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Abstract 

The estimation of individual instabilities of N clocks, compared by measuring the differences of 
their readings, is here considered without assuming a priori any hypotheses on their uncorrelation. 
Instubilities of the N clocks are described by a complete (non-diagonal) NxN covariance matrix 
R Only di#erences of clock readings are available in order to estimate R Statistical processing of 
these data allows one to cakulate the (N-l)x(N-I) covariance matrix S of the differences relative 
to the N-th(reference) clock. By analyzing the relationships tying R and S, several pieces of 
information can be inferred and, in particular, the conditions for the validity of the uncorrelation 
hypothesis are established. The estimation of R from S is not unique: in any case R must be 
positive definite. A theorem states that R is positive definite if and only if its determinant is 
positive. Nevertheless infinitely many acceptable choices of R still fulfil the condition of positive 
definiteness. This paper shows that, by increasing the number N of compared clocks, the amount 
of arbitrariness in estimating R is reduced. The analysis of some experimental d a l e  iUustrates the 
capability of the method. 

1 INTRODUCTION 

The evaluation of frequency standard instability is often performed by comparing N clocks and 
measuring differences in their signals. Results depend on the simultaneous wntributions of all 
N standards and it is often desirable to estimate the noise wntributions of any single units. In 
the past years, this problem has been considered in several papers, which introduced the popular 
"3-cornered hat" method [I], successively investigated and extended to Nclocks [2, 3, 4, 5 ,  61. 

The application of these methods often results in an unpleasant situation: some estimated clock 
variances turn out to be negative, violating the positiveness restriction intrinsic to their definition. 



The assumption of uncorrelation of clocks, necessary in the above methods, seems to be too strin- 
gent and not always supported by experimental evidence ([7],  see also [8]) .  Moreover, when more 
than 3 clocks are compared, the uncorrelation hypothesis leads to the formulation of an overdeter- 
mined linear system of equations [2, 3, 6, 91 and this overdetermination seems incompatible with 
the inconsistency of some results. 

Here a new, consistent and more general mathematical model is proposed, suited for statistical 
processing of measured differences. The entire NxN covariance matrix R of the clocks along with 
the (N-l)x(N-I) wvariance matrix S of the differences are introduced. Their relationship, and the 
possibility to estimate R from the knowledge of S, are then discussed. A diagonal structure of R 
can result, a posteriori, from the most desirable situation of truly uncorrelated clocks. This model 
abides by the CIPM recommendation [lo] in which it is recognized that "where appropriate, the 
estimated covariances should be given". 

The examination of matrix S helps understanding the validity of the uncorrelation hypothesis. 
When such hypothesis is acceptable, the problem can be reduced to the classical case of the N- 
cornered hat, while in the other cases, the complete matrix R must be solved. In this second case 
the problem is underdetermined because the number of unknowns exceeds the number of equations. 
In any case there is an important constraint which binds the domain of acceptable solutions: the 
matrix R, as any covariance matrix, must be positive definite. A theorem, specifically devised, 
is here presented showing that R is positive definite if and only if its determinant is positive. 
This constraint has been geometrically interpreted giving an insight of the features of the solution 
domain. 

The interesting case of an increasing number of compared clocks is then examined showing how a 
larger number of clocks reduces the solution domain of R. 

2 STATEMENT OF THE PROBLEM 

Let us denote by x"he process related to the i-th clock and xk its realization at the instant t,. 
If M consecutive equispaced samples of the process are considered, they can be arranged in the . . 
vector x' = [xi, xi,. . . , x$IT, where superscript denotes the transposition. The expected value 
3' of process x' can be estimated in terms of the elements of x% 3' = (l/M)(xi + xi + . . . + xh) 
and arranged into the M-vector zi = [3i, z', . . .,&IT. The M samples of the N clock processes 
are then cast in the M x N matrix X = [xl, x2, . . . , xN]. Similarly, the M x N matrix X is 
introduced as X = [%I, e2, . . . , eN]. With these definitions the covariance matrix of the processes 
xl, i = 1, 2,. . . , N is estimated by R: 

The diagonal element rii (r+ > 0) denotes the variance of the i-th clock, while, for i # j, r i j  denotes 
the covariance between the i-th and the j-th clock. In order to obtain a good estimation of the 
matrix R, it is required that the number of samples M be much larger than the number N of 
clocks. 

When clocks are compared by measuring differences between their readings, the available data are 
the time differences yij = x" xj. Also y" is statistically characterized by its expected value yi' 



and by its variance: the estimates of these values are tied to the estimates of the variances rii and 
r j j  of the two single clocks and of their covariance r,. 

One of the clocks, for instance clock # N ,  is chosen as the reference, and it is compared at M 
different instants with clocks #1, #2,. . . , #(N-1) giving ( N  - 1 )  distinct time difference measure 
M-vectors yIN = x1 - xN, yZN = x2 - xN, . . . , yiN-'1, = xiN-') - xN. Under the assumptions of 
contemporary and noiseless measurements, the other possible measure vectors y'j ( i ,  j  # N )  are 
redundant, since they can be obtained as linear combination of those involving clock #N and they 
don't add any information, as proved in [ll]. 

The M samples of the N -  1 clock differences are cast in the M x ( N  - 1 )  matrix Y = [ylN, yZN, . , . , 
yN-', N ] .  Similarly the M x ( N  - 1 )  matrix Y is introduced as Y = [ P I N ,  PZN, . . . , 1 ,  where 
YN is the M-vector whose elements are coincident with gN. 
The processes yiN, ( i  = 1 ,  2 , .  . . , N - 1 )  are statistically characterized by the estimation of the 
( N  - 1 )  x ( N  - 1 )  wvariance matrix S defined as: 

A generic element sij denotes either a variance (for i  = j )  and it is always positive or a covariance 
(for i # j) and may assume any real value. Note that the index N of the reference clock has been 
dropped in any element of S. 

The relationship between matrices S and R is easily determined by observing that Y can be 
derived from X, xmrding to the following relationship: 

where H is the N x ( N  - 1 )  matrix: 

where i is the ( N  - 1 )  x ( N  - 1 )  identity matrix and u is the ( N  - 1)-vector [ I ,  1 , .  . . , 1IT. A 
similar relationship ties the corresponding matrices X and 7. 

From ( I ) ,  (2 ) ,  and (3) ,  the covariance matrix S can be expressed in terms of R as: 

For sake of generality here we discuss the wvariance matrices of the processes themselves, but the 
same properties hold also for any wvariance matrix defined from prefilter4 data as is generally 
the case in the estimation of clock instability, where the Allan variance is used. 

3 CONSIDERATIONS ON R AND S 

By taking into account the symmetry of R and S it appears that R is defined by N ( N  - 1) scalars 
and S by ( N  - 1)N/2  ones, then the knowledge of S is not sufficient to fix a unique estimation 



of R because cmN solutions satisfy ( 5 )  (underdetermined problem). A way to isolate the N free 
parameters consists in partitioning R according to: 

where  is the leading (N-  1) x (N-1) submatrix; r = [ r , , ,  r m ,  . . . , TN- , ,  is the (N-1)-vector, 
grouping the covariances involving the N-th clock and rNN is the variance of the N-th clock. With 
this partition, and by substituting (4), equation (5) can be rewritten as: 

This equation shows that R can be uniquely reconstructed from S  if the (co)variances related 
to the N-th clock, i.e. r and T N N ,  are known. In fact, (7) can be transformed in the following 
expression: 

R = s  -r,[u uT] + U  rT+r uT (8) 

With a deeper look into (7), some qualitative information about R can be immediately deduced 
when S is known: 

1. If the N clocks are uncorrelated, S  assumes the form: 

All the covariances sij (with i # j) are equal and positive, because si j  = rNN > 0. Moreover 
each variance 8, > sij (with i # j). These conditions are necessary to validate the assumption 
of uncorrelation of the N clocks. Unfortunately they are not sufficient to conclude that the 
clock are uncorrelated because, together with a unique diagonal solution, infinitely many 
other non-diagonal matrices R would drive to the same matrix S, but if these conditions are 
satisfied one can "reasonably" assume the uncorrelation. 

2. If the reference clock is "quasi-ideal" (that is rNN << r, for i = 1, 2 , .  . . , N - 1) and all the 
clock.. are uncorrelated, then su << 8;; for any i # j and S ,  as well as R, can be considered 
diagonal. So, if S  is almost diagonal, the reference clock is of high quality. In this case, the 
submatrix R almost coincides with S  and r g 0, T N N  g 0. 

3. For the same reason, when the hypothesis of uncorrelation holds, if the reference clock is 
changed and S is computed again, it gives an idea of which one of the clocks is less noisy, 
because it results in a matrix S with minimum off-diagonal terms. 

4. If any sij (with i # j )  is negative, then the uncorrelation hypothesis is certainly to be excluded 
at least between the (i, N)-th or the (j ,  N)-th pair of clocks. 



5. If d l  the terms sij (with i # j) are equal and positive except one, for instance +,(with 
k # I ) ,  which is positive but differs from the others, that indicates that all the clocks can be 
considered uncorrelated except the pair (k, 1 ) .  

6. If the terms sij (with i # j # k) are coincident and positive, and the terms sij (with 
i # j, i = k, or j = k) are coincident but different from the previous ones, the k-th clock is 
possibly correlated with the reference one while all the others are uncorrelated. 

From the theoretical point of view, the above considerations suggest clear interpretations. By 
handling experimental data, it can be difficult to recognize the points above because of round-off 
error, not perfect contemporaneity of measurement, low noise introduced by the measurement 
system but, above all, the low number of statistical samples that give a considerable uncertainty 
bar on the estimates. 

4 POSITIVE DEFINITENESS OF S AND R 

The estimation of the complete matrix R asks for a suitable choice on the N free parameters in 
(8). In any case, there is an important constraint which bounds the solution domain 'D in the 
space of the N free parameters and which guarantees a significant result: as any covariance matrix 
[13], the estimated w v a ~ a n c e  matrix R must be positive definite. 

Some significant properties of positive dehi te  covariance matrices are here reminded. Let A be 
an N x N symmetrical matrix and A(") (n = 1, 2 , .  . . , N )  be the leading n x n submatrices of A, 
extracted from A by considering the elements belonging to the first n rows and n columns (with 
A(N G A). The matrix A is positive definite if and only if [13]: 

where I . I denotes the determinant. 

Then the positive definiteness of A requires the validation of N scalar inequalities. In the case of 
R and S, since they are both positive definite and they are linked by (5), a theorem holds 111): 

Theorem 1: The N x Nsymrnetrical matrix R, related to the known positive definite (N - 1) x 
(N - 1) symmetrical matrix S by the relationship (5), is also positive definite if and only if IRI > 0. 

Thii theorem allows one to verify the positive definiteness of R by considering only one of the 
inequalities (10); moreover this inequality can be geometrically interpreted. In fact, the relationship 
IR( = 0 appears to be an equation of second degree in the N - 1 elements of r and in r,,. 

With the partition of R used in (6), it can be demonstrated [ll] that its determinant can be 
expressed as: 

IRI = ISI(T,, - [r - rNNuJTS-'[r - rNNu]) (11) 
with u defined in (4). The boundary of the solution domain 'D is therefore described by the surface 
IRI = 0: 

Ts-1 [r - TNNu] [r - TNNu] = TNN (12) 

If T,, is fixed, this expression represents an ellipsoid in the (N - 1)dimensional space described by 
the variables r,,, r,,, . . . , T,_,, , because the matrix S-' of the quadratic form is positive definite. 



This ellipsoid is centered at the point of coordinates (T,N = TNN, T ~ N  = TNN,  . . . , TN-I, N = TNN) ,  

the principal axes are rotated and the squared length of the axes is proportional to T,,. As far 
as the parameter r,, is concerned, the domain 2) takes the form of an elliptic hyper-paraboloid 
in the N-dimensional space. The intersection with a plane (rNN =constant) leads to an (N - 1 ) -  
dimensional ellipsoid, the increase of rNN increases the surface and shifts the center of the ellipsoid 
(12), and it doesn't rotate its axes. Fig. 1 shows an example of the domain 13 in the case of N = 3. 

The constraint of positive definiteness of R bounds the domain of choice of the N free parameters r 
and TNN and only the set of values of T,,, T,,, . . . , r,,, ., T, situated inside the surface described 
by (12) guarantees acceptable solutions. 

5 EFFECT OF AN INCREASING NUMBER OF COMPARED 
CLOCKS 

Knowing the expression of the boundary of the domain 'D, it can be interesting to test how it is 
modified by varying the number of clocks involved in the measurements. Within a set of N clocks 
let's individuate the N-th clock as the reference one and two subset Ca of Na clocks and Cb of N* 
clocks. C denotes the union of Ca and Cb and N = Na + Nb + 1. With the above notation, the 
N x N covariance matrix R of the N clocks is partitioned as follows: 

where RM and RM are the covariance matrices related to the clocks in Ca and Cb respectively. 
Rd contains the covariances between clocks in Ca and Cb versus the N-th clock; they represent a 
partition of the vector r introduced in (6). The element rNN is the variance of the N-th clock. 

Analogously, the (N - 1) x ( N  - 1) covariance matrix S of the differences can be partitioned as: 

where S"" and S" are the covariance matrices of the differences related to the clocks in Ca and Cb 
respectively. 

If the clocks in Ca and C (jointly with the reference one) are considered, the respective solution 
domains Va and 'D are: 

[ra - - T ~ ~ u ~ ]  5 rNN (15)  

[r - rNNuITS-'[r - T ~ ~ u ]  < rNN (16) 
where ua is the No-vector [ I ,  1 , .  . . , 1IT. 

Expression (16) can be rewritten in terms of the submatrices of S in (14) .  In fact, the vector 
r - rNNu can be partitioned as: 



where ub is the N~-vector [I, 1,. . . , 1IT and the inverse of S can be written as: 

[S"]-' + [PI-' S"' [DM]-' [S*IT [S"]-I - s-I = 
- [DM]-' [S"'IT [Sa]-' 

where the matrix Db' is defined as [12]: 

Now the idea is to compare the extension of the domains delimited by the elliptic paraboloids D' 
and V, defined by (15) and (16), respectively. The domain 'P is defined in the space of N a + l  vari- 
ables T,,,  T,,, . . . , rpN,  T,,, while V is defined in the space of N variables T,,, r,,, . . . , rN-,,,, r,. 
To the aim of comparison, it is necessary to individuate a subdomain V obtained from V by a 
suitable projection in the subspace of Nu  + 1 variables r,,, r,, . . . , rp , ,  T,,. 

Domain is obtained by the projection of the intersection of 2) with the N~-dimensional subspace 
defined by the hyperplane rN,,ub = rb. Since this choice corresponds to the largest intersection of 
'D, V results in the largest possible subdomain in the (Na + 1)-dimensional subspace and therefore 
it yields the least favourable case in the comparison of the two domains. 

By substituting (17), (la),  (19) and 7,,ub = rb in (16), the equation defining domain 'D is obtained 
as: 

By comparing D (20) with Va (15), i t  appears that the only difference is in the second quadratic 
form in the 1.h.s. of (20). From the properties of the definite positive matrices, since S and its 
submatrix So" are positive definite, so are their inverses, and it can be demonstrated that also the 
matrix [S"]-lS*[DM]-'[S~]TIS""]-' of the second quadratic form in (20) is positive definite. So it 
necessarily results that 'D is contained inside Va. As a result, an increased number of compared 
clocks reduces the solution domain and therefore the amount of arbitrariness in the determination 
of the covariance matrix R, even in the worst considered case, i. e. with the largest possible 
intersection. It  must be stressed that the reduction ratio of the solution domains depends only on 
the elements of matrix S and not on the value of r,. Intuitively, if the clocks in Cb are completely 
correlated with any clock in Ca or with the reference one, their measurement doesn't add any 
further information to the problem and the reduction of the solution domain will be very poor. On 
the contrary, the addition of independent clocks can result in a significant shrinking of the solution 
domain. 

6 EXAMPLE 

Five commercial cesium clocks have been compared. Three of the clocks are maintained at IEN, 
Turin, Italy (Cs4, Cs5, Cs6), the other two clocks are maintained at ISPT, Rome, Italy and 
Telespazio, Matera, Italy and data are regularly transmitted to the IEN for traceability. The 
comparison at distance is obtained with GPS or TV link. An appropriate smoothing procedure 
has been applied to reduce the additive noise due to the synchronization link and, for integration 
times larger than five days, this noise can be assumed to be negligible. The Allan covariance matrix 



has been computed for different integration times, with overlapping samples, by using one year 
(1991) of daily measurement data. (The Allan covariance matrix is an extension of the well-known 
Allan variance in the sense of (1)). In the present example the set Ca is composed of clocks Cs4 
and Cs5 of IEN, the set Cb is composed of the two external clocks and the clock Cs6 of IEN is 
the reference one. When the clocks in Ca jointly to the reference are used, the 2x2 matrix S" is 
obtained while, with the five clocks, the 4x4 matrix S is obtained. 

To investigate how the increased number of clocks reduces the solution domain, V is compared 
with 27' in the plane (r,,, r,,), with a Exed value for the variance r,~. Here we report only some of 
the most significant examined cases. 

The &st case regards the Allan covariance matrix evaluated for integration time T = 10 days. The 
following matrices S" and S are obtained, where numerical values have been scaled by loz8: 

Since matrix S" satisfies conditions (9), the uncorrelation hypothesis is acceptable for the clocks 
in Ca and the reference one. We can choase r, = s,,, r,, = 0, and r, = 0 driving to the classical 
solution. By choosing r, = s,,, the two domains 'Da and D delimiting the possible choices for 
r,, and r, are compared in Fig. 2. A, expected, tbe classical solution corresponding to r,, = 0 
and r,, = 0 is inside the domain 'D, and it is also inside the domain D. It also means that from 
the comparisons of the five clocks it results that the clocks in Ca and the reference one may be 
considered uncorrelated. That is not the case for the other clocks because the complete matrix S 
has not all equal and positive off-diagonal elements. 

From Fig.2 it can be verified that the addition of the (co)variances of the clocks in Cb slightly shrinks 
the solution domain and therefore also the arbitrariness in the choices of the free parameters r,, 
and r, is reduced. 

The second case concerns the instability estimation of the same clocks for T = 100 days. The 
following matrices S" and S are obtained: 

where the values are again scaled by 10". 

Here the conditions (9) are not satisfied neither in the comparison of three clocks (S"), nor with 
five clocks (S). The solution domain of the covariances r,, and r, is represented in Fig. 3. Here 
we see a significant reduction of V with respect to 'Da when five clocks are compared. The clocks 
in Ca add so much information that the range of acceptable values for r,, and rz5 is reduced by a 
factor of 5. Inside the domain p, the arbitrariness in choosing r, and r, is so much reduced that 
it seem not so much crucial the criterion to be used for the final choice. This situation is also 



depicted in Fig. 4 where the two 3-dimensional elliptic paraboloids describe the boundaries of the 
solution domains for r,,, r,, and r,,. 

7 CONCLUSIONS 

This work has considered the estimation of clock instabilities when 3 or more clocks are compared 
by measuring + p a l  differences. From the measure covariance matrix S several information about 
the instability of the individual clocks can be inferred and, in particular, the uncorrelation hypoth- 
esis can be accepted or rejected. The estimation of the individual clock covariance matrix R from 
the knowledge of S is an underdetermined problem and an appropriate optimization criterion ought 
to be formulated to Ex the remaining free parameters, but the solution domain is constrained by 
the request of positive definiteness for the resulting R. Such a constraint has been deeply analyzed 
and, with a theorem, it has been possible to give a simply geometrical illustration. Moreover the 
importance of the comparison of a larger number of clocks is outlined, showing how, in some cases, 
it results in a significant reduction of the arbitrariness in estimating clock instability. 
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Fig.1: Solution domain Dcorresponding to a particular matrix S obtained from the comparison of 
3 different clocks. 
(a) the domain Din the space of variables r,,, r,,, and r,,. 
(b) boundaries of 5 for some fixed values of r,,. 

Fig.2: Domains 27' (solid line) and 5 (dashed line) in the plane (r,,,r,J for integration time z = 10 
days and r,, = 4.78*10-". 
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Fig.3: Domains @ (solid line) and 5 (dashed line) in the plane (r,,,r,,) for integration time z = 100 
days and r,, = 20*10-". 

F i g 4  Domains @ (external paraboloid) and 5 (internal paraboloid) in the space described by r,,, 
r,, and r,,. 



QUESTIONS AND ANSWERS 

Question: Is it possible for the domain to shrink to zero? 

E? Bvella, Institute Elettrotecnico Nazionale: Yes, in fact for example, I suppose that one 
correlation is possible. You just shrink to the region when all the covariances term are zero. 
You just have no more degrees of freedom. 




