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Abstract 

Relativity compensations must be made in precise and accurate mearurements whenever an observer 
is accelerated. Akhugh many believe the Earth-centered frame is suflcientb inertia4 accelerations of the 
Earth, as. evidenced by the  tide,^, prove that it is technically a noninertial system for even an Earth-based 
observer. Dr. Einstein introduced the concept thut time was essentially a fourth component that could be 
added to any three-dimensional position. Using the constant speed of light, a set offired remote clocks in 
an inertial frame can be synchronized to afixed master clock transmitting its time in thatframe. The time 
on the remote clock deJnes the coordinate time ut thd coordinate position. However, the synchronizution 
procedure for an accekrated frame is aflected, because the distance between the ma~ter an3 remote clocks 
is altered due to the acceler&'on of the remote clock toward or away from the master clock during the 
transmksion interval. 

An exact metric that converts observations from noninertial frames to inertial frames was recently 
derived. Using this metric with other physical relationships, a new concept of noninertial coordinate 
time LT de$ned. This noninertial coordinute time includes all relativity compensations. Thb new deJni- 
tion rakes several timekeeping hues, such as proper time standards, time transfer processes, and cbck 
synchronizations, all in the noninertiul~rame such a~ Earth. 

Background 

Relativity compensations must be made in precise and accnra.tc ~rleasurenlents whenever a.n 
observer is accelerated. Noninertial refcrence fra~ries are ones that experience accelerations, whidi 
include rotatio~ls. A refcrence frame centered 011 the Earth would appear to  be inertial, but the 
observation of the tides derllonstratcs the existence of a force acting on the oceans. This force is 
the product of mass and a.cceleration, which proves that the 1n:tss of the ICarth is being accelerated. 
The existence of thc tides proves that  any Earth-centercd frarrle is not s~~fficiently inertial. 

Ilr. Albert Einstein acclirately assumed that the speed of light (i.e. any electrolnagnctic radiation) 
in a vacliunl is always the sarrle constant for all inertial frames. He acc~~ra te ly  predicted that a 
moving clock would appea,r to run slower than an identical, but stationary, clock. Dr. Einstein 
developed the concept that tinlc was a relative quantity that  essentially is a fourth coordi~late 
associated with any three-dimcnsio~lal position of a dlosen reference frame. This resulted i11 the 
definition of co~rdina~te  time unique to every refcrcnce frame. 

Conversion of position and time coordinates between inertial frames was accomplished 
by Dr. Einstein through the Loreritz transformatio~i. Thc current practice in relativity sciencc is 



to  use cornovi~lg inertial reference frames to match a noninertial reference frame and then apply 
the Lorentz tra~lsformation to  convert observations from one inertid frame to another. 

Only recently, an exact transforr~lation which converts obsrrvations from noninertial frarnes to  iner- 
t i d  frames was derived[l]. This was developed by Dr. Robert Nelson, and this transformation will 
be designated as the Nelson trarlsformation to  eliminate confusion. The metric for an accelerated, 
rotating frame has been derived as: 

A . p  2 w x p "  """ = 

Definition of Noninertial Coordinate Time: A New Concept 

The Nelson metric was modified in the goo tern1 to include gravity effccts[2] from the post- 
Newtonian approximation as follows: 

One fundamental property that relrlains invariant in relativity regardless of the rcfcrence frame is 
"proper time,"denoted here as T .  The proper time of an object is defined as the time m~a.snred by 
an ided  clock attached to  the moving object[d]. An invariant equation relates coordinate tirne ( t )  
and coordinate position (X ) with proper time ( r ) .  

To facilitate the use of the relativity cqnations, the modified Nelson metric and the proper time 
used in Eqnation 2 have been converted from Einstein's repeating Roman index notation to the 
more familiar vector notation. 'I'he modified Nelson metric (Equation 1) was inserted into thc 
invariant equation (Equation 2). Equa.tion 3 was completely derived[4] using Equations 1 and 2. 

where 

9 = the sum total of each gravitational potential a t  the remote clock's location 
as contributed by each measurable mass source. For locations near or on the 
Earth's surface, 9 = g(4)h  as defined below. 

T = the proper time of the noninertial Earth at the geoid. 
A = the acceleration vector of the remote clock in the chosen inertial reference 

frame. 
v = the velocity vector of the remote clock in the chosen inertial reference frame. 

@ = the velocity vector of the master clock in the chosen inertial reference frame. 



= the remote clock's geodetic latitude relative to Earth's geoid if that  clock is 
near or on the Earth's surface. 

g ( d ~ )  = the perpendicular gra,vi ty cotlstant at  the rernote clock a t  the Earth's surface, 
whjch is a function of the geodetic latitude 4 of the rerriote clock's loc,ation. 

h = tlie a,ltitudc: of the remote clock abovc: the Earth's geoid for a.pplications 
when that  clock is on or near the Earth's srrrfa,ce. 

: = the speed of light (i.e. ally electromagnetic radiation) in a, vacuum of an 
inertial 1r;~rne. 

p = the range vector from the remotc clock to the rnaster clock in the inertial 
reference frame. 

t = the noninertial c,oordirlate tirae of the remote clock a.t reception. 

Noninertial coordina.tr time is therefore defined as a Iilrlctiorl of proper time of the remote cloc,k in 
the noninertial frane.  The squaake root term i n  l3quation 3 includes the relativity contributions for 

A - nollgravitatiorlaa a.ccclcrations 3 , gravity 9 , ancl velocity 9 . This squa.rc root term is the [ 1 
time dilation factor that  will always exceed the valilc of one for a noninertial frame. So, division of 
this factor into proper time yields the noninertial coordinate ti~rle interval, which is always smaller 
than the proper tirrle interval. 

Noninertial coordinate time is the time given by a lixed rerrlote clock in a noninertial reference frarne 
synchronizecl to a fixed master clock in that frame, which includcs all relativity compensations. Evcn 
the theorization of all the relativity compensations in a nonincrtial frarnc was not possible beforc 
the advent of the Nelson rnetric, ; L I L ~  o~lly :~ss111rlpti01ls ;~11(1 ;~pproxil~i;itio~ls for these relativity 
corrlpe~isations have bee11 previously avilable. 

Conclusions 

Based on the new definition of nonincrtial coordinate tirne, a reexarrlination of several timekeeping 
issues is warranted. A few of thesc issrlrs include the proper ti~rle standard, the time transfer 
proccss and tlie clock synchronizatiorl procedure, all in a noninertid frame (c.g. the Earth). 

1ncrtia.l coordinate tirrie standards (e.g. TAI), which arc based o n  tirrie calibrations in an inertial 
framc, beat faster than a moving proper time standard, which undergoes tirae dilations i n  its 
noninertial reference frame. 'i'heorctically, the leap second between TAI and Url'I staxidards may 
be the result of this difference. Work is ongoing to qua~ltify what portion of the leap second is due 
to differences betwccn inertial and rloninertial coordinate tirncs. It is recorrlrrlended that a study 
be  initiated to dcterminc whether the current atomic titnc standard, which is correc,tly dcfined for 
an incrtial reference f ra~ne,  is appropriatc: in Earth's norlinertial framc. 

Time transfers are currently done betwee11 two remotc: precise tirrie stations that simultaneously 
observe a satcllitc time transnlission. Tiruc transfers deterrrline the tir-t~c differences between stations 
A and H without having to  transport physical clocks for compa.rison. Global Positioning System 
(GPS) time transfers use a GPS time receiver to get a, coordi~late time at  reception. The time 
tra,nsfer equation is [A-tA] - [n-tB] = A - B when t~ = t g  a,t equivalent time marks. The local 
proper times of the atornic clocks are A and LI, respectively, and t~ and t~ arc the rlorlinertial 
coordinate rcccpt ion times frorrl GI's receivers. 

Tirae transfers are also affected by Earth's rotation. 'I'he Earth's geoid is a theoretical construc,t 
where all ideal clocks will beat at the same rate. ITowever, even on the gcoid, tlie ~longravitational 



relativity effects have first arid second order dependence on the velocit;y of the local clocks i11 the 
no~linertial local frame. The time transfer relationship between a satellite clock (e.g. GYS) and the 
fixed local clocks not on the geoid of the rotating Earth, has been derived. The Earth's gravity, 
the rotational acceleratio~l and tangential velocity were inserted into Equation 3 to yield: 

where RgeOid is the position vector where receiver would be on the geoid if the receiver had no 
altitude. 

Equation 4 is used to comprlte the noni~lertial coordinate tinles t for the two remote stations for t~ 
and t ~ .  The transmission time from the GPS satellite is t ~ p . 7 ,  and t is the noninertial coordinate 
time a t  reception for the local clock. When the noninertial coordinate time tA equals t ~ ,  the time 
transfcr algorithru correctly gives the difference in proper times of A and H of the two clocks. 

The last term in Equation 4 is equivalent to  the Sagnac effect, which corrects for thc first order 
change in the geometric range as the clock moves toward or away from the satellite during the time 
interval of transmission. Two new relativity colnpensations in Equation 4, which were not previ- 
ously included in GPS time tra,nsfers, affect the no~linertial coordinate t i ~ n e  t .  The gravitational 

4 4 h  effect, ~q, is due t o  the additional change in gravity due to  the altitude h as compared to  the ex- 
2 

pected gravity i n  GPS at  the Earth's groid. The nongravitational effect, & [+] - ["X*O1d] , 
is difference in the expected tangential velocity due to Earth's rotation as comparecl to the cxpected 
tangential velocity in GPS at the Earth's geoid.. 

It is assumed that  the c u r r ~ n t  GPS rrceivers corrcct for the georrietric range, which is the last tct'm 
in Equation 4. The additional gravitational e&ct for an atomic clock 2000 meters above the Earth's 
geoid, would result in a drift rate of 2.18 x 10-'"1s or 18.8 ns/day. The nongra.vitationa1 drift 
rate for an atomic, clock affected by Earth's rotation w h ~ n  elevated 2000 meters above the geoid 
a t  the equator would be 7.55 x 10-16 s/s or 0.06 ns/day. Such offsets in frequency contributions 
may currently be attributed to illecha~~ical errors in the clocks rather than these nrlcompensated 
relativity effects. 

Clock synchronization is simple to perform in an inertial frame, and all s tat i0na.r~ clocks will beat 
the same for both proper and coordinate time. Clock synclironization in an inertial frame is simply 
accomplished by : 

distxlce between remote and Inaster 
trenlote = ttransnlitted rrlaster time + 

speed of light 

However, with a noninertial frame, clock synchronization between a master clock and a remotc 
clock a t  rest must bc acco~nplished differently. The distance that the ~naster  clock transmission 
must travel to  the remote clock varies, because the remote clock can be accelerated toward or 
away from the master clock during the transmission interval. In general, the noninertial master 
clock beats will fluctuate differently f r o ~ n  the noninertial remote clock rate, compared to the steady 
beat of any synchronized inertial clock. To perform clock synchronizations in a noni~lertial frame, 
Equation 3 must be used to  convert proper time of a remote noninertial clock to  its noninertial 
coordinate time. Only then will the remote noninertial clocks be synchronized to the noninertial 
master clock in that frame. 
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In summary, noninertial coordinate time includes all the relativity compensations reqoired with a 
1 noninertid referc~ice frame. Since thc Earth-centered frarne is not sufficiently inertial, the potential 

b applications for noninertial coordinate time are far-ranging. Timekeepers concerned with optimiulrl 
accliracics would achi~ve substantial ilnprovcruents by using this concept. 
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