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Introduction 
Tlle term clock is usually used to refer to a device that counts a nearly periodic signal. A 

group of clocks, called an ensemble: is often used for time keeping in mission critical applica- 
tions that cannot tolerate loss of t,ime due to the failure of a single clock. The time generated 
by the ensemble of clocks is called a t,ime scale. The question arises how to combine the times 
of the individual clocks to form the time scale. One might waively be tempt,ed to suggest the 
expedient of averaging the times of the individual clocks, but a simple thought experiment 
demonstrates the inadequacy of this approach. Suppose a t i~ne scale is composed of two noise- 
less clocks having equal and opposite frequencies. The mean time scale has zero frequency. 
However, if either clock fails, the ti~rie-scale frequency immediately changes to the frequency 
of the remaining clock. This performa~lce is generally unacceptable and si~nple mean time 
scales are not used. 

This paper will first. review previolls time-scale develop~nents and then present some new 
rnet,l~ods that result in enhanced pcrfornlance. The historical perspective is based upon several 
time scales: The AT1 and TA time scales of the National Institute of Standards and Technology 
(NIST); the A.l (MEAN) time scale of tlie US Naval Observatory (USNO), tlie TAI time scale 
of the Bureau Internat,ional des Poids et Measures (BIPM), and the KAS-1 time scale of the 
N:~val Research Laboratory (NRT,). Thr new methods havt, hem incorporated in t,he KAS -2' 
t,i~lie scale recently deve1opt:d by Timing Solutiorlr Corporation. The goal of this paper is 
to present time-scale t:ont:epts in a non~rlatheniatiral form with as few equat,ions as possible. 
Manv other papers and texts discuss the details of the optimal estimation techniques that 
may be used to implement tliese conc:rpts. 

Clock Models 

The perfect inkgrator is widely 11sed as the mathematical niodel rcprest?ntinig a precision clock. 
The fu~idamenta,l model describes the continuous states of the clock. The time (or phase) is 
t,he integral of the freqilency and the frecluiency is tlle integral of the frequency aging. For 
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sonne clocks, the frequency aging state may be zero for all time and can be deleted from the 
model. Most often, the continuous niodel is integrated to form a discrete model that is an 
c,xplicit function of the time between observations. Let us call the phase-time of the clock x, 
t,llcl dilriensio~iless frequency of the clock y, and the frequency aging, w. Then we write the 
disc:rete deterministic model as follows: 

We will also use two special symbols: &(tl t) is the estimate of clock i based on all data through 
time t and 2 i ( t +6 ( t )  is the forecast of clock i at t+ 6  based on all data through t. The perfect 
integrator deterministic model is not always used. Several investigators have used t,he ARIMA 
modelling technique to study clocks [1,2]. This approach may use the perfect integrator model, 
or it may use model identification techniques to fit a model to the observations. 

There are several methods of including the effects of noise on the system. One way is to 
add a random shock on the right hand side of each line in Eq. 1. These shocks are assumed 
to be uncorrelated in time and cause each clock state to behave as a random walk. This type 
of noise model is most commonly used for both Kalman filtering and ARIMA modelling of 
precision clocks. An alternative noise model was used as the basis for A.l(USNO,MEAN). In 
this model the frequency is given by a series of steps plus white noise. The frequency steps 
occur at random times. Mixtures of the two approaches have also been used and there is not 
,yet a definitive answer to the questioli of what is the optimal noise model for precision clocks. 

Review of Prior Techniques 

With only one exceptionl all t,he niajor time-scale algorithms use the same approach to  
combine the individual clock times into the time scale. The current estimates of the clock 
times with respect to the time scale are determined by the requirement that the weighted sum 
of the differences between the current time estimates and their predicted values is zero. The 
mathematical expression of this requirement is called the basic time-scale equation: 

If optimal estimation techniques are used as the basis for predict,ion, the differences between 
the current estimates and the predictions form a white sequence and averaging is the appro- 
priate method of combining the colltributions from different clocks. Combining the residuals 
instead of the clock times themselves results in time continuity upon addition or deletion of 
clocks. The basic time-scale equation is also responsible for establishing the weights, sit that 
control the contribution of each clock to the time scale. 

The only time-scale algorithm that doesn't use the basic t,ime-scale equat,ion is TA(N1ST) 
and a similar algorithm called the Composite Clock. This algoritllm defines state equations 



that describe the time evolution of the states of the ensemble members including the effects 
of noise. Optimal statistical teclmiques are used to estimate the times of each constituent 
(:lock. However, the results are not good. In fact, the estimation problem of TA(NIST) is 
~inderdetermined. This situation results from the failure of the algorithm to implement the 
trasic time-scale equation or some alternative and is not the result of the statistical estimation 
techniques (Kalrnan filter) that are employed. As a result, the effective weighting that controls 
low the clocks are combined is different from the intuitive weighting schemes used in the other 
algorithms and can't be controlled by the user. In addition, the time scale is hard to manage. 
Addition of new clocks is a particular problem. Another time scale called the Composite Clock 
is used to compute GPS time. It is based on the TA(N1ST) approach and suffers from the 
same problems. 

The question of how to form the forecasts needed by the basic time-scale equation has 
been ignored throughout the preceeding discussion. Unfortunately. the same question was not 
dealt with sufficiently carefully by any of the time-scale algorithms. Instead, ad hoc procedures 
have been used to estimate the clock frequencies used in predicting the future clock times. 
The ad hoc procedures limit time-scale performance. In particular, these algorithms do not 
solve the problem of how to form a time scale that has optimum performance for both long 
and short sampling times when some clocks have good short-term stability and others have 
good long-term stability. Recent developments, described in tlle New Techniques section? have 
eliminated this limitation. 

New Techniques 

The problem of determining the clock times and frequencies would be trivial if it were 
possible to make absolute time measurements of the clocks. However, it is only possible to 
measure the time differences between pairs of clocks. Thus situation may be described by 
saying t,llat the states of the clocks are not observables of the system. One way to view the 
problem is as follows. Each clock is perturbed by two noise inputs at every observation. One 
random shock contributes to the evolution of the clock time and the other to the evolution 
of the clock frequency. Suppose that there are N clocks that have no noise on tlle frequency. 
The11 there are N-1 clock time difference measurements. One cannot uniquely determine the N 
random shocks that perturb the tinie. However, when one uses the basic time-scale equation in 
addition to the N-1 measurements, there are N relations among N unknowns and one obtains 
a unique estimate for each random shock and therefore for the clock times themselves. 

At first it  night appear that, knowing the times, one mdy unambiguously calculate es- 
timates of the clock frequencies. However, this is not the caw when there arc independent 
noises on both the time and the frequency states. The time difference measuren~ents? together 
with the basic time-scale equation, suffice to determine the total noise input to each clock's 
time. However, that total noise input is composed of a direct contribution to the time and a 
contribution via the noisy frequency. There is insufficient measurement information to sepa- 
rate these two noise sources. Thus, with certain limitatiom, there is freedom in determining 
the clock frequencies. For example, one could require that all the frequencies are zero for all 
time and still bc consistent with all the measurements. The problem is how to allocate the 



iloisc, between the time and the frequency states. 
The allocation of tlle noise between time and frequency is part,ially accomplished by requir- 

ing t l~a t  the   nod el of each clock has the? appropriate statistics. This require~nent is sufficient? 
for example, to exclude the case of all clocks having constant frc?quency but is not su€Ecient 
t,o allocate the frequency noise on a detailed basis in such a way that the time scale has all 
t,l~e desired properties. If nothing further were done, the frequency noise would be allocated 
according to the weights used in the basic time-scale equation. Independent detailed allo- 
cation of tlle frequency noise is accomplished by adding a supplemental time-scale equation 
that also guarantees that the time-scale frequency is continuous when clocks are added to or 
dropped from the time scale. By analogy with the clock times: one requires that the weighted 
sum of the differences between the current frequency estimat,es and their predicted values is 
zero. The same technique must be extended to the frequency aging state if it is nonzero. The 
supplemental time-scale equations are written: 
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The basic time-scale equation and the supplemental time-scale equations have been in- 
corporated in the KAS-2 time-scale algorithm developed by Timing Solutions corporation. 
Using this approach, each clock's contribution to the tinie-scale is determined by a set of 
weights, one for each state that is perturbed by noise. There are always at least two weights 
per clock. As a result KAS-2 rnay be independently optimized in both the short tern1 and 
the long term. It can therefore ut,ilize clocks wit,h very different frequency stability without 
degrading the st,ability of the tinltt scale. U. S. Patent 5:155:695 has been issued covering time 
scale systems utilizilig the supplemental time-scale equations. Ot,her patent applications are 
pending. 

Implementation 
There are two basic approaches to time-stale algorithms - real time v.s. after the fact. 

Real-time algoritlirns are req11irt.d for applications t,hat need a physical signal derived from 
the time-scale. This is true, for exitmplt:, if the time-scale is usrd to provide stable and 
fault tolera~it t,inle and frequency for a co~nnlu~iicat,io~is network. Other applicatio~is are 
arne~~able to post processing of the tiat,a. In t>his case it is possible! in principle? to corn- 
pute time-scale estimates with smaller mean-squared errors since more data are available. 
TA(N1ST): A.l(MEAN,USNO), and ALGOS(B1PM) are computed after the fact. They do 
not use srnoot,hing techniques but they do use both subject,ive and objective techniques to 
detect "u~lliealtlly" clocks a1111 ~nodifv tllc? e~selnble membership before performing the final 
time-scale estimates. KAS -1(NR,L), KAS -2(TSC), and ATl(N1ST) all produce estimates in 
real time. Other experimental algurithn~s utilize smoothing t,ediniques to att,empt to improve 
t,lieir est,imates co~nparc?d to a real-time filter. 



Optimal State Estimation 

The determinist,ic clock model, the noise model, t.he basic and supplemental time-scale 
~>cluat,ions, and the observations are sufficient to calculate tile time scale. Since the problem 
LS st,ochastic in nature, the solution is not unique. However, there are several  neth hods for 
calculating minimum squared-error estimates of the clock states. Among these are: least 
squares estimation! Bayesian estimation, maximum likelihood estimation, Kalman filtering, 
a i d  Wi(11ier filtering. All these techniques are equally good in the sense that they minimize 
the mcyitn square estimation error as long as the assumptions are the same in each case [3]. 

Robust Statistics 

I~ievitably. the data presented to the time-scale algorithm will be deviant in some way. 
Perhaps one of the clocks changes characteristics dramatically due to an int,errnal hilure or 
perhaps tlie observations are corrupted during a data transfer. It is desirable for the time 
scale to be robust under t,hese conditions. By this we mean that deviant behavior in a small 
number of observations does not unduly influence the performance of the time scale [4]. 

Robust~iess is ensured by a two step process. First, we generate an estimate of the expected 
observatio~is and then we act to reduce the effect of any observation that is far from our 
expectation. Both parts of the process must be robust. Consider t,he problem of detecting 
outliers in a set of rneasurement,~ of a constant such as the length of a rod. One might think 
t,o compare each measurement with the mean of the set. However, when one measurement is 
bad, the mean may differ arbitrarily from it,s expectation value making the deviation from the 
mean an undesirable measure of deviant behavior. The median is much more robust. 

The most common method of dealing with outliers is to reject observations that appear 
deviant. But this procedure leads to a discontinuity in the estimation procedure where small 
changes in an observation can produce significant changes in the resulting estimate. This 
discontinuity can produce trallsient,~ and even instability and should be avoided. Continuity 
is ensured by continuously deweighting observations over a range of values. 

Finally, it is sometimes argued that if one has a wealth of data, it is desirable to discard 
large amount,s of good data to enhance the probability of rejecting tlie bad data. This must 
not be done if the residuals from. the estimat,ion process are used to determine the noise of the 
clocks. If good data are discarded under these circumstances) the clock noise will inevitably 
be underestimated. 

Parameter Estimation 

The function of time-scale algorithms is to allocate the observed clock noise among the 
contributing clocks. Thus can only be done if t,he parameters of the clock models of each clock 
are accurately known. These parameters are the spectral densities of each of the noise sources 
that perturb the clock and any of the commonly used techniques for estimating t,he noise of 
clocks niay be applied. For example, one may characterize the Allan variance of clock pairs 
and use the three corner hat technique to separate the variances. The principal drawback of 
this approach is that Allan Variance estimation requires uniformly sampled data. 



The Maximuni Likelihood method [5] is a more sophisticated approach. It relies on the fact 
tlrat the likelihood fu~ictio~i computed from the residuals of the time-scale estimation process 
is maximized when the correct parameters are used. The model itself can also be checked for 
validity by this method since the correct model used with the correct parameters results in 
Gaussian white residuals. Standard statistical techniques can be used to analyze the residuals 
for whiteness. The principal drawbacks of the maximi~m likelihood method are that it requires 
storing large amounts of historicitl data and substantial processing time. 

Other techniques have been developed for real-time algorithnls that are incompatible with 
storing and processing large amounts of historical data. For example, ATl(N1ST) uses the 
one step ahead prediction error as its sole nieasure of clock noise. The value is updated 
recursively in an exponential filter after each cycle of time-scale computation. An extension 
of this technique is the analysis of the one step ahead prediction error as a function of the 
prediction interval [6]. Since different noise sources dominate the time prediction error as the 
interval varies, it is possible to estimate all the important noise spectral densities of each clock. 

Performance of the KAS -2 Time-Scale Algorithm 

The best way to evaluat,e the performance of a time-scale algorithm is to simulate the 
clocks in the ensemble since simulation makes it possible to know the true times of the clocks. 
There are several appropriate simulation techniques [6,7]. The method developed by this 
author has been used to test KAS-2. However, simulation testing should be supplemented 
with tests using actual clock data. The comparison of several different time scale algorithms 
on real clock data provides the ultimate reassurance that something important has not been 
overlooked. 

Figure 1 shows the simulated performance of KAS -2 with an eight clock ensemble composed 
of four clocks with good short-term stability and poor long-term stability and four additional 
clocks with poor short-term stability and good long-term stability. The resulting tirne scale is 
better than the best clocks everywhere. 

Figure 2 compares the times of three independent time scales computed from the mea- 
surements of tlie clock ensemble at the National Institute of Standards and Technology using 
data supplied by NIST. The test period was the first 10 months of 1992. The ATl(N1ST) 
tirne scale was computed in real time while TA(NIST) was computed after the fact using the 
information generated by AT1 to adjust thc ensemble. KAS-2(TSC) was run on the historical 
data as if it were running in real t,ime. It used the same estimates for the clock noises that 
were used in TA(N1ST). All three scales were adjusted so that thcy had tlie same rate as TAI 
at the beginning of the year. In addition, an intentional frequency steer of 3.98 ns/day in 
ATl(NIST) was removed in order to compare the free time scales. One should not jump to 
conclusions since there is only one year of comparative data, but the results certainly support 
the theoretical claims of tlie adritntages resulting from the implementation of the supplemental 
time scale equations. 

Figure 3 illustrates the performanc:e of a Cs cloc:k a t  t,he Naval Research Laboratory that 
was stjeered in real tirne t,o the KAS-2 time sc:ale. Tlie time scale was computed every 5 
minutes and approximately one-tenth of the estimated phase error was removed each sample 
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Figure 1: The simulated frequency stability of a time scale composed of four clocks with good 
short-term stability and four clocks with good long-term stability. 

by a second order phase-lock loop. As a result: the frequency stability of the Cs standard equals 
its free running value for times shorter than three thousand seconds (10 sample intervals). At 
longer times? the frequency stability improves until it reaches the performance of the KAS-2 
time scale. 

Comparison of Time-Scale Algorithms 

Table 1 s~immarizes the features of the time-scale algorithms discussed in this paper. Some 
of the more important differences and similarities will be discussed in more detail here. 

All the algorithms except for TA(N1ST) and the similar GPS Composite Clock implement 
the basic time-scale equation. Neither do these two algorithms implement a suitable alterna- 
tive. As a result, they both perform worse than the others. First of all: they do not provide 
user control of the weights that determine the clock contributions to the time scale. Second, 
they have difficulties when clocks enter or leave the ensemble. Finally. they are likely t,o be 
unstable when adaptive filtering is used. 

The algorithms that implement the basic time-scale equation fall into two categories. 
TAI(B1PM) and A.l(USNO,MEAN) arc computed after the fact. In practice, human judge- 
ment supported by objective statistical analysis is used to filter the input data in an attempt, 
to improve the time-scale performance. ATl(NIST), KAS-l(NRL), and KAS-2(TSC) are 
real-time time scales. 111 principle, after the fact time scales are capable of performing bet- 
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Table 1: Comparison of time-scale algorithms 
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real-time time scales are necessary whenever the time scale is used to control physical clocks or 
for sy~ic:hro~iizatio~i. Each approach has its advantages and should be used in the appropriate 
circumstances. 

Many of these time scales differ in their implementation of robust statist,ics. The after the 
fact scales typic:ally use rt?jection rule techniques to exclude bad clocks entirely. Use of rejec- 
tion rules in real-time algorithms is inappropriate since the discontinuity of the rejection rille 
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and require human int,ervention t,o restart the time scale. ATl(N1ST) has suffered from this 
problem. KAS -1(NRL) and KAS-2(TSC) eliminate t,his discontinuity by implementing Per- 
cival's outlier deweigliting method. Large oi~t,liers are still rejected, but there is a continuous 
transition between full acceptance and full reject,ion of data. 

Different clock motlels are used in t,he tune scales discussed in this paper. The USNO A.l 
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time scale models the frequency 11oi.x as a series of discrete steps of random amplitude and 
ti~nr? of occurrence. The ot,her time scales model the frequency noise as either a continuous 
or a discrete random walk process. An advantage of the random walk model is the existence 
of straightforward filtering a ~ i d  smoothing techniques that can provide objective estimates 
that. are optimum in the minimiim squared-error sense. Several state estimation techniques 
llave been used in these time scales. However, regardless of the state estimation method, the 
11ptlat.c. equatio~i used for the states is always an exponential filter. Thus, the only issue is the 
proper selection of the filter time constant. Despite the simple description of this problem, 
the solution is quite difficult except in special situations such as an e~lsemble consisting of 
several identical clocks. TAI(B1PM) and ATl(N1ST) utilize restrict,ed operating conditions 
and approxi~rlate formulas for the required filter lengths. The approach works well as long 
as t,he restrictions are not violated. TA(NIST), KAS-l(NRL), and KAS2(TSC) utilize the 
Kalrnan filter approach. This guarantees that the filter lengths are correctly determined 
as long as the clocks fit the models and the parameters are correctly estimated. However, 
TA(N1ST) and the GPS Composite Clock are often intentionally mismanaged by changing 
the parameters of the clocks since they do not have explicit user controlled weights. 
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QUESTIONS AND ANSWERS 

Question: M. J. Van Melle, Rockwell Intematbnal: I was interested in the table you had on 
comparison of time scale algorithms and also your CASl which was on your last chart. I am 
also working at (??) and you know the Air Force has partitioned all the GPS's into different 
partitions or ensembles. Up to six they can handle and now down to five and they have three 
partitions. But they can only work if they have the Cesium clocks in there. Once they put a 
Rubidium in there, it doesn not work. I was wondering if you could explain why that is the 
case. 

Question: S. Stein: I really did not pay you enough for that question. The composite clock 
algorithm that IBM did is esssentially the same as the NIST TA algorithm. It has some 
differences in the way they treat the renormalization of the covariance matrix to get around 
this problem of the wvariance matrix blowing up, but fundamentally the problem with that 
type of algorithm is it implements the clock model - perfect integrator clock model - and it 
estimates the time of the clock based on the measurements, but it does not implement the basic 
time equation. The solution is not constrained to be the waited average of the times of the 
clocks based on user selectable weights. Thats the fundamental reason for the what I would 
call instabilities you will see in the state predictions of algorithms of that type. So I think is 
what happens is you have both additional burden operationally on the Air Force personnel 
at the Master Control Station and try to maintain the algorithm and you have limitations on 
not being able to include different types of clocks with different characteristics. The algorithm 
only works on a limited set of circumstances. I do not know what to do about that except to 
fix that algorithm so indeed the basic time scale equation is incorporated. 

Question: Richard Keating (USNO): Have you ever studied the sensitivity of the basic time 
scale equation as you call it to round off and loss of significance. Some remarkably disparate 
numbers in the sense of very large numbers and very small numbers play a role when you start 
averaging. I was wondering if you ever made a study of that or if you know anybody who has. 

Answer: S. Stein: I have done to date approximately two hundred seventy simulations studies 
of the performance of these algorithms. The problem you raise is possibly the most difficult 
problem of all in the wmputation of system time. I am not sure I can remember the exact 
figures but the asymetry in the wvariance matrix occurs depending on the number of clocks 
and the difference in the performance of the clocks in the eighth or tenth digit while computing 
in double precision. Once one cycle through the recursion costs you eight digits of precision. 
Yes, this is a terrible problem because the fundamental approach to generating the gains, the 
filter time constants, is differencing large numbers against small numbers. You can treat that 
problem, for instance one of the ways of treating that problem and Kalman Filter methods 
is to go ahead and resymmetrize the covariance matrix each time. You also must treat the 
problem in special cases. For example we provide the facility for the user to carry along clocks 
which we call not members of the ensemble. That means that the clock is defined as not 
effecting the time scale wmputation, no matter how large a deviation it makes. It can move 
one second and shall not move the ensemble one nanosecond. There is simply not enough 
computational accuracy to do that, so what we do is we go in and we fix the Kalman gains 
directly to cope with that situation. You always have to do some special things, there are 
some special things we do, and that is one of them. Fortunately the statistical analysis that 
has been done for much more important applications than this for navigating spacecraft and 
flying airplanes, have dealt with all of these problems and you can use a more sophisticated 
version of a standard Kalman Filter that allows you to go in and change the gains and still 
correctly compute the recursion, and to correctly take into account the ad hoc changes you 



have made in the gains. We do that. 

Manuel Aparicio (Il'T): I have two questions. The first one is if you have a non-evenly spaced 
sample for the Kalman Filter that you are using, you mention that you will have some problems. 
What type of problems are they? The second one is if your estimates of the noise processes 
in the Kalman Filter are not absolutely correct for one of the members of the ensemble, what 
kind of effects will you see? 

S. Stein: The first is a potential problem. Box Jenkins or ARIMA modeling requires evenly 
spaced data. The typical way around that is if you are missing data you interopolate it. It 
biases your results. We use the approach that was done by Dick Jones and (Petrian?) for the 
TA algorithm and that is we use a noise model which is the integration of continuous white 
noise and so the Kalman Filter runs optimally for any spacing of data, therefore you do not 
need equally spaced data. Your second question. The effect of inaccuracies in the estimates 
of the parameters. Of course you never know the parameters - you only estimate them. The 
values of the spectral densities of clocks determine the filter time constants. The bottom line, 
forget everything else, the reason is why ad hoc algorithms work is that all of these techniques 
result in simple exponential filters for estimating the states. The actual filter that performs the 
state estimates is an exponential filter. Incorrect parameter estimate results in having a slightly 
non optimun filter link. The worst your estimate of the parameter, the more non optimun it 
is. That is it's effect and so it is upsetting, but not tragic. It is serious, but not catastrophic. 

R Tkvella (JEN, Italy): You spoke of the possibilities of using different states to optimize the 
things, maybe short, medium and long term stability. In the definition, you describe but do 
you use different equations with different ways, and it seems to me that in this way you define 
two or three different in different time scales. How can you obtain a unit time scale - do you 
make a sort of frequency lock of one on the other. 

S. Stein: No! They are not different scales. All three equations can be satisfied simultaneously. 
It is as simple as that. 

R 'Igvella: That if you solve the three equation, you will obtain the redefined ensemble time 
scale. 

S. Stein: No! Remember you have a weighted average of the phases of the clock that is 
constrained. You have a weighted average of the frequencies that are constrained and you 
have a weighted average of the frequency aging that are constrained and they may all be 
constrained and achieve a single solution. Each of the states is independently perturbed. So 
we have one solution and there is no funny steering to combine them. 

R 'hvella: In the equation for phase continuity in the prediction of the phase that you also 
put frequency and ( ? ) or also phase. 

S. Stein: You use the frequency in there to make the forecast. In the basic time scale equation 
we say the weightec! average of the time of the clock with respect to the time scale is equal 
to the weighted average of the forecasts. That is the equation you wrote in your paper two 
years ago. It is the same except that I use "a" and you use "p". The forecast depends on the 
frequency estimate. The forecast is the old phase estimate, plus the old frequency estimate, 
times the interval delta, plus one half delta squared, times the old frequency aging estimate. 
We constrain independently now the current frequency estimate to be the weighted average of 
the frequency forecast. This equation and the basic equation are all required simuitaneously 
- the same solution. I have lots of degrees of freedom. 

R. Clark (USNO): When you have subgroups of clocks that are exposed to environmental 



effects and that type. There is a correlation between groups of clocks. How is this treated 
and is that looked for and sometimes that is just entirely not obvious - things like preventive 
maintenance that is done on the first of the month or third Tuesday of thc month with clocks 
that are not even in the same area. 

S. Stein: I think the answer to that question is at the present time nobody has a tentative 
process for that kind of information. We do not. 




