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Abstract 

The work reported in this paper takes place in a general theoretical overview concerning the generation 
of an ensemble time scak. D i e e n t  algorithms can be d e g  to match the particular nee& of users and 
the available sets of clocks and time measurements. In all cases however, the statisticul treatment of clock 
&tu requires at least: 

the definition of an average time scule, 

the spec$catwn of a procedure to optimize the contribution of each clock, 

the impkmentation of a filter on each clock frequeq to provide a means of prediction. 

Here, the comparative study of two time scale algorithms, devised to sati& d ime& but rehted require- 
ments, is presented. They are ALGOSCBIPM), pruducing the internutional reference TAX at the Bureau 
International des Pods et me sure.^, and AT1 (NIST), generutins the real-time time scale AT1 at the National 
Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, 
but the weighl determinution and the frequency prediction are different because thty are adapted to different 
purposes. 

The possibility of using a mathematical tool, such ar the Kulrnan filte~ together with the definition of the 
time scale as a weighted average, k also analysed. Results ohtuined by simulution are presented. 

INTRODUCTION 

To keep time is to  accumulate, without discontinuity, time scale units as close as possible to the SI 
second as defined in 1967 by "the duration of 9192631770 periods of the radiation correspo~ldil~g to 



the transition between the two hyperfine levels of the ground state of the czsium atomV[l] 

Time laboratories have a t  their disposal comrrlercial c ~ s i u m  clocks. But physical devices can fail, so 
these laboratories are inevitably led to keep not one, but several clocks which are together treated as 
an ensemble. Clock readings are then combined through an algorithm designed to raise the stability, 
accuracy and reliability of the time scale above the level of performance of any individual clock in the 
ensemble. 

In the design of a time scale algorithm there is no general solutioa. Rather the fundamental ingredi- 
ents should be artfully mixed to match the available time measurements and the needs of the user. 
Some of these ingredients arc the definition of an average time scale, the specification of a weighting 
procedure, the determination of a means to predict clock frequencies and the implementation of a, 
filter on measlirement noise. 

In this paper the key point of the definition of the time scale is highlighted for different algorithms. 
In a first section, we propose the comparative study of two time scale algorithms: ALGOS(BIPM)[~],  
producing the international reference, TAI, at the Bureau International des Poids et Mesures, and 
AT~(NIST)[~] ,  generating the real-time time scale, AT1, at  the National Institute of Standards a n d  
Technology. Though the weight determination and the frequency prediction are different, because 
they are adapted to different purposes, these two algorithms rely on the same definition of the time 
scale. 

In a second section we emphasize the possible use of the Kalman filter for a time scale. This mathe- 
matical tool is first briefly presented and then shown as being valuable help in the efficient processing 
of clock data. Here we show with three examples of algorithms based on Kalman 5 v  '1 that 
this technique can be unpowerful for the elaboration of a time scale if an equation of definition is not 
set. Finally, our own view of how to take advantage of the Kalman filter is given together with results 
obtained from simulated clock data. 

Note: In what follows symbols are defined as: 

date of the time scale update, 
clock identification, 
reading of clock Ri at date t 
(this quantity is not directly accessible by experiment), 
weight assigned to clock IIi, 
clock I1 - i time offset from the time scale 
TA under computation 
(this quantity gives user access to the time scale), 
clocks number, 
measurement between clock I l j  and clock Hi at date t ,  
time interval betwccn two measurement cycles. 

1. COMPARATIVE STUDY OF ALGOS(B1PM) AND ATl(N1ST) 

The detailed analysis of the comparison of the two algorithms, ALGOS(B1PM) and ATl(NIST), has 
been published Here we give only the main features of that study in order to focus on 
the definition of the time scale in these two cases. 



ALGOS(B1PM) produces the international reference, TAI (temps atomique international), at  the 
Bureau International des Poids et  Mesures (Skvres, France). The requirement here is for extreme 
reliability and long-term stability. To this end, TAI relies on a large number of clocks of different 
types, located in different parts of the world and connected in a network allowing the precise exchallge 
of time data. Although measurements are performed a t  intervals of r=10 days, the definitive update of 
TAI is obtained from an iterative and post-processed procedure which treats, as a wl-iole, two-month 
blocks of data  and so ensures long-term stability[2' 71. One important consequence is that  TAI is a. 
deferred-time time scale. 

The first step in the establishment of TAI is the computation of a free atomic time scale, EAL (kchellc: 
atomique libre), obtained as a weighted average of clock readings. TAT is then derived from EAT, 
with a frequency steering in order to  ensure accuracy. For each date t of the two-month interval of' 
computation [to, to + 60 days], EAT, is defined as: 

N 

x~i [hi (t ) + hi ( t )] 
EAL( t )  = 

N 

In this equation, pi is the weight assigned to  clock .Hi, and h:(t) is a time correction applied at  date 
t to ensure time and frequency continuity of the scale when the weights of clocks or the total number 
of clocks is changed[']: 

here Bip(t) is the frequency of clock Hi, relative to  EAL, predicted for tlie period to ,  t .  

From equation (1) and the above ~zotations, we get the system of equations: 

The time measurements are chosen to be non-redundant so that the system (3) is deterministic with 
N equations and N unknowns and so is exactly solvable a t  each date t. The results are the quantities 
si(to t n ~ )  with n = 0, 1, 2, 3, 4, 5 and 6 for each clock Hi. Clock Hi frequency Bi(tO + 60 days) 
for the two-month interval under computation is obtained as the least squares slope of the qualitities 
xi(to t nr ) .  

The detailed and complete description of the weighting procedure is described elsewhere[7]. Thc 
general principle is that  the weight assigned to  clock Hi is set to  be inversely proportional to thc 
frequency variance of the clock over six two-month samples. This ensures the long-term stability of 
EAL and allows deweighting for seasonal fluctuation. An upper limit of weight and a system for the 
detection of abnormal behaviour are also in use in ALGOS(B1PM). 



The frequency prediction is a one step linear prediction[7], the supposition being that  each clock most 
likely behaves in the present two-month interval as it did in the previous one. This is the optimal 
cstimatc for random walk frequency modulation, which is the predominant clock noise for two-month 
averaging time. 

The AT1 time scale, developed at  the National Institute of Standards and Technology (Boulder, Co, 
USA) is used for scientific studies, The basic requirement is to provide definitive access to  the time 
scale in near real time, with no post-processing or reprocessing. It is an average time scale derived from 
measl~remcnts taken from about 10 commercial clocks located on the site. The A T l ( N 1 S T )  algoritlzln 
estimates time, adaptative weight and frequency[3] for each contributing clock a t  each measurement 
cycle, a t  present r = 2 hours. 

The equations for computing the time scale a t  date t are based on predicted values ii and iji for the 
time and frequency of each clock. The predicted time difference f ;( t)  of clock Hi relative to AT1, for 
the date t ,  involves the time offset x i ( t  - T )  obtained from the previous computation and the frequency 
Gi(t - T )  estimated a t  date t - r and predicted for the next r period. This is written as: 

This equation is completely similar to  (2) in the descriptioll of ALGOS(B1PM) if t - to is set equal to 
T .  

The definition of the time scale itself is written aa: 

where x i j ( t )  is the non-redundant set of time mensurements. 

A trivial transformation of (5) leads to: 

so that  we get the system of equations: 



This is a system of N equations with N unknowns, equivalent to system (3) for ALGOS(B1PM). 

The analogy in the definition of EAL and AT1 time scales is then complete. 

Weights pi appearing in (5), designed to ensure stability, have been determined in the previous compu- 
tation a t  date t  -T  with an exponential filter over the time deviations between predicted and estimated 
time differences of the last N ,  periods[3]. The time constant N ,  is usually set a t  20 t o  30 days. Thcsc 
time deviations are also corrected for the bias introduced by the correlation between the clock itsell 
and the average time A detector of abnormal bchaviour and an upper limit of weight[?] exist 
also in ATl(N1ST). 

The predicted frequency y;(t) comes from an exponential weighted axcrage of past and present mean 
frequencies. The time consta,nt of this exponential filter being characteristic of the statistical bellaviour 
of each contributing clock. 

Conclusions 

The ALGOS(B1PM) and AT1(NISrl') algorjthms rely on the same basic definition of the tirne scalc, 
generated as a weighted avcrage of clock readings. They also prcsent other cornnlon features: mca- 
surements of time differences are treatcd as havillg negligihlc uncertainties and clocks are supposct-1 
uncorrelated among them. 

The appropriate way to  determine clock weights and to predict clock frequencies depends essentially on 
the available measurements (number of clocks, measurement sampling) and on the properties reqtlircd 
for the resulting time scalc (real-time updating or deferred-tirne post-processing). 

2. TIME SCALES BASED ON KALMAN FILTERING 

2-1 KALMAN FILTERING OUTLINE 

The Kalman filter, which is used in Inany signal processing applications, is a tool well-adapted for 
stochastic estimation and prediction. It is a recursive and linear filter, optirnal in the sense of least 
squares estimation['* ''1. 

Its property of recursivity rnakes of this filter an interesting tool for help in the elaboration of a time 
scale: it allows a definitive treatment a.t each measurement cycle and provides a means of prediction 
for the next step. The system under estimation, in the case of a time scale, includes clock time offsets 
and clock frequencies. The evolution with time of these quantities can easily bc represented by a linear 
model, linearity being a necessary condition lor application of thc Kalrnan filter theory. In addition 
measurement noise and correlation arrlong clocks ca,n na.turally be inserted in the lllodel whereas it is 
not the case for the two previous algorithms. 

Here is a brief description of how Kalrrlan filtering operates. The intention is t o  avoid equations which 
can be found elsewhere[10] but rather present basic ideas in the schematic way of Fig. 1 and 2. 

Consider a dynamical system which evolves linearly with time. At date t its state is represented by 
a vector X ( t ) .  We wish to  estimate this vector using measurements, obtained with a r measure~ne~lt 
cycle, for times preceding date t .  Suppose that the syste~n. state was estimated at date t - T by the 
vector X ( t  - r / t  - T ) ,  a quantity which must be read as estimate of X at date t - r knowing 



all the measurements up to date t - T. This estimate has an error given by a covariance matrix 
r ( t  - r / t  - T )  and represented on Fig. 1. 

According t o  the model of evolution and to  the noise of the model given by the covariance matrix 
Q(t), the transition step of the Kalman filter (Fig. 1) allows us to  estimate the predicted state of the 
system a t  date t,  knowing all the measurements up to date t - T :  the vector X( t / t  - 7). The error on 
the estimation of this vector is given by the matrix r ( t / t  - T ) ,  which includes the matrix Q( t ) .  This 
error is larger than the error a t  date t - T, mainly because the model is not perfect (see Fig. 1). 

We now represent a new measure by a vector Z(t)  which is affected by an error given by the matrix 
R(t)  and represented on Fig. 1. From the predicted state a t  date t and this new information, the 
Kdman  filter computes a new estimate of the state of the system according to an  "update adjustment" 
described in Fig. 2. This new estimate is represented by the vector X( t / t )  affected by a covariance 
matrix r ( t / t ) ,  the trace of which has been minimized. 

The update adjustment of Fig. 2 builds the new estimate from the old one and from the innovation 
weighted by the Kalman gain. The innovation represents the new information contained in the last 
measurement: it is simply the diffcrence between the real measure and a predicted measure, expected 
from the predicted state a t  t knowing t - T. The Kalman gain I i ( t )  is given by a complex expression 
involving all the errors which affect the system, mainly I', Q and R [ ~ O ] .  Qualitatively, if the mea- 
surement Z(t)  is very good, that is, affected by a very small error, the Kalman gain a t  date t will 
be large so that  the new estimate of the system state will largely rely upon the new observation. On 
the contrary, if the measurement is very bad, the adjustment process of the Kalman filter will tend to 
ignore it,  

At last one more detail: the noises which are involved in the Kalman recurrence must be white izoises. 

2-2 EXAMPLES OF APPLICATION OF THE KALMAN FILTERING TO THE 
COMPUTATION OF A TIME SCALE 

The first attempt t o  apply the Kalman filter to  the problem of time scales was performed by Tryon 
and Jones in 198214]. Their system is an ensemble of N clocks. The system state X ( t )  has 2N 
components: the N clock time offsets h;(t) and the N clock frequencies yi(t) relative t o  an  ideal time 
scale. The model integrates each clock time and frequency affected by white frequency noise and 
random walk frequency modulation. Tlle measurement vector Z(t) is composed of the (N-1) time 
differences, measured between each clock and the reference clock. The measurement noise is supposed 
to be negligible. The result of the Kalrnan recursivity is an estimate of how each clock departs fro111 
an ideal time scale, but it is found tha,t the error of this estimate always increases with time. This 
non-convergence of the covariance matrix I? arises from the lack of observability of the system: N 
quantities hi(t) being estimated from only (N-1) measurements. In this case the Kalman filter is an 
efficient tool for filtering the data noise but, isolated, it does not have the power to  build an average 
time scale. 

Another example is the approach developed by steinL5I, where a Kalman filter is applied on the time 
measurements xij(t) themselves, to  smooth out the white phase noise. These filtered measurements 
are then used to predict the time offset of a given clock, relative to  the ensemble time, in (N-1) different 
ways, each way passing through another clock of the ensemble. The definitive estimate of this time 
offset comes from a weighted average of these different predictions, The weighted average is defined 
by (3) or (5) and computed with a static and robust ICalman filter. 



The Kalman filter is also used for time scales as a complement to  the ATl(N1ST) algorithm for 
frequency step detection. This work, proposed by Weiss and ~ e i s s e r t [ ~ ] ,  utilizes the results xi(t) of 
AT1 in order to  redize pseudo-measurements of the frequency of each clock relative to  the ensemble 
time. The white noise of these pseudo-measurements is filtered and so gives access to the randorn 
walk component of each frequency and to  the va,riance of this estimation. They are then tested for 
possible step. 

2.3 A NEW PROPOSAL FOR USING THE KALMAN FILTER IN TIME SCALE 
GENERATION 

Here we propose a new approach for using the Kalrrian filter in time scale generation and present 
results obtained with simulated clock da,ta. 

We start with the same hypothesis and defining equations aa were used for ALGOS(B1PM) and 
ATl(N1ST). 

Suppose an ensemble of N clocks, the frequencies of which are uncorrelated. One clock is cl-losen a.s 

the reference. Each day N-1 time measurements are perfor~ned ( r  = 1 day). Suppose also that  the 
white phase noise of the measurements is smoothed out before the main cornputation of the time scale 
so that  i t  can be treated as negligible. The ense~rlble tirne scale is defined by (3) or (5) as: 

with: j.i(t + T )  = x;(t) f &(t) . r ,  similar to (4), 

where G;(t)  is the predicted frequency for the interval [t, t + r] .  
I I l h c  weight pi and the predicted frequency Ij;(t), relative to  the time scale, of each clock arc chosell 
outside the main conlputation to  ensure the best long-term stability. 

Now we wish t o  improve the short--term stability of the scale. For this purpose we use N - l  Kalman 
filtcrings, each of them operating on just two clocks, the reference clock H j  arid another one chosen 
arnong the ensemble Hi.  This decoupling supposes that the N-1 pairs of clocks are uncorrelated, which 
is theoretically not true, as the sarne reference clock is involved in each pair. However, one call choose 
the least noisy clock as reference and suppose the coupling to  bc small. Anyway the correlation of the 
N - l  pairs can be easily inserted in a Kalman filter operating on all the pairs together. 

For each Kalman filter, the state of the system is conlposed of a single quantity, the frequency y;j(t) 
a t  date t of clock H; relative to the reference clock. The model of evolution of the systerrl is written 
as : 

where a;j is white noise driving the random walk frequency modulation of the clock. The Q matrix is 
reduced here t o  the variance of the white noise aig. 



Frequency measurements are deduced from time measurements with the equation: 

and arc affected with white frequency modulation P i j ,  with variance R. 

The application of the Kalman filter leads to  an estimation of the random walk component of the fre- 
quency y i j ( t  + T) of clock Hi relative to  clock H j  while smoothing out the white frequency modulation. 

Now, the filtered estimate yi j ( t  + T )  of the frequency yij(t + T) can be introduced in the equation of 
definition of the time scale as: 

The first term of (12) is xj(t), the time offset of the reference clock Hj  with respect to the average tirne 
scale. The second term is the weighted average of estimations of the frequency of clock H j  relative to 
the time scale, obtained through clock Hi and the filtered frequency of clock Hi relative to clock H j ;  
it is then the frequency of the reference clock TIj relative to the average time scale a t  date t + T. 

Our proposal consists in filtering the white frequency modulation to estimate the random walk compo- 
nent of the frequency of a clock relative to another clock and then introducing this filtered frequency 
in the definition of the average time scale. This a,pproach is thus opposite to that developed by Weiss 
and ~e isse r t l "  ], 

This new procedure has been investigated with simulated clock data: G clocks were simillated wit11 
different levels of white frequency rnodl~lation and random walk of frequency for a 300-day period. 
One clock has better short-term and long-term stability than the others: this is chosen as the reference 
clock. The frequency stability for the 5 pairs of clocks is given on Fig. 3. After filtering of the white 
frequency modulation, the short-term frequency stability for each pair of clocks is largely improved, 
as shown on Fig. 4. The efficiency of the filtering is presented on Fig. 5 for a given pair of clocks: the 
white frequency modulation is smoothed out, leading to the extraction of the random walk component 
of the frequency of one of the clocks relative to thc other. 

For the computation of the time scale, the weight pi of clock Hi is cllosen to be the reciprocal of its 
Allan variance computed over 30 days. The predicted frequency of clock Hi relative to the time scale, 
Gi,  is the avera,ge of the previous 30-day frequency data. Tkis averaging time is chosen to improve the 
long-term stability of the average time scale. 



The frequency stability of the resulting time scale, computed either with raw data or after implemen- 
tation of the Kalman filtering proccdurc, is presented on Fig. 6: thc average time scale obtained with 
filtered data has a lower level of white frequency modulation and so is more stable using averaging 
time in the range 1-30 days, After a 30-day averaging timc, the random walk frequency noise is 
predominant and the two time scales have the same behavior. 

CONCLUSIONS 

The first step of the construction of a time scale is the dcfinition of tlze ensemble time. For most time 
scale algorithms used in timing centers, thc ensemble time is a weighted average of clock readings. Tllc 
determination of the contribution of each clock and the mode of prediction of its frequency relative to 
the time scale are chosen in order to  match special user needs and a,vailable time measurements. 

The Kalman filter is a tool well adapted to tirne scale generation once the dcfinition of the ensemble 
time has been given. It helps t o  smooth out the white phase noise of the time measurements. Its 
use for filtering the white frequency modulation of the clocks themselves is a I ~ F W  approach. In this 
case the time scale is built with the random walk cornponerlt of the frequencies of the clocks relative 
to a single clock chosen as reference. The short-term stability of the resulting timc scale is then 
significantly irnproved. 
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FIauRE 1 : Recursive procedure for the Kalman f i l t e r .  

FIQURE 2 :  Schematic description of the adjustment process for the Kalman 
f i l t e r ,  leading t o  the updated estimation o f  the state o f  the system (The H 
matrix, not specified i n  the t ex t ,  i s  the 'observation matrix' which l inks  
the vector o f  the system state,  X ,  t o  the vector of  measurement, 2. I f  a l l  
the quantities under estimation are observable, H i s  the matrix Ident i ty) .  
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F I Q U R ~  3 :  Al lan  d e v i a t i o n  f o r  f ive pa i r s  o f  c l o c k s .  The! c l o c k s  are 
s imula ted  w i t h  d i f f e r e n t  l e v e l s  o f  w h i t e  frequency modulat ion and rqndam walk 
frequency modula t ion .  
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FIGURE 4 :  Al lan  d e v i a t i o n  o f  t h e  same p a i r s  of  clocks as i n  F i g .  3 ,  a f t e r  
a p l i c a t i o n  o f  a ftalman f i l t e r  f o r  smoothing out the w h i t e  f requency  
modulat ion.  
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FIGURE 5: Example of Kalman estimation of the random walk component of 
the frequency: 

- measured frequency - estimated frequency 

FIGURE 6: stability of the average time scales obtained with simulated 
clock data: 

0 raw clock data, 
-k filtered clock data. 
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QUESTIONS AND ANSWERS 

Unidentified Questioner: Was your data tested for periodicity, such as for the apparent tell day 
period in the graph? Was any Chi square test performed? Was the noise tested for whiteness and 
Gaussian behavior? 

Ms. Tavella: Each type of noise was obtained from random white noise. 




