in our 
laboratory. Also a real-time algorithm promises advantages during evaluations or during repairs to 
the primary laboratory cesium standards. 

An algorithm seems attractive for exploiting the superior timekeeping characteristics of NRC's two 
new masers, and could gracefully incorporate frequency calibrations from the initially short periods 
of operation of the new cesium frequency standards - cesium Zacharias fountains - and single-ion 
frequency standards, which are under development at NRC and will likely have frequency accuracy 
capabilities in the 10-15 range. An algorithm based on Kalman filtering seems to be a promising 
candidate to  meet our requirements of good stability in both the short term and long term while 
keeping the accuracy that cesium beam frequency standards and their successors provide. 

Kalman Filtering 

Of the many time scale algorithms used in different institutions and laboratories 12, 3, 4, 5, 6, 71, an 
algorithm based on Kalman filtering seemed the most promising to meet our needs. It is an optimum 
estimator in the minimum squared error sense, it applies to dynamic systems with a proper adaptive 
filtering technique, it has the optimum transient response, and it can address the requirements of both 
short and long term stability. 

We have used Kalman filtering at NRC for several years, for algorithm evaluation purposes although 
the ensemble average has been a very helpful tool for clock evaluations from early in the development. 
We have set up a full project to pursue the development of the algorithms, and fine tune an algorithm 
that we envisage will include rejection and correction of outliers for both phase and frequency jumps. 

The purpose of this paper is not to develop the Kalman filter equations. This development can be 
found in many good books(8, 91. Briefly, if we have a linear system with the state-space description 



where Ak, Ck are n x n, and q x n constant matrices, respectively the state transition matrix and 
the connection matrix between the measurement vk and the state vector x k ,  and {(k} and {qk} are 
respectively system and observation noise sequences, with known statistical information such as mean, 
variance, and covariance, we can derive the following Kalman filtering process: 

where 

Pk,k-I = V&l(xk - kklk-i)  the variance of the difference between the state vector and the 
prediction 2klk-1, 

Pk,k = Var(xk - kklk)  the variance of the difference between the state vector and the 
estimation % k l k ,  

k = Var(tk), 
Rk = Var(qt). 

Equation 2 is a recursive scheme that, when applied to the incoming data vk, produces predictions 
kklk-l and estimations 2klk of the state vector xk. The difference vk-Ck%klk-l is called the innovation. 
I t  can be shown that 

For a description of a clock, we need to know its phase and frequency; in some case the frequency 
aging is needed. Since absolute time is not known, the exercise is equivalent to  comparing two or more 
clocks together: that means that the state vector components are the phase difference z(t) and the 
relative frequency y( t ) .  The following equations are for the phase difference and relative frequency 
between two clocks. A generalization to more clocks is straightforward. 

and 

where k(t I t - 6) is the prediction on x(t) given k(t) from t = 0 up to t - 5 .  The state transition 
matrix is: 



and since we measure the phase difference between two clocks, the connection matrix between the 
measurement and the state vector is 

R h  is the variance of the measurement error: 

Now, if we have a careful look to the equations 2 of the Kalman filtering process, we see that the 
second, third and fourth equations are self-sufficient as a group: the matrices Pk,k-l, Pk,k and Gk 
are updated independently of the data vk! There is nothing wrong with that if the description of 
the model is right, and if the behaviour of any clock in the ensemble is unchanging. The latter is 
practically impossible to realize, a t  least on a long term basis. The development of adaptive filtering 
is needed in our case. This means that the parameters of the model, specifically the variance matrix 
Qk of the system noise, must be continuously evaluated. The frequency of evaluation depends on the 
type of noise process involved. 

Although we are still evaluating different adaptive filtering approaches, the one developed by Stein[5] 
looks the most appropriate of all the adaptive filtering approaches we have studied until now[9, 10, 
111. The approach is based on the fact that the variance of the innovation, equation 3, links the 
measurement v k  with P k , k - l ,  which is defined in terms of Q k - 1  in equation 2. Our next step will 
be to implement a slightly modified version of Stein's approach, the modifications are more on the 
procedure of calculating the parameters rather than on the underlying principles. 

Results using the current algorithm 

We present here an analysis of our internal time scale algorithm based on Kalman filtering by looking 
at  two different sets of clock data - relative phase measurements between six pairs of clocks taken at 
10 minute intervals - taken respectively between MJD=48795 and 48865 for 70 days (from 92-06-22 
to 92-08-31), and between MJD=48895 and 48915 for 20 days (from 92-09-30 to 92-10-20). These 
two sets of clock data correspond to periods of relatively stationary behaviour of the clocks. Of the 
different clocks included in the calculation of the time scale, there are the two new NRC hydrogen 
masers, H3 (H) and H4 (h), on which there are still experiments done, often resulting in frequency 
steps; for that reason, H3 has been included in the calculation of the first period of 70 days for only 
37 days, between MJD=48795 and 48832. H4 is not included at all in the 70 day period. Besides the 
two hydrogen masers, the time scale algorithm is calculated from the relative phase measurement of 
three primary laboratory cesium beam atomic clocks, Cs V, Cs VI A and Cs VI C, and two commercial 
cesium beam atomic clocks P and p (HP5061-A's with super tubes). The six phase differences were 
taken with two three-channel phase comparators with 1 ps resolution, and the calculations were done 
using phase difference data taken every 10 minutes. 



The time scale algorithm evaluation includes also Cs VI C (undergoing a full evaluation during part of 
this period) and the two commercial cesium clocks. For that period, though, their measured stabilities 
were not good enough to  give them important weights in the calculation, and we will not present 
results for them. 

To analyze the time scale algorithm, we present the Allan deviation graphs of each of the other clocks 
vs the ensemble. As expected from Figs. 1-3, the hydrogen masers H show a very good short term 
stability that  is reflected in the algorithm. Fig. 1 shows the Allan deviation of free- running maser 
H3 vs the ensemble. In Figs. 2 and 3 the Allan deviations are for the masers under cavity servo 
control. In Figs. 1-5, the upper and lower traces show the limits of the interval of confidence (95 %) 
in the evaluation of the Allan deviation. After a week, Cs V starts to  take over when it reaches the 
oy(r) = 2 X 10-l4 level, Fig. 4. A longer term analysis, of the order of 1 year, would show a larger 
contribution of Cs V, and also of Cs VI A and Cs VI C, since their long term stability is better 
than the hydrogen masers. A comparison of Figures 1, 4 and 5 shows that the cesium clocks and 
the hydrogen maser H3 are a t  the same level of stability after a week, defining the beginning of a 
cross-over region before the long term stability of the hydrogen maser deteriorates. At this level of 
stability, u,(T) = 2 x 10-14, and on a period of 70 days, it is easy to  appreciate the difficulties of 
determining from the Allan deviation over this period which clock(s) should be pulling the algorithm 
the most. This time scale algorithm allows a maximum weight of 0.8 for the contribution of the best 
clock. 

Other long-term questions have not been resolved in this algorithm. It does have built-in consistency 
from the continuous evaluation of the weights from predictions and estimations for the calculation 
of the phase of the ensemble. However, the same standard of consistency is not implemented for 
frequency, nor for aging or related effects. The consequence is that the long term behavior of the time 
scale is not optimally controlled, with phase comparisons taken every ten minutes as clock data. The 
algorithm could be pulled by the hydrogen masers even if the long term stability of a cesium clock is 
better. This problem will be addressed in the further developments in our time scale algorithm. 

Additional requirements for a real-time system 

The results of our experience with ensemble averaging, such as that presented above, has encouraged 
us to undertake a project aimed at implementing areal-time algorithm for UTC(NRC). Our old system 
has used the proper time output of our "best" primary cesium clock, as PT(NRC), adjusted for our 
100 m elevation by a microstepper to convert to UTC(NRC). We have examined the requirements of 
a time scale system, and we are building a system shown in Fig. 6 .  It measures phase differences each 
second and controls a quartz oscillator giving UTC(NRC) by calculating and outputting a correction to 
the quartz oscillator frequency with a delay of less than 1.5 s. Most components of the system have on- 
line backup, both to minimize the effects of component failure and to simplify component maintenance 
and upgrading. Most of the hardware has been operating for over a year, and the algorithm presented 
above has been re-implemented on the redundant PC's (switching from the Hewlett-Packard Basic 
(Rocky Mountain Basic) and Infotek compiler to  Microsoft's Quickbasic and Basic System 7 for MS- 
DOS 80486 computers). We have encountered more difficulties than expected with compiler errors 
as well as the normal coding errors. We are in the process of independently re-coding the algorithm 
in FORTRAN, both for speed and as a further check on the coding and compilers: we plan to  use 
the greater portability of the FORTRAN code to run the algorithm on VAX VMS, IBM VM, Silicon 
Graphics UNIX as well as PC's under MS-DOS. The greater speed will expedite the offline examination 



of different strategies for algorithms running on our small, inhomogeneous ensemble of atomic clocks. 

When one examines the behaviour of clocks, what looks simple is in fact more complicated. The 
stability of a clock, mostly evaluated by the Allan variance, varies with the time interval on which it 
is evaluated. If a phase or frequency step happens, it must be not only detected but also determined 
as being either phase or freqnency. A time scale algorithm must deal with changes in stability, both 
in time and in time interval, and in phase and frequency. The evaluation of the parameters of the 
algorithm, the system noise and the weights of the clocks, must be a s  automatic as possible without 
loss of control. A well designed algorithm lets the human operator keep track of all the evaluated 
parameters to keep control in case the algorithm behaves inappropriately. The reliability is one of the 
aspect on which the algorithm will be evaluated extensively. Initially we expect to be running different 
real-time algorithms in parallel, constrained to lie within a time window around the old "best clock" 
algorithm. The time window would have to be manually set and reset when necessary. 

Conclusion 

Until now, UTC(NRC) has been derived from one of the three laboratory primary cesium beam clocks, 
Cs V, Cs VI A and Cs VI C. Their excellent capabilities has delayed the implementation of a time 
scale algorithm. The advantages of a time scale algorithm for NRC's inhomogeneous group of atomic 
clocks were not as evident as the advantages of maintaining a 'good clock". 

We presented in this paper some ideas for the development of a timescale algorithm based on Kalman 
filtering. The choice of Kalman filtering is dictated by our requirement for both short and long term 
stability of the ensemble. By taking phase differences between pairs of clocks instead of time of clocks, 
we make sure that the different variance matrices involved in the recursive calculation of the time 
scale do not diverge. The system noise variance matrix must also be updated dynamically to take into 
account the change in behavior of any clock of the ensemble. Continuity, not only in phase but also in 
frequency, and aging if measured, must be implemented in the algorithm. This is to avoid pulling of 
the algorithm by clocks which have the best short term stability, like the hydrogen masers, but poorer 
long term stability. We have presented an analysis of the time scale algorithm, used internally only, 
for two periods of time of 20 and 70 days respectively. The algorithm was found to give the most 
weight to the best clocks in the short term, but the analysis didn't allow us to evaluate the algorithm 
on the long term. 

We considered also the requirements of an on-line time scale system generating UTC(NRC), from the 
measurement of phase differences to the control of the quartz oscillator. Many of the components will 
be redundant, the measurement system and the computer calculating the algorithm, to  detect any 
phase comparator or computer error, The program and its coding will be checked against different 
source of errors like coding, compiler, and the algorithm itself. For that matter, the coding will be 
checked on different computer architectures, not only on a PC DOS 80486 where it will be implemented. 

In the future, a time scale algorithm will have be optimized to facilitate exploiting the initially short 
periods of operation of NRC's new frequency standards: cesium Zacharias fountains and single-ion 
frequency standards, which will likely have frequency accuracy capabilities in the lo-'' range. Unless 
there are surprising advances in time intercomparisons, the promises of good algorithms will have to be 
realized to allow inter-laboratory frequency intercomparisons at this level. Subsequent work will focus 
on the optimal inclusion of the intervals of operation of these higher accuracy frequency standards 
into the ensemble average of our inhomogeneous group of atomic clocks. 
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Figure 1. Allan deviation of H3 vs Ensemble for MJD=48795 to 48832 (37 days). 



Figure 2. Allan deviation of H3 vs Ensemble for MJD=48895 to 48915 (20 days). 



Figure 3. Allan deviation of H4 vs Ensemble for MJD=48895 to 48915 (20 days). 
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Figure 4. Allan deviation of Cs V vs Ensemble for MJD=48795 to 48865 (70 days). 



Figure 5. Allan deviation of Cs VI A vs Ensemble for MJD=48795 to 48865 (70 days). 
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Figure 6. Time scale generation at NRC (project) 




